
Learning Linear and Kernel Predictors with the 0-1 Loss Function

Shai Shalev-Shwartz
The Hebrew University

shais@cs.huji.ac.il

Ohad Shamir
Microsoft Research

and The Hebrew University
ohadsh@cs.huji.ac.il

Karthik Sridharan
Toyota Technological Institute
karthik@tti-c.org

Abstract
Some of the most successful machine learning al-
gorithms, such as Support Vector Machines, are
based on learning linear and kernel predictors with
respect to a convex loss function, such as the hinge
loss. For classification purposes, a more natural
loss function is the 0-1 loss. However, using it
leads to a non-convex problem for which there is
no known efficient algorithm. In this paper, we
describe and analyze a new algorithm for learning
linear or kernel predictors with respect to the 0-1
loss function. The algorithm is parameterized by L,
which quantifies the effective width around the de-
cision boundary in which the predictor may be un-
certain. We show that without any distributional as-
sumptions, and for any fixed L, the algorithm runs
in polynomial time, and learns a classifier which is
worse than the optimal such classifier by at most
ε. We also prove a hardness result, showing that
under a certain cryptographic assumption, no algo-
rithm can learn such classifiers in time polynomial
in L.

1 Introduction
One of the main workhorses of machine learning are linear
predictors, used in algorithms such as Support Vector Ma-
chines, Perceptron, Adaboost, Linear Regression and more.
A linear predictor is parameterized by a vector w, and given
an instance x, predicts according to 〈w,x〉. A powerful ex-
tension of linear predictors are kernel predictors, where the
instances x are mapped to a high-dimensional feature space
ψ(x), and a linear predictor is learned in that space. Rather
than working with ψ(x) explicitly, one performs the learning
implicitly using a kernel function k(x,x′) which efficiently
computes inner products 〈ψ(x), ψ(x′)〉 in the feature space.

For binary classification tasks, the common approach is to
take the sign of 〈w,x〉 as the prediction. The natural way to
quantify the performance of such a classifier is using the 0-1
loss function: for a given instance x and a true binary label
y ∈ {0, 1}, we incur a loss of 1 if sgn(〈w,x〉) 6= y, and 0
otherwise.

However, there is no efficient algorithm known for finding
the linear predictor w which minimizes the number of clas-

sification errors on an arbitrary dataset. With general kernel
predictors, this is aggravated by a statistical problem, namely
that it is impossible to obtain generalization guarantees which
relate good performance on the training data to a good perfor-
mance on the distribution from which the training data was
sampled.

In practice, a common solution to both problems has been
to replace the non-convex 0-1 loss function by a convex
surrogate, such as the hinge loss (defined as max{0, 1 −
y〈w,x〉}). With respect to such loss functions, one can ef-
ficiently find the best predictor using convex optimization,
as well as obtain statistical guarantees, even for general ker-
nel predictors. However, this comes at the price of solv-
ing a somewhat different problem than what we are really
after, namely minimizing classification mistakes. Worse,
there is no simple way to relate these two problems for fi-
nite samples (although there do exist some recent results on
the asymptotic relationship between the two [Zhang, 2004;
Bartlett et al., 2006]).

In this paper, we present and analyze a simple algorithm
for learning linear or kernel predictors for binary classifica-
tion, with respect to the 0-1 loss function. To obtain non-
trivial guarantees, the learned predictors allow themselves a
small region of uncertainty (or randomness) close to the deci-
sion boundary, whose effective width is parameterized by L.
We show that for any fixed L, the algorithm learns a classifier
which is worse than the optimal such classifier by at most ε,
and runs in time polynomial in ε. Moreover, the algorithm
has the interesting property of being provably competitive
not only with respect to such classifiers, but with respect to
a much larger set of predictors. In addition, while our guar-
antees are worst-case, the runtime of the algorithm can be
much smaller, depending on the data distribution. We also
prove a hardness result, showing that under a certain crypto-
graphic assumption, no algorithm can learn such classifiers in
time polynomial in L.

2 Preliminaries

Following the standard statistical learning framework, we as-
sume that there is an unknown distribution D over the set of
labeled examples, X ×{0, 1}, and our primary goal is to find
a classifier, h : X → {0, 1}, with low error in expectation

over D:
errD(h)

def
= E

(x,y)∼D
[|h(x)− y|] . (1)

The learning algorithm is allowed to sample a training set of
labeled examples, (x1, y1), . . . , (xm, ym), where each exam-
ple is sampled i.i.d. from D, and it returns a classifier. Fol-
lowing the agnostic PAC learning framework [Kearns et al.,
1992], we say that an algorithm (ε, δ)-learns a concept class
H of classifiers using m examples, if with probability at least
1 − δ over a random choice of m examples, the algorithm
returns a classifier ĥ that satisfies

errD(ĥ) ≤ inf
h∈H

errD(h) + ε . (2)

We note that ĥ does not necessarily belong toH . Namely, we
are concerned with improper learning, which is as useful as
proper learning for the purpose of deriving good classifiers. A
common learning paradigm is the Empirical Risk Minimiza-
tion (ERM) rule, which returns a classifier that minimizes the
average error over the training set,

ĥ = argmin
h∈H

1

m

m∑
i=1

|h(xi)− yi| . (3)

The class of classifiers discussed in the introduction, also
known as halfspaces, is defined as follows. Let X be the set
of all vectors in the unit ball. Let φ0−1 : R → R be the
function φ0−1(a) = 1(a ≥ 0) = 1

2 (sgn(a) + 1). The class
of halfspaces is the set of classifiers

Hφ0−1

def
= {x 7→ φ0−1(〈w,x〉) : w ∈ X} .

If X lives in an n-dimensional Euclidean space, then stan-
dard learning-theoretic results allow us to obtain a guarantee
of the form (2) using the ERM learning rule (Equation (3)).
The size of the required training data scales linearly with n.
However, with kernel predictors, which maps data to a high
or even infinite-dimensional space, we must use a different
class in order to obtain a guarantee of the form given in Equa-
tion (2).

One way to define a slightly different concept class is to
approximate the non-continuous function, φ0−1, with a Lip-
schitz continuous function, φ : R → [0, 1], which is often
called a transfer function. For example, we can use a sig-
moidal transfer function

φsig(a)
def
=

1

1 + exp(−4La)
, (4)

which is a L-Lipschitz function. An illustration of this trans-
fer function is given in Figure 1. Analogously to the definition
of Hφ0−1

, for a general transfer function φ we define Hφ to
be the set of predictors x 7→ φ(〈w,x〉). Since now the range
of φ is not {0, 1} but rather the entire interval [0, 1], we in-
terpret φ(〈w,x〉) as the probability to output the label 1. The
definition of errD(h) remains1 as in Equation (1).

The advantage of using a L-Lipschitz transfer function is
that one can obtain learning guarantees which depend only on

1Note that in this case errD(h) can be interpreted as
P(x,y)∼D,b∼φ(〈w,x〉)[y 6= b].

-1 1

1

-1 1

1

Figure 1: Illustrations of transfer functions for L = 10 (top) and
L = 3 (bottom): the 0-1 transfer function (dashed blue line) and the
sigmoid transfer function (black line).

(ε, δ) and L, rather than the dimensionality of the data. For
example, based on techniques form [Bartlett and Mendelson,
2002], one can show the following:
Theorem 1 Let ε, δ ∈ (0, 1) and let φ be an L-Lipschitz
transfer function. Let m be an integer satisfying

m ≥

(
2L+ 3

√
2 ln(8/δ)

ε

)2

.

Then, for any distribution D over X × {0, 1}, the ERM algo-
rithm (ε, δ)-learns the concept class Hφ using m examples.
The above theorem tells us that the sample complexity of
learning Hφ is Ω̃(L2/ε2), regardless of the dimensionality of
X . This allows us to learn with kernels, when the dimension-
ality of X can even be infinite.

From the computational complexity point of view, the re-
sult given in Theorem 1 is problematic, since the ERM algo-
rithm should solve the non-convex optimization problem

argmin
w:‖w‖≤1

1

m

m∑
i=1

|φ(〈w,xi〉)− yi| . (5)

The main focus of this paper is the derivation and analysis of
a simple learning algorithm that (ε, δ)-learns the class Hsig

using time and sample complexity which is polynomial for
any fixed L.

3 Main Results
In this section we present our main results. Recall that we
would like to derive an algorithm which learns the class
Hsig. However, the ERM optimization problem associated
with Hsig is non-convex. The main idea behind our construc-
tion is to learn a larger hypothesis class, denoted HB , which

approximately contains Hsig, and for which the ERM opti-
mization problem becomes convex. The price we need to pay
is that from the statistical point of view, it is more difficult to
learn the class HB than the class Hsig, therefore the sample
complexity increases.

The class HB we use is a class of kernel predictors. The
kernel function we use is defined as

K(x,x′)
def
=

1

1− ν〈x,x′〉
, (6)

where ν ∈ (0, 1) is a parameter. If our original learning prob-
lem pertained to linear predictors, then 〈x,x′〉 is the stan-
dard inner product between vectors in Euclidean space. If
our original learning problem pertained to kernel predictors,
then 〈x,x′〉 is the kernel inner product. For example, if we
wish to learn kernel predictors using the Gaussian kernel, de-
fined as k(x,x′) = exp(−‖x− x′‖2 /σ2), then the kernel
function we will use to learn with respect to the 0-1 loss is
1/(1− ν exp(−‖x− x′‖2 /σ2)).

To simplify the presentation we will set ν = 1/2, although
in practice other choices might be more effective. It is easy
to verify that K is a valid kernel function (see for example
[Cristianini and Shawe-Taylor, 2004]). Therefore, there ex-
ists some feature mapping ψ : X → V, where V is an inner
product space with 〈ψ(x), ψ(x′)〉 = K(x,x′). The class HB

is defined to be:

HB
def
= {x 7→ 〈v, ψ(x)〉 : v ∈ V, ‖v‖2 ≤ B} . (7)

The algorithm we present and analyze is straightforward:
first, it uses the ERM learning rule and finds the kernel pre-
dictor v ∈ V which minimizes the average absolute value of
its mis-predictions on the training data:

v = argmin
v:‖v‖2≤B

1

m

m∑
i=1

|〈v, ψ(xi)〉 − yi|, (8)

Since the objective function is defined only via inner products
with ψ(xi), and the constraint on v is defined by the `2-norm,
it follows by standard results that there is an optimal solution
v? that can be written as v? =

∑m
i=1 αiψ(xi). Therefore,

instead of optimizing over v, we can optimize over the set of
weights α1, . . . , αm by solving the equivalent optimization
problem

min
α1,...,αm

1

m

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

αjK(xj ,xi)− yi

∣∣∣∣∣∣ (9)

s.t.
m∑

i,j=1

αiαjK(xi,xj) ≤ B ,

and defining the predictor x 7→ 〈v,x〉 to be x 7→∑m
i=1K(xi,x). We note that this optimization problem is

convex and can be solved efficiently (i.e. in time poly(m))
by any of several possible methods.

After finding this v, the algorithm constructs and returns
the following randomized binary classifier: Given an instance
x, the classifier predicts 1 with probability [〈v, ψ(x)〉][0,1]
(where [·][0,1] clips values to the range [0, 1]), and 0 other-
wise.

The main result we prove in this section is the following:

Theorem 2 Let ε, δ ∈ (0, 1) and let L ≥ 3. Let B =
2L4 +exp

(
7L log

(
2L
ε

)
+ 3
)

and letm be a sample size that

satisfies m ≥ 8B
ε2

(
2 + 9

√
ln(8/δ)

)2
. Then with probabil-

ity at least 1 − δ, the predictor ĥ returned by the algorithm
satisfies

errD(ĥ) ≤ min
h∈Hsig

errD(hsig) + ε .

As discussed earlier, our algorithm runs in time polynomial in
the sample size, and thus runs in time poly(1/ε) for any fixed
L. We note that the bound on B is far from being the tightest
possible in terms of constants and second-order terms. Also,
the assumption of L ≥ 3 is rather arbitrary, and is meant to
simplify the presentation of the bound.

The algorithm and accompanying analysis has two impor-
tant properties: first, the classifier returned by the algorithm
is near-optimal not only with respect to the class of linear (or
kernel) predictors Hφ0−1

, but also with respect to the class
HB , which contains a much larger set of transfer functions
(see Lemma 1 below). In particular, it is near-optimal with
respect to the “best” transfer function in HB , where by best
we mean the one which attains the smallest error rate over the
distribution D. A second important property is that the run-
time of our algorithm depends on the parameter B, for which
the bound in Theorem 2 is only a worst-case bound over any
possible distribution. Since in practice B is chosen via cross-
validation, it is plausible that in many real-world scenarios
the runtime of our algorithm will be much smaller.

To prove Theorem 2, we start with analyzing the time and
sample complexity of learning HB . A standard analysis (us-
ing tools from [Bartlett and Mendelson, 2002]) tells us that
the sample complexity of learning HB with the ERM rule is
order of B/ε2 examples:
Theorem 3 Let ε, δ ∈ (0, 1), let B ≥ 1, and let m be a
sample size that satisfies

m ≥ 2B

ε2

(
2 + 9

√
ln(8/δ)

)2
.

Then, for any distributionD, the ERM algorithm (ε, δ)-learns
HB .

Next, as discussed earlier, we note that the ERM prob-
lem with respect to HB (namely, optimizing Equation (8) or
equivalently Equation (9)) can be solved in time poly(m).

It is left to understand why the class HB approximately
contains the class Hsig. Recall that for any transfer function,
φ, we define the class Hφ to be all the predictors of the form
x 7→ φ(〈w,x〉). The first step is to show that HB contains
the union of Hφ over all polynomial transfer functions that
satisfy a certain boundedness condition on their coefficients.
Lemma 1 Let PB be the following set of polynomials (possi-
bly with infinite degree)

PB
def
=

p(a) =

∞∑
j=0

βj a
j :

∞∑
j=0

β2
j 2j ≤ B

 . (10)

Then, ⋃
p∈PB

Hp ⊂ HB .

Proof To simplify the proof, we will assume that X is simply
the unit ball in Rn (the case of kernel predictors can be proven
similarly), for an arbitrarily large but finite n. Consider the
mapping ψ : X → RN defined as follows: for any x ∈ X ,
we let ψ(x) be an infinite vector, indexed by k1 . . . , kj for all
(k1, . . . , kj) ∈ {1, . . . , n}j and j = 0 . . .∞, where the entry
at index k1 . . . , kj equals 2−j/2xk1 · xk2 · · ·xkj . The inner-
product between ψ(x) and ψ(x′) for any x,x′ ∈ X can be
calculated as follows,

〈ψ(x), ψ(x′)〉 =

∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jxk1x
′
k1 · · ·xkjx

′
kj

=

∞∑
j=0

2−j(〈x,x′〉)j =
1

1− 1
2 〈x,x′〉

.

This is exactly the kernel function defined in Equation (6)
(recall that we set ν = 1/2) and therefore ψ maps to the
feature space defined byK. Consider any polynomial p(a) =∑∞
j=0 βja

j in PB , and any w ∈ X . Let vw be an element
in RN explicitly defined as being equal to βj2j/2wk1 · · ·wkj
at index k1, . . . , kj (for all k1, . . . , kj ∈ {1, . . . , n}j , j =
0 . . .∞). By definition of ψ and vw, we have that

〈vw, ψ(x)〉 =

∞∑
j=0

∑
k1,...,kj

2−j/2βj2
j/2wk1 · · ·wkjxk1 · · · ·xkj

=

∞∑
j=0

βj(〈w,x〉)j = p(〈w,x〉).

Similarly, it can be verified that

‖vw‖2 =

∞∑
j=0

β2
j 2j

∑
k1

w2
k1

∑
k2

w2
k2 · · ·

∑
kj

w2
kj

=

∞∑
j=0

β2
j 2j

(
‖w‖2

)j ≤ B.

Thus, the predictor x 7→ 〈vw, ψ(x)〉 belongs to HB and is
the same as the predictor x 7→ p(〈w,x〉). This proves that
Hp ⊂ HB for all p ∈ PB as required.

Finally, the following lemma states that with a sufficiently
largeB, there exists a polynomial in PB which approximately
equals φsig. This implies that HB approximately contains
Hsig.

Lemma 2 Let φsig be as defined in Equation (4), where for
simplicity we assume L ≥ 3. For any ε > 0, let

B = 2L4 + exp
(
7L log

(
2L
ε

)
+ 3
)
.

Then there exists p ∈ PB such that

∀x,w ∈ X , |p(〈w,x〉)− φsig(〈w,x〉)| ≤ ε .

The proof of the lemma is based on a Chebyshev approxima-
tion technique and is given in the full version of our paper
[Shalev-Shwartz et al., 2010].

Finally, Theorem 2 is obtained as follows: Combining The-
orem 3 and Lemma 1 we get that with probability at least
1− δ,

errD(ĥ) ≤ min
h∈HB

errD(h)+ε/2 ≤ min
p∈PB

min
h∈Hp

errD(h)+ε/2 .

(11)
From Lemma 2 we obtain that for any w ∈ X , if h(x) =
φsig(〈w,x〉) then there exists a polynomial p0 ∈ PB such
that if h′(x) = p0(〈w,x〉) then errD(h′) ≤ errD(h) + ε/2.
Since it holds for all w, we get that

min
p∈PB

min
h∈Hp

errD(h) ≤ min
h∈Hsig

errD(h) + ε/2 .

Combining this with Equation (11), and using the fact that
clipping predictions to [0, 1] can only decrease the error, The-
orem 2 follows.

4 Hardness
In this section, we derive a hardness result for distribution-
free learning of Hsig with respect to the 0-1 loss. The hard-
ness result relies on the hardness of learning intersections of
halfspaces in the standard PAC model2, proven by [Klivans
and Sherstov, 2006]. The hardness result is representation-
independent —it makes no restrictions on the learning algo-
rithm and in particular also holds for improper learning algo-
rithms. The hardness result is based on the following crypto-
graphic assumption:
Assumption 1 There is no polynomial time solution to the
Õ(n1.5)-unique-Shortest-Vector-Problem.

In a nutshell, given a basis v1, . . . ,vn ∈ Rn, the Õ(n1.5)-
unique-Shortest-Vector-Problem consists of finding the short-
est nonzero vector in {a1v1 + . . .+anvn : a1, . . . , an ∈ Z},
even given the information that it is shorter by a factor of
at least Õ(n1.5) than any other non-parallel vector. This
problem is believed to be hard - there are no known sub-
exponential algorithms, and it is known to be NP-hard if
Õ(n1.5) is replaced by a small constant (see [Klivans and
Sherstov, 2006] for more details).

Our hardness result is the following:
Theorem 4 Let L be a Lipschitz constant and let Hsig be the
class defined by the L-Lipschitz transfer function φsig. Then,
based on Assumption 1, there is no algorithm that runs in time
poly(L, 1/ε, 1/δ) and (ε, δ)-learns the class Hsig.

Proof
With assumption 1, [Klivans and Sherstov, 2006] proved

the following:
Theorem 5 (Theorem 1.2 in [Klivans and Sherstov, 2006])
Let X = {±1}n, let H = {x 7→ φ0,1(〈w,x〉 − θ − 1/2) :
θ ∈ N,w ∈ Nn, |θ| + ‖w‖1 ≤ poly(n)}, and let
Hk = {x 7→ (h1(x) ∧ . . . ∧ hk(x)) : ∀i, hi ∈ H}. Then,
based on Assumption 1, Hk is not efficiently learnable in
the standard PAC model for any k = nρ where ρ > 0 is a
constant.

2In the standard PAC model, we assume that some hypothesis in
the class has errD(h) = 0, while in our setting, errD(h) might be
strictly greater than zero for all h ∈ H .

The above theorem implies the following.
Lemma 3 Based on Assumption 1, there is no algorithm that
runs in time poly(n, 1/ε, 1/δ) and (ε, δ)-learns the class H
defined in Theorem 5.

Proof To prove the lemma we show that if there is a poly-
nomial time algorithm that learns H in the agnostic model,
then there exists a weak learning algorithm (with a polyno-
mial edge) that learns Hk in the standard (non-agnostic) PAC
model. In the standard PAC model, weak learning implies
strong learning [Schapire, 1990], hence the existence of a
weak learning algorithm that learns Hk will contradict Theo-
rem 5.

Indeed, letD be any distribution such that there exists h? ∈
Hk with errD(h?) = 0. Let us rewrite h? = h?1 ∧ . . . ∧ h?k
where for all i, h?i ∈ H . To show that there exists a weak
learner, we first show that there exists some h ∈ H with
errD(h) ≤ 1/2− 1/2k2.

Since for each x if h?(x) = 0 then there exists j s.t.
h?j (x) = 0, we can use the union bound to get that

1 = P[∃j : h?j (x) = 0|h?(x) = 0]

≤ kmax
j

P[h?j (x) = 0|h?(x) = 0] .

So, for j that maximizes P[h?j (x) = 0|h?(x) = 0] we get that
P[h?j (x) = 0|h?(x) = 0] ≥ 1/k. Therefore,

errD(h?j) = P[h?(x) = 0] P[h?j (x) = 1|h?(x) = 0]

= P[h?(x) = 0] (1− P[h?j (x) = 0|h?(x) = 0])

≤ P[h?(x) = 0] (1− 1/k) .

Now, if P[h?(x) = 0] ≤ 1/2 + 1/k2 then the above gives

errD(h?j) ≤ (1/2 + 1/k2)(1− 1/k) ≤ 1/2− 1/2k2 ,

where the inequality holds for any positive integer k. Oth-
erwise, if P[h?(x) = 0] > 1/2 + 1/k2, then the constant
predictor h(x) = 0 has errD(h) < 1/2− 1/k2. In both cases
we have shown that there exists a predictor in H with error of
at most 1/2− 1/2k2.

Finally, if we can agnostically learn H in
time poly(n, 1/ε, 1/δ), then we can find h′ with
errD(h′) ≤ minh∈H errD(h) + ε ≤ 1/2 − 1/2k2 + ε
in time poly(n, 1/ε, 1/δ) (recall that k = nρ for some
ρ > 0). This means that we can have a weak learner that runs
in polynomial time, and this concludes our proof.

We now turn to prove Theorem 4 itself. Let h be a hy-
pothesis in the class H defined in Theorem 5 and take any
x ∈ {±1}n. Then, there exist an integer θ and a vector of in-
tegers w such that h(x) = φ0,1(〈w,x〉− θ−1/2). However,
since 〈w,x〉 − θ is also an integer, we see that

|φ0,1(〈w,x〉−θ−1/2)−φsig(〈w,x〉−θ−1/2)| ≤ 1

1 + exp(2L)
.

This means that for any ε > 0, if we pick L = log(2/ε−1)
2

and define hsig(x) = φsig(〈w,x〉 − θ − 1/2), then |h(x) −
hsig(x)| ≤ ε/2. Furthermore, letting x′ ∈ Rn+1 denote the

concatenation of x with the constant 1 and letting w′ ∈ Rn+1

denote the concatenation of w with the scalar (−θ− 1/2) we
obtain that hsig(x) = φsig(〈w′,x′〉). Last, let us normalize
w̃ = w′/‖w′‖, x̃ = x/‖x′‖, and redefine L to be

L =
‖w′‖‖x′‖ log(2/ε− 1)

2
(12)

so that hsig(x) = φsig(〈w̃, x̃〉). Thus we see that if there
exists an algorithm that runs in time poly(L, 1/ε, 1/δ) and
(ε/2, δ)-learns the class Hsig, then since for all h ∈ H exists
hsig ∈ Hsig such that |hsig(x) − h(x)| ≤ ε/2, there also
exists an algorithm that (ε, δ)-learns the concept class H
defined in Theorem 5 in time polynomial in (L, 1/ε, 1/δ)
(for L defined in Equation 12). But by definition of L in
Equation 12 and the fact that ‖w′‖ and ‖x′‖ are of size
poly(n), this means that there is an algorithm that runs in
time polynomial in (n, 1/ε, 1/δ) and (ε, δ)-learns the class
H , which contradicts Lemma 3.

5 Related work
The problem of learning linear and kernel predictors has been
extensively studied before, mainly in the framework of Sup-
port Vector Machines [Vapnik, 1998; Cristianini and Shawe-
Taylor, 2004; Schölkopf and Smola, 2002]. In the special
case where the data is separable (namely, there exists a pre-
dictor w such that y〈w,x〉 ≥ 0 for any example (x, y)), it is
possible to learn a predictor in polynomial time, say by using
linear programming. The learning problem becomes much
more difficult when the data is not separable.

A paper closely related to ours is [Ben-David and Si-
mon, 2000], whose techniques can be adapted to develop an
exhaustive-search algorithm for our problem, whose runtime
is poly

(
exp

(
L2

ε2 log(Lε)
))

. In comparison, the runtime of
our algorithm is exponentially smaller. Moreover, the al-
gorithm of [Ben-David and Simon, 2000] performs an ex-
haustive search over all (L/ε)2 subsets of the m examples
in the training set, and therefore its runtime is always order
of mL2/ε2 . In contrast, our algorithm’s runtime depends on
a parameter B, which is bounded by exp(L) only under a
worst-case assumption. Depending on the underlying distri-
bution, B can be much smaller than the worst-case bound.
In practice, we will cross-validate for B, and therefore the
worst-case bound will often be pessimistic.

Another related line of work has been learning of linear
predictors with respect to the 0-1 loss function, but making
distributional assumptions on the data. For instance, [Kalai
et al., 2005] show that when the distribution over X ⊆ is
uniform, and assuming it is a subset of Rn, then it is possi-
ble to learn in time poly(n1/ε

4

). This was further general-
ized by [Blais et al., 2008], who showed that similar bounds
hold for product distributions. However, such distributional
assumptions are not very realistic. Moreover, these works are
characterized by explicit dependence on the dimension of X ,
and therefore are not adequate for the kernel-based setting
we consider in this paper, in which the dimensionality of X
can even be infinite. Interestingly, in [Shalev-Shwartz et al.,

2009] we show that the very same algorithm we use in this
paper recovers the same complexity bound of [Kalai et al.,
2005].

In terms of hardness results, there exist strong results
on hardness of proper learning, where the learning algo-
rithm must return a linear predictor (e.g. [Guruswami and
Raghavendra, 2006; Ben-David and Simon, 2000] and refer-
ences therein). We emphasize that we allow improper learn-
ing, which is just as useful for the purpose of learning good
classifiers, and thus these hardness results do not apply.

6 Discussion
In this paper we described and analyzed a new technique for
agnostically learning linear and kernel predictors with the
0-1 loss function. The bound we derive is polynomial for
any fixed L, the Lipschitz coefficient of the transfer function.
While we prove that (under a certain cryptographic assump-
tion) no algorithm can have a polynomial dependence on L,
the immediate open question is whether the dependence on L
can be further improved.

A perhaps surprising property of our analysis is that we
propose a single algorithm, returning a single classifier, which
is simultaneously competitive against all transfer functions
p ∈ PB . In particular, it learns with respect to the “optimal”
transfer function, where by optimal we mean the one which
attains the smallest error rate, E[|p(〈w,x〉) − y|], over the
distribution D.

Our algorithm boils down to a simple ERM algorithm us-
ing a particular kernel function. In fact, it is possible to show
that the standard Support Vector Machine algorithm, using
the hinge-loss and our particular kernel, can also give sim-
ilar guarantees. It is therefore interesting to study if there
is something special about the kernel we propose or maybe
other kernel functions (e.g. the Gaussian kernel) can give
similar guarantees.

Acknowledgments
We would like to thank Adam Klivans for helping with the
Hardness results. Shai Shalev-Shwartz is supported by the
Israeli Science Foundation grant number 598-10.

References
[Bartlett and Mendelson, 2002] P. L. Bartlett and S. Mendel-

son. Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Re-
search, 3:463–482, 2002.

[Bartlett et al., 2006] P. L. Bartlett, M. I. Jordan, and J. D.
McAuliffe. Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101:138–
156, 2006.

[Ben-David and Simon, 2000] S. Ben-David and H. Simon.
Efficient learning of linear perceptrons. In NIPS, 2000.

[Blais et al., 2008] E. Blais, R. O’Donnell, and K Wimmer.
Polynomial regression under arbitrary product distribu-
tions. In COLT, 2008.

[Cristianini and Shawe-Taylor, 2004] N. Cristianini and
J. Shawe-Taylor. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[Guruswami and Raghavendra, 2006] V. Guruswami and
P. Raghavendra. Hardness of learning halfspaces with
noise. In Proceedings of the 47th Foundations of
Computer Science (FOCS), 2006.

[Kalai et al., 2005] A. Kalai, A.R. Klivans, Y. Mansour, and
R. Servedio. Agnostically learning halfspaces. In Proceed-
ings of the 46th Foundations of Computer Science (FOCS),
2005.

[Kearns et al., 1992] M. J. Kearns, R. E. Schapire, and L. M.
Sellie. Toward efficient agnostic learning. In COLT, pages
341–352, July 1992. To appear, Machine Learning.

[Klivans and Sherstov, 2006] Adam R. Klivans and Alexan-
der A. Sherstov. Cryptographic hardness for learning in-
tersections of halfspaces. In FOCS, 2006.

[Schapire, 1990] R.E. Schapire. The strength of weak learn-
ability. Machine Learning, 5(2):197–227, 1990.

[Schölkopf and Smola, 2002] B. Schölkopf and A. J. Smola.
Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization and Beyond. MIT Press, 2002.

[Shalev-Shwartz et al., 2009] S. Shalev-Shwartz, O. Shamir,
and K. Sridharan. Agnostically learning halfspaces with
margin errors. Technical report, Toyota Technological In-
stitute, 2009.

[Shalev-Shwartz et al., 2010] S. Shalev-Shwartz, O. Shamir,
and K. Sridharan. Learning kernel-based halfspaces with
the zero-one loss, 2010. Technical Report, available at
arXiv:1005.3681.

[Vapnik, 1998] V. N. Vapnik. Statistical Learning Theory.
Wiley, 1998.

[Zhang, 2004] T. Zhang. Statistical behavior and consistency
of classification methods based on convex risk minimiza-
tion. The Annals of Statistics, 32:56–85, 2004.

