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Abstract

Most online algorithms used in machine learning today are based on vari-
ants of mirror descent or follow-the-leader. In this paper, we present an
online algorithm based on a completely different approach, which combines
“random playout” and randomized rounding of loss subgradients. As an
application of our approach, we provide the first computationally efficient
online algorithm for collaborative filtering with trace-norm constrained ma-
trices. As a second application, we solve an open question linking batch
learning and transductive online learning.

1 Introduction

Online learning algorithms, which have received much attention in recent years, enjoy an
attractive combination of computational efficiency, lack of distributional assumptions, and
strong theoretical guarantees. However, it is probably fair to say that at their core, most of
these algorithms are based on the same small set of fundamental techniques, in particular
mirror descent and regularized follow-the-leader (see for instance [14]).

In this work we revisit, and significantly extend, an algorithm which uses a completely
different approach. This algorithm, known as the Minimax Forecaster, was introduced
in [9, 11] for the setting of prediction with static experts. It computes minimax predictions
in the case of known horizon, binary outcomes, and absolute loss. Although the original
version is computationally expensive, it can easily be made efficient through randomization.

We extend the analysis of [9] to the case of non-binary outcomes and arbitrary convex and
Lipschitz loss functions. The new algorithm is based on a combination of “random playout”
and randomized rounding, which assigns random binary labels to future unseen instances,
in a way depending on the loss subgradients. Our resulting Randomized Rounding (R2)
Forecaster has a parameter trading off regret performance and computational complexity,
and runs in polynomial time (for T predictions, it requires computing O(T 2) empirical risk
minimizers in general, as opposed to O(T ) for generic follow-the-leader algorithms). The
regret of the R2 Forecaster is determined by the Rademacher complexity of the comparison
class. The connection between online learnability and Rademacher complexity has also been
explored in [2, 1]. However, these works focus on the information-theoretically achievable
regret, as opposed to computationally efficient algorithms. The idea of “random playout”,
in the context of online learning, has also been used in [16, 3], but we apply this idea in a
different way.

We show that the R2 Forecaster can be used to design the first efficient online learning
algorithm for collaborative filtering with trace-norm constrained matrices. While this is a
well-known setting, a straightforward application of standard online learning approaches,
such as mirror descent, appear to give only trivial performance guarantees. Moreover, our
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regret bound matches the best currently known sample complexity bound in the batch
distribution-free setting [21].

As a different application, we consider the relationship between batch learning and trans-
ductive online learning. This relationship was analyzed in [16], in the context of binary
prediction with respect to classes of bounded VC dimension. Their main result was that
efficient learning in a statistical setting implies efficient learning in the transductive online
setting, but at an inferior rate of T 3/4 (where T is the number of rounds). The main open
question posed by that paper is whether a better rate can be obtained. Using the R2 Fore-
caster, we improve on those results, and provide an efficient algorithm with the optimal

√
T

rate, for a wide class of losses. This shows that efficient batch learning not only implies
efficient transductive online learning (the main thesis of [16]), but also that the same rates
can be obtained, and for possibly non-binary prediction problems as well.

We emphasize that the R2 Forecaster requires computing many empirical risk minimizers
(ERM’s) at each round, which might be prohibitive in practice. Thus, while it does run
in polynomial time whenever an ERM can be efficiently computed, we make no claim that
it is a “fully practical” algorithm. Nevertheless, it seems to be a useful tool in showing
that efficient online learnability is possible in various settings, often working in cases where
more standard techniques appear to fail. Moreover, we hope the techniques we employ
might prove useful in deriving practical online algorithms in other contexts.

2 The Minimax Forecaster

We start by introducing the sequential game of prediction with expert advice —see [10].
The game is played between a forecaster and an adversary, and is specified by an outcome
space Y, a prediction space P, a nonnegative loss function ` : P × Y → R, which measures
the discrepancy between the forecaster’s prediction and the outcome, and an expert class
F . Here we focus on classes F of static experts, whose prediction at each round t does
not depend on the outcome in previous rounds. Therefore, we think of each f ∈ F simply
as a sequence f = (f1, f2, . . . ) where each ft ∈ P. At each step t = 1, 2, . . . of the game,
the forecaster outputs a prediction pt ∈ P and simultaneously the adversary reveals an
outcome yt ∈ Y. The forecaster’s goal is to predict the outcome sequence almost as well as
the best expert in the class F , irrespective of the outcome sequence y = (y1, y2, . . . ). The
performance of a forecasting strategy A is measured by the worst-case regret

VT (A,F) = sup
y∈YT

(
T∑
t=1

`(pt, yt)− inf
f∈F

T∑
t=1

`(ft, yt)

)
(1)

viewed as a function of the horizon T .

Consider now the special case where the horizon T is fixed and known in advance, the
outcome space is Y = {−1,+1}, the prediction space is P = [−1,+1], and the loss is the

absolute loss `(p, y) = |p − y|. To simplify notation, let L(f ,y) =
∑T
t=1 |ft − yt|. We will

denote the regret in this special case as Vabs
T (A,F).

The Minimax Forecaster —which is based on work presented in [9] and [11], see also [10]
for an exposition— is derived by an explicit analysis of the minimax regret infA Vabs

T (A,F),
where the infimum is over all forecasters A producing at round t a prediction pt as a func-
tion of p1, y1, . . . pt−1, yt−1. For general online learning problems, the analysis of this quan-
tity is intractable. However, for the specific setting we focus on (absolute loss and binary
outcomes), one can get both an explicit expression for the minimax regret, as well as an

explicit algorithm, provided inff∈F
∑T
t=1 `(ft, yt) can be efficiently computed for any se-

quence y1, . . . , yT . This procedure is akin to performing empirical risk minimization (ERM)
in statistical learning. A full development of the analysis is out of scope, but is outlined in
Appendix A of the supplementary material. In a nutshell, the idea is to begin by calculat-
ing the optimal prediction in the last round T , and then work backwards, calculating the
optimal prediction at round T − 1, T − 2 etc. Remarkably, the value of infA Vabs

T (A,F) is
exactly the Rademacher complexity RT (F) of the class F , which is known to play a crucial
role in understanding the sample complexity in statistical learning [5]. In this paper, we
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define it as1:

RT (F) = E

[
sup
f∈F

T∑
t=1

σtft

]
(2)

where σ1, . . . , σT are i.i.d. Rademacher random variables, taking values −1,+1 with equal
probability. When RT (F) = o(T ), we get a minimax regret infA Vabs

T (A,F) = o(T ) which
implies a vanishing per-round regret.

In terms of an explicit algorithm, the optimal prediction pt at round t is given by a
complicated-looking recursive expression, involving exponentially many terms. Indeed, for
general online learning problems, this is the most one seems able to hope for. However, an
apparently little-known fact is that when one deals with a class F of fixed binary sequences
as discussed above, then one can write the optimal prediction pt in a much simpler way.
Letting Y1, . . . , YT be i.i.d. Rademacher random variables, the optimal prediction at round
t can be written as

pt = E
[

inf
f∈F

L (f , y1 · · · yt−1 (−1)Yt+1 · · ·YT )− inf
f∈F

L (f , y1 · · · yt−1 1Yt+1 · · ·YT )

]
. (3)

In words, the prediction is simply the expected difference between the minimal cumulative
loss over F , when the adversary plays −1 at round t and random values afterwards, and
the minimal cumulative loss over F , when the adversary plays +1 at round t, and the
same random values afterwards. We refer the reader to Appendix A of the supplementary
material for how this is derived. We denote this optimal strategy (for absolute loss and
binary outcomes) as the Minimax Forecaster (mf):

Algorithm 1 Minimax Forecaster (mf)

for t = 1 to T do
Predict pt as defined in Eq. (3)
Receive outcome yt and suffer loss |pt − yt|

end for

The relevant guarantee for mf is summarized in the following theorem.

Theorem 1. For any class F ⊆ [−1,+1]T of static experts, the regret of the Minimax
Forecaster (Algorithm 1) satisfies Vabs

T (mf,F) = RT (F).

2.1 Making the Minimax Forecaster Efficient

The Minimax Forecaster described above is not computationally efficient, as the computa-
tion of pt requires averaging over exponentially many ERM’s. However, by a martingale
argument, it is not hard to show that it is in fact sufficient to compute only two ERM’s per
round.

Algorithm 2 Minimax Forecaster with efficient implementation (mf*)

for t = 1 to T do
For i = t+ 1, . . . , T , let Yi be a Rademacher random variable
Let pt := inff∈F L (f , y1 . . . yt−1 (−1)Yt+1 . . . YT )− inff∈F L (f , y1 . . . yt−1 1Yt+1 . . . YT )
Predict pt, receive outcome yt and suffer loss |pt − yt|

end for

Theorem 2. For any class F ⊆ [−1,+1]T of static experts, the regret of the randomized
forecasting strategy mf* (Algorithm 2) satisfies

Vabs
T (mf*,F) ≤ RT (F) +

√
2T ln(1/δ)

1In the statistical learning literature, it is more common to scale this quantity by 1/T , but the
form we use here is more convenient for stating cumulative regret bounds.
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with probability at least 1 − δ. Moreover, if the predictions p = (p1, . . . , pT ) are computed
reusing the random values Y1, . . . , YT computed at the first iteration of the algorithm, rather
than drawing fresh values at each iteration, then it holds that

E
[
L(p,y)− inf

f∈F
L(f ,y)

]
≤ RT (F) for all y ∈ {−1,+1}T .

Proof sketch. To prove the second statement, note that
∣∣E[pt]−yt

∣∣ = E
[
|pt−yt|

]
for any fixed

yt ∈ {−1,+1} and pt bounded in [−1,+1], and use Thm. 1. To prove the first statement,
note that |pt − yt| −

∣∣Ept [pt] − yt∣∣ for t = 1, . . . , T is a martingale difference sequence with
respect to p1, . . . , pT , and apply Azuma’s inequality.

The second statement in the theorem bounds the regret only in expectation and is thus
weaker than the first one. On the other hand, it might have algorithmic benefits. Indeed, if
we reuse the same values for Y1, . . . , YT , then the computation of the infima over f in mf*
are with respect to an outcome sequence which changes only at one point in each round.
Depending on the specific learning problem, it might be easier to re-compute the infimum
after changing a single point in the outcome sequence, as opposed to computing the infimum
over a different outcome sequence in each round.

3 The R2 Forecaster

The Minimax Forecaster presented above is very specific to the absolute loss `(f, y) =
|f − y| and for binary outcomes Y = {−1,+1}, which limits its applicability. We note that
extending the forecaster to other losses or different outcome spaces is not trivial: indeed,
the recursive unwinding of the minimax regret term, leading to an explicit expression and
an explicit algorithm, does not work as-is for other cases. Nevertheless, we will now show
how one can deal with general (convex, Lipschitz) loss functions and outcomes belonging to
any real interval [−b, b].
The algorithm we propose essentially uses the Minimax Forecaster as a subroutine, by
feeding it with a carefully chosen sequence of binary values zt, and using predictions ft
which are scaled to lie in the interval [−1,+1]. The values of zt are based on a randomized
rounding of values in [−1,+1], which depend in turn on the loss subgradient. Thus, we
denote the algorithm as the Randomized Rounding (R2) Forecaster.

To describe the algorithm, we introduce some notation. For any scalar f ∈ [−b, b], define

f̃ = f/b to be the scaled versions of f into the range [−1,+1]. For vectors f , define

f̃ = (1/b)f . Also, we let ∂pt`(pt, yt) denote any subgradient of the loss function ` with respect

to the prediction pt. As before, we define L(f̃ ,y) =
∑T
t=1 |f̃t − yt|. The pseudocode of the

R2 Forecaster is presented as Algorithm 3 below, and its regret guarantee is summarized in
Thm. 3. The proof is presented in Appendix B of the supplementary material.

Theorem 3. Suppose ` is convex and ρ-Lipschitz in its first argument. For any F ⊆ [−b, b]T
the regret of the R2 Forecaster (Algorithm 3) satisfies

VT (R2,F) ≤ ρRT (F) + ρ b

(√
1

η
+ 2

)√
2T ln

(
2T

δ

)
(4)

with probability at least 1− δ.

The prediction pt which the algorithm computes is an empirical approximation to

bEYt+1,...,YT

[
inf
f∈F

L
(
f̃ , z1 . . . zt−1 0Yt+1 . . . YT

)
− inf

f∈F
L
(
f̃ , z1 · · · zt−1 1Yt+1 · · ·YT

)]
by repeatedly drawing independent values to Yt+1, . . . , YT and averaging. The accuracy of
the approximation is reflected in the precision parameter η. A larger value of η improves the
regret bound, but also increases the runtime of the algorithm. Thus, η provides a trade-off
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Algorithm 3 The R2 Forecaster

Input: Upper bound b on |ft|, |yt| for all t = 1, . . . , T and f ∈ F ; upper bound ρ on
supp,y∈[−b,b]

∣∣∂p`(p, y)
∣∣; precision parameter η ≥ 1

T .
for t = 1 to T do
pt := 0
for j = 1 to η T do

For i = t, . . . , T , let Yi be a Rademacher random variable

Draw ∆ := inf
f∈F

L
(
f̃ , z1 . . . zt−1 (−1)Yt+1 . . . YT

)
− inf

f∈F
L
(
f̃ , z1 . . . zt−1 1Yt+1 . . . YT

)
Let pt := pt + b

η T ∆

end for
Predict pt
Receive outcome yt and suffer loss `(pt, yt)
Let rt := 1

2

(
1− 1

ρ∂pt`(pt, yt)
)
∈ [0, 1]

Let zt := 1 with probability rt, and zt := −1 with probability 1− rt
end for

between the computational complexity of the algorithm and its regret guarantee. We note
that even when η is taken to be a constant fraction, the resulting algorithm still runs in
polynomial time O(T 2c), where c is the time to compute a single ERM. In subsequent results
pertaining to this Forecaster, we will assume that η is taken to be a constant fraction.

We end this section with a remark that plays an important role in what follows.

Remark 1. The predictions of our forecasting strategies do not depend on the ordering of
the predictions of the experts in F . In other words, all the results proven so far also hold in
a setting where the elements of F are functions f : {1, . . . , T} → P, and the adversary has
control on the permutation π1, . . . , πT of {1, . . . , T} that is used to define the prediction f(πt)
of expert f at time t.2 Also, Thm. 1 implies that the value of Vabs

T (F) remains unchanged
irrespective of the permutation chosen by the adversary.

4 Application 1: Transductive Online Learning

The first application we consider is a rather straightforward one, in the context of transduc-
tive online learning [6]. In this model, we have an arbitrary sequence of labeled examples
(x1, y1), . . . , (xT , yT ), where only the set {x1, . . . , xT } of unlabeled instances is known to the
learner in advance. At each round t, the learner must provide a prediction pt for the label
of yt. The true label yt is then revealed, and the learner incurs a loss `(pt, yt). The learner’s

goal is to minimize the transductive online regret
∑T
t=1

(
`(pt, yt)− inff∈F `(f(xt), yt)

)
with

respect to a fixed class of predictors F of the form {x 7→ f(x)}.
The work [16] considers the binary classification case with zero-one loss. Their main re-
sult is that if a class F of binary functions has bounded VC dimension d, and there exists
an efficient algorithm to perform empirical risk minimization, then one can construct an
efficient randomized algorithm for transductive online learning, whose regret is at most
O(T 3/4

√
d ln(T )) in expectation. The significance of this result is that efficient batch learn-

ing (via empirical risk minimization) implies efficient learning in the transductive online
setting. This is an important result, as online learning can be computationally harder than
batch learning —see, e.g., [8] for an example in the context of Boolean learning.

A major open question posed by [16] was whether one can achieve the optimal rate O(
√
dT ),

matching the rate of a batch learning algorithm in the statistical setting. Using the R2

Forecaster, we can easily achieve the above result, as well as similar results in a strictly
more general setting. This shows that efficient batch learning not only implies efficient

2Formally, at each step t: (1) the adversary chooses and reveals the next element πt of the
permutation; (2) the forecaster chooses pt ∈ P and simultaneously the adversary chooses yt ∈ Y.
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transductive online learning (the main thesis of [16]), but also that the same rates can be
obtained, and for possibly non-binary prediction problems as well.

Theorem 4. Suppose we have a computationally efficient algorithm for empirical risk min-
imization (with respect to the zero-one loss) over a class F of {0, 1}-valued functions with
VC dimension d. Then, in the transductive online model, the efficient randomized forecaster
mf* achieves an expected regret of O(

√
dT ) with respect to the zero-one loss.

Moreover, for an arbitrary class F of [−b, b]-valued functions with Rademacher complexity
RT (F), and any convex ρ-Lipschitz loss function, if there exists a computationally efficient
algorithm for empirical risk minimization, then the R2 Forecaster is computationally effi-
cient and achieves, in the transductive online model, a regret of ρRT (F)+O(ρb

√
T ln(T/δ))

with probability at least 1− δ.

Proof. Since the set {x1, . . . , xT } of unlabeled examples is known, we reduce the online
transductive model to prediction with expert advice in the setting of Remark 1. This is
done by mapping each function f ∈ F to a function f : {1, . . . , T} → P by t 7→ f(xt), which
is equivalent to an expert in the setting of Remarks 1. When F maps to {0, 1}, and we care
about the zero-one loss, we can use the forecaster mf* to compute randomized predictions
and apply Thm. 2 to bound the expected transductive online regret with RT (F). For a class

with VC dimension d, RT (F) ≤ O(
√
dT ) for some constant c > 0, using Dudley’s chaining

method [12], and this concludes the proof of the first part of the theorem. The second part
is an immediate corollary of Thm. 3.

We close this section by contrasting our results for online transductive learning with those
of [7] about standard online learning. If F contains {0, 1}-valued functions, then the optimal

regret bound for online learning is order of
√
d′T , where d′ is the Littlestone dimension of

F . Since the Littlestone dimension of a class is never smaller than its VC dimension, we
conclude that online learning is a harder setting than online transductive learning.

5 Application 2: Online Collaborative Filtering

We now turn to discuss the application of our results in the context of collaborative filtering
with trace-norm constrained matrices, presenting what is (to the best of our knowledge) the
first computationally efficient online algorithms for this problem.

In collaborative filtering, the learning problem is to predict entries of an unknown m × n
matrix based on a subset of its observed entries. A common approach is norm regularization,
where we seek a low-norm matrix which matches the observed entries as best as possible.
The norm is often taken to be the trace-norm [22, 19, 4], although other norms have also
been considered, such as the max-norm [18] and the weighted trace-norm [20, 13].

Previous theoretical treatments of this problem assumed a stochastic setting, where the ob-
served entries are picked according to some underlying distribution (e.g., [23, 21]). However,
even when the guarantees are distribution-free, assuming a fixed distribution fails to capture
important aspects of collaborative filtering in practice, such as non-stationarity [17]. Thus,
an online adversarial setting, where no distributional assumptions whatsoever are required,
seems to be particularly well-suited to this problem domain.

In an online setting, at each round t the adversary reveals an index pair (it, jt) and secretely
chooses a value yt for the corresponding matrix entry. After that, the learner selects a
prediction pt for that entry. Then yt is revealed and the learner suffers a loss `(pt, yt).
Hence, the goal of a learner is to minimize the regret with respect to a fixed class W
of prediction matrices,

∑T
t=1 `(pt, yt) − infW∈W

∑T
t=1 `

(
Wit,jt , yt

)
. Following reality, we

will assume that the adversary picks a different entry in each round. When the learner’s
performance is measured by the regret after all T = mn entries have been predicted, the
online collaborative filtering setting reduces to prediction with expert advice as discussed
in Remark 1.

As mentioned previously, W is often taken to be a convex class of matrices with bounded
trace-norm. Many convex learning problems, such as linear and kernel-based predictors,
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as well as matrix-based predictors, can be learned efficiently both in a stochastic and an
online setting, using mirror descent or regularized follow-the-leader methods. However,
for reasonable choices of W, a straightforward application of these techniques can lead
to algorithms with trivial bounds. In particular, in the case of W consisting of m × n
matrices with trace-norm at most r, standard online regret bounds would scale like O

(
r
√
T
)
.

Since for this norm one typically has r = O
(√
mn
)
, we get a per-round regret guarantee

of O(
√
mn/T ). This is a trivial bound, since it becomes “meaningful” (smaller than a

constant) only after all T = mn entries have been predicted.

On the other hand, based on general techniques developed in [15] and greatly extended in
[1], it can be shown that online learnability is information-theoretically possible for suchW.
However, these techniques do not provide a computationally efficient algorithm. Thus, to
the best of our knowledge, there is currently no efficient (polynomial time) online algorithm,
which attain non-trivial regret. In this section, we show how to obtain such an algorithm
using the R2 Forecaster.

Consider first the transductive online setting, where the set of indices to be predicted is
known in advance, and the adversary may only choose the order and values of the entries.
It is readily seen that the R2 Forecaster can be applied in this setting, using any convex class
W of fixed matrices with bounded entries to compete against, and any convex Lipschitz loss
function. To do so, we let {ik, jk}Tk=1 be the set of entries, and run the R2 Forecaster with
respect to F = {t 7→Wit,jt : W ∈ W}, which corresponds to a class of experts as discussed
in Remark 1.

What is perhaps more surprising is that the R2 Forecaster can also be applied in a non-
transductive setting, where the indices to be predicted are not known in advance. Moreover,
the Forecaster doesn’t even need to know the horizon T in advance. The key idea to achieve
this is to utilize the non-asymptotic nature of the learning problem —namely, that the game
is played over a finite m× n matrix, so the time horizon is necessarily bounded.

The algorithm we propose is very simple: we apply the R2 Forecaster as if we are in a
setting with time horizon T = mn, which is played over all entries of the m×n matrix. By
Remark 1, the R2 Forecaster does not need to know the order in which these m× n entries
are going to be revealed. Whenever W is convex and ` is a convex function, we can find an
ERM in polynomial time by solving a convex problem. Hence, we can implement the R2

Forecaster efficiently.

To show that this is indeed a viable strategy, we need the following lemma, whose proof is
presented in Appendix C of the supplementary material.

Lemma 1. Consider a (possibly randomized) forecaster A for a class F whose regret after
T steps satisfies VT (A,F) ≤ G with probability at least 1− δ > 1

2 . Furthermore, suppose the

loss function is such that inf
p′∈P

sup
y∈Y

inf
p∈P

(
`(p, y)− `(p′, y)

)
≥ 0. Then

max
t=1,...,T

Vt(A,F) ≤ G with probability at least 1− δ.

Note that a simple sufficient condition for the assumption on the loss function to hold, is
that P = Y and `(p, y) ≥ `(y, y) for all p, y ∈ P.

Using this lemma, the following theorem exemplifies how we can obtain a regret guarantee
for our algorithm, in the case of W consisting of the convex set of matrices with bounded
trace-norm and bounded entries. For the sake of clarity, we will consider n× n matrices.

Theorem 5. Let ` be a loss function which satisfies the conditions of Lemma 1. Also, letW
consist of n× n matrices with trace-norm at most r = O(n) and entries at most b = O(1),
suppose we apply the R2 Forecaster over time horizon n2 and all entries of the matrix. Then
with probability at least 1− δ, after T rounds, the algorithm achieves an average per-round
regret of at most

O

(
n3/2 + n

√
ln(n/δ)

T

)
uniformly over T = 1, . . . , n2.
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Proof. In our setting, where the adversary chooses a different entry at each round, [21,
Theorem 6] implies that for the class W ′ of all matrices with trace-norm at most r = O(n),
it holds that RT (W ′)/T ≤ O(n3/2/T ). Therefore, Rn2(W ′) ≤ O(n3/2). Since W ⊆ W ′,
we get by definition of the Rademacher complexity that Rn2(W) = O(n3/2) as well. By

Thm. 3, the regret after n2 rounds is O(n3/2 + n
√

ln(n/δ)) with probability at least 1− δ.
Applying Lemma 1, we get that the cumulative regret at the end of any round T = 1, . . . , n2

is at most O(n3/2 + n
√

ln(n/δ)), as required.

This bound becomes non-trivial after n3/2 entries are revealed, which is still a vanishing
proportion of all n2 entries. While the regret might seem unusual compared to standard
regret bounds (which usually have rates of 1/

√
T for general losses), it is a natural outcome

of the non-asymptotic nature of our setting, where T can never be larger than n2. In fact,
this is the same rate one would obtain in a batch setting, where the entries are drawn from
an arbitrary distribution. Moreover, an assumption such as boundedness of the entries is
required for currently-known guarantees even in a batch setting —see [21] for details.
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A Derivation of the Minimax Forecaster

In this appendix, we outline how the Minimax Forecaster is derived, as well as its associated
guarantees. This outline closely follows the exposition in [10, Chapter 8], to which we refer
the reader for some of the technical derivations.

First, we note that the Minimax Forecaster as presented in [10] actually refers to a slightly
different setup than ours, where the outcome space is Y = {0, 1} and the prediction space is
P = [0, 1], rather than Y = {−1,+1} and P = [−1,+1]. We will first derive the forecaster
for the first setting, and then show how to convert it to the second setting.

Our goal is to find a predictor which minimizes the worst-case regret,

max
y∈{0,1}T

(
L(p,y)− inf

f∈F
L(f ,y)

)
where p = (p1, . . . , pT ) is the prediction sequence.

For convenience, in the following we sometimes use the notation yt to denote a vector
in {0, 1}t. The idea of the derivation is to work backwards, starting with computing the
optimal prediction at the last round T , then deriving the optimal prediction at round T − 1
and so on. In the last round T , the first T − 1 outcomes yT−1 have been revealed, and we
want to find the optimal prediction pT . Since our goal is to minimize worst-case regret with
respect to the absolute loss, we just need to compute pT which minimizes

max
{
L(pT−1,yT−1)+pT − inf

f∈F
L(f ,yT−10) , L(pT−1,yT−1)+(1−pT )− inf

f∈F
L(f ,yT−11)

}
.

In our setting, it is not hard to show that
∣∣inff∈F L(f ,yt−10)− inff∈F L(f ,yt−11)

∣∣ ≤ 1 (see
[10, Lemma 8.1]). Using this, we can compute the optimal pT to be

pT =
1

2

(
AT (yT−11)−AT (yT−10) + 1

)
(5)

where AT (yT ) = − inff∈F L(f ,yT ).

Having determined pT , we can continue to the previous prediction pT−1. This is equivalent
to minimizing

max
{
L(pT−2,yT−2)+pT−1+AT−1(yT−20) , L(pT−1,yT−1)+(1−pT−1)− inf

f∈F
L(f ,yT−11)

}
where

At−1(yt−1) = min
pt∈[0,1]

max

{
pt − inf

f∈F
L(f ,yt−10) , (1− pt)− inf

f∈F
L(f ,yt−11)

}
. (6)

Note that by plugging in the value of pT from Eq. (5), we also get the following equivalent
formulation for AT−1(yT−1):

AT−1(yT−1) =
1

2

(
AT (yT−10) +AT (yT−11) + 1

)
.

Again, it is possible to show that the optimal value of pT−1 is

pT−1 =
1

2

(
AT−1(yT−21)−AT (yT−20) + 1

)
.

Repeating this procedure, one can show that at any round t, the minimax optimal prediction
is

pt =
1

2

(
At(y

t−11)−At(yt−10) + 1
)

(7)

where At is defined recursively as AT (yT ) = − inff∈F L(f ,yT ) and

At−1(yt−1) =
1

2

(
At(y

t−10) +At(y
t−11) + 1

)
. (8)

for all t.
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At first glance, computing pt from Eq. (7) might seem tricky, since it requires computing
At(y

t) whose recursive expansion in Eq. (8) involves exponentially many terms. Luckily,
the recursive expansion has a simple structure, and it is not hard to show that

At(y
t) =

T − t
2
− 1

2T

∑
y∈{0,1}T

(
inf
f∈F

L(f ,ytY T−t)

)
=

T − t
2
− E

[
inf
f∈F

L(f ,ytY T−t)
]

(9)

where Y T−t is a sequence of T − t i.i.d. Bernoulli random variables, which take values in
{0, 1} with equal probability. Plugging this into the formula for the minimax prediction in
Eq. (7), we get that3

pt =
1

2

(
E
[

inf
f∈F

L(f ,yt−10Y T−t)− inf
f∈F

L(f ,yt−11Y T−t)

]
+ 1

)
. (10)

This prediction rule constitutes the Minimax Forecaster as presented in [10].

After deriving the algorithm, we turn to analyze its regret performance. To do so, we just
need to note that A0 equals the worst-case regret —see the recursive definition at Eq. (6).
Using the alternative explicit definition in Eq. (9), we get that the worst-case regret equals

T

2
− E

[
inf
f∈F

T∑
t=1

|ft − Yt|

]
= E

[
sup
f∈F

T∑
t=1

(
1

2
− |ft − Yt|

)]
= E

[
sup
f∈F

T∑
t=1

(
ft −

1

2

)
σt

]
where σt are i.i.d. Rademacher random variables (taking values of −1 and +1 with equal
probability). Recalling the definition of Rademacher complexity, Eq. (2), we get that the
regret is bounded by the Rademacher complexity of the shifted class, which is obtained from
F by taking every f ∈ F and replacing every coordinate ft by ft − 1/2.

Finally, it remains to show how to convert the forecaster and analysis above to the setting
discussed in this paper, where the outcomes are in {−1,+1} rather than {0, 1} and the
predictions are in [−1,+1] rather than [0, 1]. To do so, consider a learning problem in
this new setting, with some class F . For any vector y, define ỹ to be the shifted vector

(y + 1)/2, where 1 = (1, . . . , 1) is the all-ones vector. Also, define F̃ to be the shifted class

F̃ = {(f + 1)/2 : f ∈ F}. It is easily seen that L(f ,y) = 2L(f̃ , ỹ) for any f ,y. As a result,
if we look at the prediction pt given by our forecaster in Eq. (3), then p̃t = (pt + 1)/2 is the

minimax optimal prediction given by Eq. (10) with respect to the class F̃ and the outcomes
ỹT . So our analysis above applies, and we get that

max
y∈{−1,+1}T

(
L(p,y)− inf

f∈F
L(f ,y)

)
= max

ỹ∈[0,1]T
2

(
L(p̃, ỹ)− inf

f̃∈F̃
L(f̃ , ỹ)

)
= 2E

[
sup
f̃∈F̃

T∑
t=1

(
f̃t −

1

2

)
σt

]

= E

[
sup
f∈F

T∑
t=1

σtft

]
which is exactly the Rademacher complexity of the class F .

B Proof of Thm. 3

Let Y (t) denote the set of Bernoulli random variables chosen at round t. Let Ezt denote
expectation with respect to zt, conditioned on z1, Y (1), . . . , zt−1, Y (t − 1) as well as Y (t).
Let EY (t) denote the expectation with respect to the random drawing of Y (t), conditioned
on z1, Y (1), . . . , zt−1, Y (t− 1).

We will need two simple observations. First, by convexity of the loss function, we have that
for any pt, ft, yt, `(pt, yt) − `(ft, yt) ≤ (pt − ft) ∂pt`(pt, yt). Second, by definition of rt and

3This fact appears in an implicit form in [9] —see also [10, Exercise 8.4].
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zt, we have that for any fixed pt, ft,

1

ρb
(pt − ft)∂pt`(pt, yt) =

1

b
(pt − ft)(1− 2rt)

=
1

b
rt(ft − pt) +

1

b
(1− rt)(pt − ft)

= rt(f̃t − p̃t) + (1− rt)(p̃t − f̃t)

= rt

(
(1− p̃t)−

(
1− f̃t

))
+ (1− rt)

(
(p̃t + 1)−

(
f̃t + 1

))
= Ezt

[
|p̃t − zt| −

∣∣∣f̃t − zt∣∣∣] .
The last transition uses the fact that p̃t, f̃t ∈ [−1,+1]. By these two observations, we have

T∑
t=1

(`(pt, yt)− `(ft, yt)) ≤
T∑
t=1

(pt − ft) ∂pt`(pt, yt) = ρ b

T∑
t=1

Ezt
[
|p̃t − zt| −

∣∣∣f̃t − zt∣∣∣] .
(11)

Now, note that |p̃t− zt| − |f̃t− zt| −Ezt
[
|p̃t− zt| − |f̃t− zt|

]
for t = 1, . . . , T is a martingale

difference sequence: for any values of z1, Y (1), . . . , zt−1, Y (t− 1), Y (t) (which fixes p̃t), the
conditional expectation of this expression over zt is zero. Using Azuma’s inequality, we can
upper bound Eq. (11) with probability at least 1− δ/2 by

ρ b

T∑
t=1

(
|p̃t − zt| − |f̃t − zt|

)
+ ρ b

√
8T ln(2/δ). (12)

The next step is to relate Eq. (12) to ρ b
∑T
t=1

(∣∣EY (t)[p̃t]− zt
∣∣ − |f̃t − zt|

)
. It might be

tempting to appeal to Azuma’s inequality again. Unfortunately, there is no martingale
difference sequence here, since zt is itself a random variable whose distribution is influenced
by Y (t). Thus, we need to turn to coarser methods. Eq. (12) can be upper bounded by

ρ b

T∑
t=1

(∣∣EY (t)[p̃t]− zt
∣∣− |f̃t − zt|)+ ρ b

T∑
t=1

∣∣p̃t − EY (t)[p̃t]
∣∣+ ρ b

√
8T ln(2/δ). (13)

Recall that p̃t is an average over ηT i.i.d. random variables, with expectation EY (t)[p̃t].
By Hoeffding’s inequality, this implies that for any t = 1, . . . , T , with probability at least

1 − δ/2T over the choice of Y (t),
∣∣p̃t − EY (t)[p̃t]

∣∣ ≤ √2ln(2T/δ)
/

(ηT ). By a union bound,

it follows that with probability at least 1− δ/2 over the choice of Y (1), . . . , Y (T ),

T∑
t=1

∣∣p̃t − EY (t)[p̃t]
∣∣ ≤√2T ln(2T/δ)

η
.

Combining this with Eq. (13), we get that with probability at least 1− δ,

ρ b

T∑
t=1

(∣∣EY (t)[p̃t]− zt
∣∣− |f̃t − zt|)+ ρ b

√
2T ln(2T/δ)

η
+ ρ b

√
8T ln(2/δ) . (14)

Finally, by definition of p̃t = pt/b, we have

EY (t)[p̃t] = EY (t)

[
inf
f∈F

L
(
f̃ , z1 . . . zt−1 (−1)Yt+1 . . . YT

)
− inf

f∈F
L
(
f̃ , z1 . . . zt−1 1Yt+1 . . . YT

)]
.

This is exactly the Minimax Forecaster’s prediction at round t, with respect to the sequence

of outcomes z1, . . . , zt−1 ∈ {−1,+1}, and the class F̃ :=
{
f̃ : f ∈ F

}
⊆ [−1, 1]T . Therefore,

using Thm. 1, we can upper bound Eq. (14) by

ρ bRT (F̃) + ρ b

√
2T ln(2T/δ)

η
+ ρ b

√
8T ln(2/δ) .

By definition of F̃ and Rademacher complexity, it is straightforward to verify that RT (F̃) =
1
bRT (F). Using that to rewrite the bound, and slightly simplifying for readability, the result
stated in the theorem follows.
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C Proof of Lemma 1

The proof assumes that the infimum and supremum of certain functions over Y,F are
attainable. If not, the proof can be easily adapted by finding attainable values which are
ε-close to the infimum or supremum, and then taking ε→ 0.

For the purpose of contradiction, suppose there exists a strategy for the adversary and a
round r ≤ T such that at the end of round r, the forecaster suffers a regret G′ > G with
probability larger than δ. Consider the following modified strategy for the adversary: the
adversary plays according to the aforementioned strategy until round r. It then computes

f∗ = argmin
f∈F

r∑
t=1

`(ft, yt) .

At all subsequent rounds t = r + 1, r + 2, . . . , T , the adversary chooses

y∗t = argmax
y∈Y

inf
p∈P

(
`(p, y)− `(f∗t , y)

)
.

By the assumption on the loss function,

`(pt, y
∗
t )− `(f∗t , y∗t ) ≥ inf

p∈P

(
`(p, y∗t )− `(f∗t , y∗t )

)
= sup
y∈Y

inf
p∈P

(
`(p, y)− `(f∗t , y)

)
≥ 0 .

Thus, the regret over all T rounds, with respect to f∗, is

r∑
t=1

(
`(pt, yt)− `(f∗t , yt)

)
+

T∑
t=r+1

(
`(pt, y

∗
t )− `(f∗t , y∗t )

)
≥

r∑
t=1

`(pt, yt)− inf
f∈F

r∑
t=1

`(ft, yt) + 0

which is at least G′ with probability larger than δ. On the other hand, we know that
the learner’s regret is at most most G with probability at least 1 − δ. Thus we have a
contradiction and the proof is concluded.
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