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Abstract

We study statistical learning problems where
the data space is multimodal and heteroge-
neous, and constructing a single global pre-
dictor is difficult. We address such prob-
lems by iteratively identifying high-error re-
gions in the data space and learning spe-
cialized predictors for those regions. While
the idea of composing localized predictors
is not new, our approach is unique in that
we actively seek out predictors that clump
errors together, making it easier to isolate
the problematic regions. When errors are
clumped together they are also easier to in-
terpret and resolve through appropriate fea-
ture engineering and data preprocessing. We
present an error-clumping classification algo-
rithm based on a convex optimization prob-
lem, and an efficient stochastic optimization
algorithm for this problem. We theoretically
motivate our approach with a novel sample
complexity analysis for piecewise predictors,
and empirically demonstrate its behavior on
an illustrative classification problem.

1 Introduction

We consider the problem of statistical supervised
learning where the data points are highly heteroge-
neous and diverse. In other words, the input distri-
bution is a mosaic of multiple distinct components
or modes. To give a concrete example, suppose that
our goal is to learn a binary classifier that identifies
web spam pages (junk pages that have no content
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other than ads) on the Internet. Of course, the In-
ternet contains extremely varied websites: commerce
websites, travel websites, financial websites, song lyric
websites, personal homepages, online stores, product
homepages, corporate homepages, etc. Web spam may
look very different in each of these categories. A clas-
sical learning approach would ignore the multimodal
nature of the data and attempt to address the web-
spam classification problem all at once, across the en-
tire problem domain. However, constructing an accu-
rate global predictor in one shot is often difficult.

Another approach to the web-spam classification task
is to partition web pages into topical categories and
train a separate classifier within each category. The
advantage of such an approach is that each region
of the data space can receive a customized solution.
However, the topical category of each web page in our
training set is not given in the training supervision,
and learning an accurate multiclass-multilabel catego-
rizer is a challenge in itself. Moreover, it isn’t even
clear how to define an appropriate set of categories for
this task.

Yet another alternative is to use a clustering algorithm
to identify the modes in the training data, and to learn
a classifier within each cluster of web pages. If many
small clusters are found, the number of examples in
each cluster may be very small and the resulting clas-
sifier will tend to overfit. If a few large clusters are
found, it is unclear whether this rough partitioning
of the input space would simplify the original binary
classification task.

In this paper, we propose a novel approach to deal-
ing with such heterogeneous problems. Rather than
trying to find a classifier that simply minimizes the
number of training errors, we attempt to find a classi-
fier whose errors are tightly clustered; we refer to these
clusters as error clumps. Next, we identify a region of
the data space that contains a large error clump and
we learn a separate classifier for that region. We view
this as punching a hole in the data space and tailor-
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ing a dedicated solution to that specific part of the
problem. This process can be repeated until the error
becomes sufficiently small. We refer to this process
as hole punching. The result is a piecewise classifier,
made up of a partitioning function that defines the re-
gions in the data space and a classifier for each region.

We present a convex formulation of the binary classi-
fication problem that promotes error clusters by dis-
counting the loss of errors that occur in close prox-
imity to other errors. As a result, our error-clumping
algorithm only attempts to make accurate predictions
on some parts of the data space while forsaking other
parts. Unlike the approaches mentioned above (and
other localized learning methods proposed in the lit-
erature) we let the data determine which parts of the
space require a specialized classifier, and avoid a need-
lessly elaborate partitioning when one is not needed.

The idea of encouraging and detecting clumped er-
rors has many advantages, in addition to improving
the accuracy of the final piecewise classifier. In par-
ticular, error clumps make a classifier’s errors more
interpretable. This is because close data points that
are misclassified together are more likely to have some
common properties. Observing multiple misclassified
examples with similar properties makes it easier for a
human to figure out what went wrong. In response,
manual changes can be made to the learning process,
say, by engineering new features that are specifically
designed to avoid the observed errors.

We present a primal-dual stochastic optimization pro-
cedure that efficiently optimizes the convex error-
clumping objective. This optimization algorithm may
be of independent interest as a means of efficiently
solving highly-constrained convex problems. We also
derive a novel learning-theoretic analysis that formally
motivates our approach. This analysis emphasizes the
need to keep the number of holes to a minimum, and
therefore justifies our efforts to contain the errors in
small geometric regions. This statistical analysis im-
proves upon existing related results and may be of in-
dependent interest. We conclude the paper with an
illustrative empirical study, which demonstrates the
unique behavior of our approach.

1.1 Related Work

The hole-punching loop is somewhat reminiscent of
boosting, since we iteratively try to find a predictor for
the “hard” examples that were misclassified on previ-
ous rounds. Moreover, some concrete implementations
of our approach (such as the one used in our experi-
ments in Sec. 5) actually have a boosting-like prop-
erty that ensures progress on each round. Hole punch-
ing differs from traditional boosting algorithms in that

it constructs a piecewise classifier, while traditional
boosting algorithms typically construct an average or
a majority vote of base classifiers. Another substantial
difference is that the error-clumping algorithm, which
is analogous to the weak learner in boosting, is aware
that it is being called as part of the hole-punching loop,
as it explicitly tries to make it easier to punch the next
hole in the data space. In contrast, a weak learner in
a boosting loop does not operate any differently than
a standard learning algorithm.

Meir et al. [8] propose a nontraditional boosting algo-
rithm called Localized Boosting, which constructs a lin-
ear combination of predictors in a locality-dependent
manner. [8] also provides an extensive generalization
analysis of localized boosting. However, the actual
proposed algorithm does not come with the usual guar-
antees of boosting and is based on a non-convex joint
optimization of the predictors as well as the coefficients
of their linear combination. The generalization anal-
ysis cannot be applied to truly piecewise classifiers,
and works only with a soft partition of the data space.
Moreover, the bounds in [8] generally scale exponen-
tially with the dimension of the space. Subsequent
works (e.g. [1]) improve and generalize the analysis
in [8], but the results are still not satisfactory for our
purposes (see Sec. 4 for more details).

Kernel methods are also related to our setting. For
example, a Gaussian kernel is effectively a localized
classifier, as the predicted label of a test point depends
mainly on the labels of its proximal support vectors.
The main drawback of kernel machines is their ineffi-
cient training (often, requiring space and time that is
quadratic in the sample size), and the inefficiency of
evaluating the kernel classifier on test points. For this
reason, kernel classifiers cannot be used for problems
such as the large-scale web spam detection problem
presented above. In comparison, our approach is both
fast to train and the resulting piecewise classifier is
fast to evaluate.

Finally, we note that there are quite a few previous pa-
pers that propose various heuristics to learn localized
piecewise predictors (e.g. [3, 5, 7, 13, 6, 15]). How-
ever, none of these methods, nor any of the kernel or
boosting methods we are aware of, attempt to actively
clump the errors into small subsets of the data space.
This puts our work on a different and incomparable
track from previous approaches to “localized” learn-
ing. Moreover, many of these works do not capture
the idea of localizing the prediction in the same way
we do, and the algorithms do not come with formal
guarantees.
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2 The Error-Clumping Classifier

Let X be a data space and for simplicity assume1 that
X ⊆ Rn. Also, let S = {(xi, yi)}mi=1 be a training set
of m labeled examples, where each xi ∈ X and each
yi ∈ {−1,+1}.

We focus on linear predictors of the form x 7→ 〈x,w〉,
parameterized by a vector w, where the sign of 〈x,w〉
is taken to be the predicted value of the label y.
Finding the predictor w that minimizes the classi-
fication error 1sign(〈x,w〉)6=y on the training set is a
hard combinatorial problem. A common way to deal
with this is to replace the non-convex misclassification
error by a convex surrogate, such as the hinge loss,
max{0, 1−y〈x,w〉}. As described in the introduction,
we wish to derive a learning algorithm that takes the
geometry of the errors into account. To that end, fix
a parameter ρ > 0 and define the neighborhood of a
training point xi as

Ni = {j ∈ [m] \ {i} : ‖xi − xj‖2 ≤ ρ} ,

where we use [m] as shorthand for {1, . . . ,m}. Fix
a second parameter η ∈ [0, 1] and define the matrix
Θ = (θi,j) ∈ Rm×m as follows

θi,j =


1 if j = i

− η
m−1 if j ∈ Ni

0 otherwise

.

The matrix Θ is positive semidefinite (the proof is pre-
sented in the supplementary material). Finally, fix
a third parameter λ ≥ 0 and consider the following
SVM-like optimization problem

argmin
w∈Rn,ξ∈Rm

λ

2
‖w‖2 +

1

2m
ξ>Θξ (1)

s.t. ∀i ξi ≥ 0 and 1− yi〈w,xi〉 ≤ ξi .

Since Θ is positive semidefinite, Eq. (1) is a convex op-
timization problem. First, note that when η = 0, Θ is
simply the identity matrix and ξ>Θξ equals

∑m
i=1 ξ

2
i .

In this case, as in the standard SVM formulation, each
ξi = max{0, 1−yi〈w,xi〉}, and therefore ξ>Θξ equals
the squared-hinge-loss incurred by the classifier w on
S. On the other hand, when η > 0, the optimization
problem in Eq. (1) is forgiving of classification errors
that occur in close proximity to each other. To see
this, note that 1

2mξ>Θξ can be rewritten as

1

2m

m∑
i=1

ξ2
i −

η

2m(m− 1)
ξi
∑
j∈Ni

ξj .

1Our results extend to kernelized methods, where X is
a subset of a reproducing kernel Hilbert space.

In other words, a non-zero ξi incurs a penalty propor-
tional to ξ2

i , but receives a discount proportional to
ξi

η
m−1

∑
j∈Ni

ξj . Thus, a classification mistake made
in proximity to other classification mistakes is not pe-
nalized as much as a classification mistake made in
isolation.

Since Θ is positive semidefinite, ξ>Θξ ≥ 0 for all
ξ, and therefore the penalties always overpower the
discounts. Moreover, it is still the case that 1 −
yi〈w,xi〉 ≤ ξi for all i ∈ [m] and that the optimal
ξ is the zero vector.

Also observe that it is no longer necessarily the case
that ξi = 1 − yi〈w,xi〉 for all i ∈ [m]. In fact, the
examples for which ξi > 1− yi〈w,xi〉 are the interest-
ing ones, since the right hand side is free to increase
slightly without incurring an additional penalty in the
objective function.

3 An Efficient Implementation

While the optimization problem in Eq. (1) is con-
vex and can be solved by generic convex optimization
tools, these might be quite slow in practice. In recent
years, simple and efficient first-order algorithms, such
as stochastic gradient descent, have become increas-
ingly popular for solving such problems (e.g. [11]).
However, such methods require projection to the feasi-
ble set at each iteration. This is easy when the feasible
set has a simple structure, such as a ball. However, in
Eq. (1), the feasible set is a complex polyhedron (due
to the m constraints of the form 1 − yi〈w,xi〉 ≤ ξi),
and projecting onto this set might not be easy. The
standard trick of reducing the constrained optimiza-
tion problem to an unconstrained problem by replacing
ξi with max{0, 1− yi〈w,xi〉} in the objective function
(as in [11]) will not work here, since it is not necessarily
true that ξi = max{0, 1− yi〈w,xi〉}.

In this section, we present a primal-dual approach that
retains the computational efficiency and scalability of
first-order methods and is tailored to convex optimiza-
tion problems with many constraints. Our algorithm
directly finds a saddle-point of the Lagrangian, and dif-
fers from previous works in this direction (such as [9])
both algorithmically (for instance, we iteratively opti-
mize the dual variables in closed-form) and in terms
of the analysis.

Consider the general optimization problem

min
w∈W

f(w) s.t. ∀ i ∈ [m] gi(w) ≤ 0 , (2)

where f, g1, . . . , gm are convex functions and W is a
convex subset of Euclidean space. As in our case, it is
often desirable to soften the constraints by introduc-
ing a vector of slack variables ξ and augmenting the
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problem as follows

min
w∈W,ξ∈Rm

f(w) + h(ξ) (3)

s.t. ∀ i ∈ [m] gi(w) ≤ ξi and ξi ≥ 0 ,

where h is a convex function that penalizes constraint
violations. Our goal is to solve this relaxed prob-
lem. The Lagrangian of this problem is denoted by
L(w, ξ,α,β) and defined as

f(w) + h(ξ) +

m∑
i=1

αi
(
gi(w)− ξi

)
−

m∑
i=1

βiξi, (4)

where α and β are vectors of dual variables. The op-
timization problem in Eq. (3) is equivalent to the fol-
lowing Lagrangian saddle-point problem

min
w∈W,ξ∈Rm

max
α∈Rm,β∈Rm

L(w, ξ,α,β) (5)

s.t. ∀ i ∈ [m] αi ≥ 0 and βi ≥ 0.

We propose to solve Eq. (5) using Algorithm 1, which
alternates between optimizing the dual variables and
the primal variables. For the algorithm to converge,
we add an additional constraint on the dual variables.
Let Γ(w, ξ) be the set of dual variables (α,β) that
satisfy α ≥ 0, β ≥ 0, α + β = max{0,∇h(ξ)} and for
all i ∈ [m], if gi(w) < ξi then αi = 0 and if ξi > 0
then βi = 0. Let (w?, ξ?,α?,β?) denote a primal-dual
solution to Eq. (5) and note that the KKT optimal-
ity conditions guarantee that (α?,β?) ∈ Γ(w?, ξ?).
Therefore, adding the constraint (α,β) ∈ Γ(w, ξ) to
Eq. (5) does not change the optimum of our problem.

We now describe each iteration of Algorithm 1 in more
detail. We start iteration t with the primal-dual point
(wt, ξt,αt,βt) and the gradient accumulator variables
ut and µt. Although this is not explicit in the al-
gorithm pseudo-code, we first compute optimal dual
variables

(αt+1,βt+1) = argmax
(α,β)∈Γ(wt,ξt)

L(wt, ξt,α,β).

Note that we require the dual variables to satisfy
(αt+1,βt+1) ∈ Γ(wt, ξt). This step has the following
closed form solution:

αt+1,i =

{
∂
∂ξi
h(ξt) if ξt,i = gi(wt) and ∂

∂ξi
h(ξt) > 0

0 otherwise

βt+1,i =

{
∂
∂ξi
h(ξt) if ξt,i = 0 and ∂

∂ξi
h(ξt) > 0

0 otherwise
.

Next, we keep the dual variables constant and per-
form a stochastic dual-averaging update of the primal
variables (as in [14, 10]). The dual-averaging update

involves two substeps: first we choose a random sam-
ple It ∈ [m] and add the stochastic primal gradients
to our accumulator variables:

ut+1 =ut +∇w

(
f(wt) +mαt+1,It gIt(wt)

)
µt+1,It =µt,It +m

( ∂

∂ξIt
h(ξt)− αt+1,It − βt+1,It

)
.

The closed form for (αt+1,βt+1) and the definitions
of (ut+1,µt+1) can be combined into a single step as

follows: if ξt,It = gIt(wt) and ∂
∂ξIt

h(ξt) > 0 then we
set

ut+1 = ut +∇f(wt) +m∇gIt(wt)
∂

∂ξIt
h(ξt),

and otherwise ut+1 = ut+∇f(wt). Similarly, if ξt,It >
[gIt(wt)]+ and ∂

∂ξIt
h(ξt) > 0, or if ∂

∂ξIt
h(ξt) < 0 then

µt+1,It = µt,It +m ∂
∂ξIt

h(ξt) ,

and otherwise µt+1,It remains unchanged. This com-
bined step is given in the top part of Algorithm 1.

Finally, we perform the second substep of dual-
averaging: we scale the gradient accumulators
(ut+1,µt+1) by a learning rate ηt and project
them onto the set of primal constraints to obtain
(wt+1, ξt+1). The scaling and projection step appears
at the bottom of Algorithm 1.

To analyze our algorithm, we observe that it is es-
sentially applying dual-averaging [14, 10] to the se-
quence of functions L1,L2, . . ., where Lt(w, ξ) =
L(w, ξ,αt+1,βt+1). Therefore, known regret bounds
for dual-averaging (see section 3.1 in [14]) guarantee
that for any T it holds that

1

T

T∑
t=1

Lt(wt, ξt)− inf
w∈W,ξ∈Rm

1

T

T∑
t=1

Lt(w, ξ) ≤ R(T ) ,

where R(T ) is θ(T−
1
2 ). It remains to show that this

bound implies that Algorithm 1 converges to the opti-
mum of Eq. (3). Indeed, one can show that the regret
bound given above implies that

f(w̄T ) + h(ξ̄T ) ≤ f(w?) + h(ξ?) +R(T ) .

The proof appears in the supplementary material. Our
proof is not specific to dual-averaging and applies to
any other stochastic optimization procedure, provided
that it comes with a sufficient online regret guarantee.

In the concrete setting of Eq. (1), we are interested in
the case where f(w) = λ

2 ‖w‖
2, h(ξ) = 1

2mξ>Θξ, and
gi(w) = 1− yi〈w,xi〉. Plugging these definitions into
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Algorithm 1 Algorithm For solving Eq. (3)

Input: Learning rate ηt, number of rounds T
Initialize w1 = 0, ξ1 = 0, u1 = 0, µ1 = 0
for t = 1, 2, . . . , T do

Uniformly sample an index It ∈ {1, . . . ,m}
ut+1 := ut +∇f(wt)

+ m∇gIt(wt)[[ξt,It = gIt(wt)]] [[∂h(ξt)
∂ξIt

> 0]]

where [[·]] denotes the indicator function.
µt+1 := µt

if ξt,It > max{0, gIt(wt)} and ∂
∂ξIt

h(ξt) > 0,

or ∂
∂ξIt

h(ξt) < 0 then

µt+1,It := µt+1,It +m ∂
∂ξIt

h(ξt).

end if
wt+1 := argmin

w∈W
‖ − ηtut −w‖

∀ i ξt+1,i := max {−ηtµt+1,i, gi(wt+1), 0}
end for
Return (w̄T , ξ̄T ) = ( 1

T

∑T
t=1 wt,

1
T

∑T
t=1 ξt)

the equations in Algorithm 1 gives the update rule

ut+1 ← ut + λwt−
ΘItξt yItxIt [[ξt,It = gIt(wt)]] [[ΘItξt > 0]]

µt+1,It ← µt,It + ΘItξt

(
[[ΘItξt < 0]] +

[[ξt,It > 0]] [[ξt,It > 1− yIt〈wt,xIt〉]] [[ΘItξt > 0]]
)
,

where Θi is the i’th row of the matrix Θ, and where
[[·]] denotes the indicator function.

4 Sample Complexity of Piecewise
Predictors

We now turn to the learning-theoretic properties of
our approach. The hole-punching algorithm iteratively
constructs a piecewise predictor, which consists of a
data space partitioning function and a predictor for
each piece of the space. The partitioning function as-
sociates each data point with one of the predictors
and that predictor determines the label. The relevant
learning-theoretic question is how well do such piece-
wise predictors generalize.

To formalize this, let G be a class of binary-valued
functions on X , and let H be a class of real-valued
function on X . G is the set of indicator functions of
holes in our data space. For example, G could be the
set of indicator functions of all the bounded-radius Eu-
clidean balls in X . H is the set of candidate predictors
used within each region, and assume without loss of
generality that supx∈X |h(x)| ≤ 1. We say that a set
of functions g1, . . . , gk ∈ G is disjoint if, for any x ∈ X ,
gj(x) = 1 for only a single j. A piecewise predictor can

now be written as

h(x)ḡ(xi) +

k∑
j=1

hj(x)gj(x) , (6)

where h, h1, . . . , hk ∈ H, g1, . . . , gk ∈ G are disjoint,
and ḡ(x) = 1 −

∑k
j=1 gj(x). In words, we have an

ambient classifier h that applies to data points that
are not in any hole (a region indicated by ḡ) and k
disjoint holes (indicated by g1, . . . , gk) with respective
predictors h1, . . . , hk.

We analyze the generalization performance of piece-
wise predictors by bounding the Rademacher com-
plexity [2] of this predictor class. We recall that for
any predictor class F , the empirical Rademacher com-
plexity with respect to a sample (x1, . . . ,xm) is de-
fined as Rm(F) = E

[
supf∈F

1
m

∑m
i=1 σif(xi)

]
, where

σi are i.i.d. random variables distributed uniformly
on {−1,+1}. If the loss function is Lipschitz in the
prediction value, then we can upper bound the dif-
ference between the expected loss and the average
loss on the sample, uniformly for all predictors, by
O
(
Rm(F) +

√
log(1/δ)/m

)
, with probability at least

1− δ ( see [4]).

Let F be our class of piecewise predictors, as in
Eq. (6). By definition of ḡ(x), each such predictor

can be written as h(x) +
∑k
j=1(hj(x) − h(x))gj(x).

By definition of the Rademacher complexity, it is easy
to verify that this implies that Rm(F) ≤ Rm(H) +
2Rm(H⊗kG), where H⊗kG consists of all functions of

the form
∑k
j=1 hj(x)gj(x) where h1, . . . , hk ∈ H and

g1, . . . , gk ∈ G are disjoint. We will shortly assume
that Rm(H) is bounded, so we can focus on bounding
Rm(H⊗k G).

Clearly, Rm(H ⊗k G) should depend somehow on the
complexity of H and G and on the number k. We
measure the complexity of H by its Rademacher com-
plexity, Rm(H), which is a natural choice given that H
is a set of real-valued functions. We measure the com-
plexity of G by its VC-dimension dG . This is also the
natural choice, since we think of G as a space of balls,
and these classes are standard objects in VC theory.
To compare our results with other results discussed
below, we note that a VC dimension of dG implies an
upper bound ofO(

√
dG log(m)/m) on the Rademacher

complexity of G, via Massart’s lemma.

The existing literature already provides tools that can
be used to bound Rm(H ⊗k G). Theorem 14 in [2]
leads to the bound k

√
k(Rm(H)+Rm(G)), which has a

rather disappointing dependence on k. A more refined
approach first notes that Rm(H ⊗k G) can be upper
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Figure 1: Illustration of 0’s (blue) and 1 (red) in the
training data (see main text).

bounded as follows:

sup
h1,...,hk,g1,...,gk

disjoint

1

m

m∑
i=1

σi

k∑
j=1

hj(xi)gj(x)

≤
k∑
j=1

sup
hj∈H,gj∈G

1

m

m∑
i=1

σihj(xi)gj(x) .

We can then apply Thm. 14 from [2] to each sum-
mand separately, to get a bound of Rm(H ⊗k G) ≤
k(Rm(H) +Rm(G)). However, this decomposition ig-
nores the constraint that g1, . . . , gk are disjoint and the
resulting bound grows linearly with k. A similar prob-
lem is also considered in [1], and the resulting bound
again grows linearly with k.

Explicitly using the fact that g1, . . . , gk are disjoint, we
can prove a better bound that scales as

√
k(Rm(H) +

Rm(G)):

Theorem 1. Suppose Rm(H) can be upper bounded by√
dH/m for all m ≥ 1, and that G has VC-dimension

at most dG, where dG > 2. Then the Rademacher
complexity of H⊗k G is at most sup

g1,...,gk∈G

k∑
j=1

√
|i : gj(xi) = 1|

 √dH
m

+8

√
kdG log(m)

m
,

which can be upper bounded in turn by√
k
(√

dH/m+ 8
√
dG log(m)/m

)
.

The proof, which is rather technical, appears in the
supplementary material.

5 Experiments

We conducted a set of experiments using the MNIST
dataset of 70K handwritten digits. We split the ten

digits into two sets and the binary classification task
was to distinguish between digits from the two sets.
Although this binary classification task is somewhat
synthetic, it perfectly simulates a situation where each
binary class is composed of multiple distinct parts.
This makes it a perfect problem on which to demon-
strate the unique behavior of our algorithm.

We randomly split the 70K examples into equal size
training and test sets. Each data point in the dataset
was represented by a vector of pixel intensities, plus
a constant feature. Each training example was given
a binary label; the true 10-category digit label was
hidden from the algorithm.

5.1 Paying with Ones and Gaining Zeros

We began with the task of distinguishing the digits
0, 1, 2, 3, 4 from 5, 6, 7, 8, 9. We ran the error-clumping
algorithm with three different values of η, the param-
eter that controls the discount given to neighboring
errors. First, we set η = 0, which reduces our loss func-
tion to the vanilla squared-hinge-loss, and obtained the
linear classifier w0. Then we reran our algorithm with
η = 0.3 and η = 0.5, to obtain w0.3 and w0.5. Ta-
ble 1 shows the per-category test error rate attained
by each classifier. On the digit 1, w0 achieves a solid
0.066 error rate, while w0.5 attains an error rate that
is 10 times larger. On the digit 0 we observe the op-
posite behavior: w0 attains a 0.208 error rate, while
w0.5 reduces this error rate by a factor of 4.

The error-clumping algorithm with η > 0 essentially
gives up on the 1’s for the sake of improving its per-
formance on the 0’s. It does this because the 1’s are
tightly clustered whereas the 0’s are scattered. There-
fore, errors on 1’s are significantly discounted. The
idea is that the tight cluster of 1’s can be dealt with
separately using a dedicated classifier.

To visualize the tight cluster of 1’s, we must project
the 784-dimensional data space onto two dimensions.
We choose the two most natural dimensions: w0 and
w0.5. The projected training set is depicted in Fig. 1.
The x-axis represents 〈w0,x〉 and the y-axis represents
〈w0.5,x〉.

The four quadrants in Fig. 1 are named A,B,C,D.
Since both 0 and 1 are assigned negative binary la-
bels, correct predictions have negative values. In other
words, the prediction errors of w0 are contained in
B ∪D and the prediction errors of w0.5 are contained
in A∪B. Quadrant A contains the tight cluster of 1’s
that w0 predicted correctly and w0.5 forsook, while
quadrant D contains those scattered 0’s that w0 pre-
dicted incorrectly and w0.5 salvaged.
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digit 0 1 2 3 4 5 6 7 8 9
w0 0.208 0.066 0.076 0.206 0.788 0.346 0.383 0.097 0.331 0.064
w0.3 0.102 0.185 0.052 0.236 0.750 0.299 0.487 0.097 0.254 0.081
w0.5 0.056 0.615 0.044 0.305 0.673 0.243 0.613 0.166 0.187 0.127

Table 1: Per-category test error rates of three classifiers, trained with different values of η.
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Figure 2: Test error rate of the hole-punching algorithm on 5 binary classification problems, with and without
error clumping.

5.2 Hole-Punching with Error-Clumping

Next, we experimented with the hole-punching proce-
dure. Again we focused on the binary classification
problem of distinguishing between two sets of digits:
0, 1, 2, 3, 4 versus 5, 6, 7, 8, 9, as well as other random
splits of the 10 digits into two sets.

We ran our iterative hole-punching algorithm using the
error-clumping classifier within each hole. We defined
holes in our data space using Euclidean balls. Namely,
each hole-punching iteration finds a ball that contains
many misclassified training points and trains a special-
ized classifier within that ball.

We used the following heuristic to define the ball on
each iteration: We found the training example whose
neighborhood (as defined by the matrix Θ) contains
the largest number of classification errors; this exam-
ple became the center of the ball. The radius of the
ball was set to be the largest number such that the
examples that fall inside the ball are more than 50%
misclassified. Note that this procedure is linear in
the number of training examples. It also ensures that
the hole-punching loop is indeed a boosting algorithm:
once a hole is identified, a trivial constant classifier al-
ready reduces the training error inside the hole from
more than 50% to at most 50%. This guarantees that
the training error will decline monotonically to zero.
In the worst case, the balls will be tiny, and their num-
ber will be comparable to the number of training ex-
amples (leading to severe overfitting). Of course, we
would expect better on realistic datasets.

We repeated the experiment with η = 0 (squared-
hinge-loss) and η = 0.5 (significant discount given to
error clumps). We tuned the other algorithm parame-
ters appropriately. Fig. 2 shows the test error rate as
a function of the hole-punching iteration, on a number

of binary problems. As expected, the error-clumping
algorithm delivers inferior results on the first few it-
erations, but quickly starts to pay off. The fact that
errors are clumped together makes it easy for the hole-
puncher to find large balls that contain many mistakes.

6 Discussion

We presented the hole-punching algorithm for learning
piecewise predictors in heterogeneous learning prob-
lems. We built on the idea of finding predictors that
prefer errors that occur in close proximity to other
errors, making it easy to identify small problematic
regions in the data space and to deal with these re-
gions separately. We formulated the error-clumping
idea as a convex optimization problem and solved it
using an efficient new algorithm. We also presented a
learning-theoretic analysis that shows how the number
of pieces in a piecewise predictor and the complexity
of these pieces affect generalization. This analysis jus-
tifies our desire to find small concentrated high-error
regions of the data space.

The hole-punching procedure can be viewed as a
boosting algorithm, with the error-clumping algorithm
as its weak learner. To our knowledge, ours is the first
boosting algorithm where the weak learner is aware
that it is part of an interactive loop, and therefore
behaves differently than a stand-alone learning algo-
rithm.

Most of this paper focuses on binary classification
problems, however, the ideas and concepts easily ex-
tend to other supervised learning problems. Similarly,
we defined the neighborhood of each data point us-
ing Euclidean distance in the data space; in fact any
other notion of neighborhood could be used without
any change.
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Beyond our specific contributions, we believe our pa-
per also has an important conceptual message: instead
of taking the simplistic viewpoint of learning as a one-
shot process using some fixed dataset, one can view the
entire learning pipeline as a whole, including the fea-
ture engineering and data pre-processing steps. In our
case, we developed an algorithm that goes a step be-
yond minimizing classification error, and also tries to
make the errors more interpretable. The error clumps
expose problems in the data representation and help
the user fix the learning process accordingly.
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A Positive-Definiteness of Θ

Lemma 1. Let Θ = (θi,j) ∈ Rm×m be a symmetric matrix such that θi,i = 1 and
∑
j 6=i |θi,j | ≤ 1 for all i ∈ [m].

Then Θ is symmetric positive semidefinite.

Proof. Define vectors z1, . . . , zm in Rm2

as follows. Let zi,k,l denote coordinate (k − 1)m+ l of zi, and set

zi,k,l =



√
1−

∑
j 6=i |θi,j | if k = i = l

sign(θi,l)
√

1
2 |θi,l| if k = i 6= l√

1
2 |θi,k| if k 6= i = l

0 otherwise

.

Note that Θ is the Gram matrix of z1, . . . , zm.

B Technical Result for Sec. 3

In the derivation of our algorithm in Sec. 3, we used the assertion that if

1

T

T∑
t=1

Lt(wt, ξt)− inf
w∈W,ξ∈Rm

1

T

T∑
t=1

Lt(w, ξ) ≤ R.

Then it also holds that

f(w̄T ) + h(ξ̄T ) ≤ f(w?) + h(ξ?) +R.

We will now show why this is true. By definition of (w?, ξ?,α?,β?), as a saddle point solution, we have

T∑
t=1

Lt(wt, ξt) ≤ inf
w,ξ

T∑
t=1

Lt(w, ξ) + TR = inf
w,ξ

T∑
t=1

L(w, ξ,αt+1,βt+1) + TR

≤ inf
w,ξ

sup
α,β

T∑
t=1

L(w, ξ,α,β) + TR = TL(w?, ξ?,α?,β?) + TR

= T (f(w?) + h(ξ?)) + TR,

where in the last transition we use the fact that at the saddle point, the terms other than the primal func-
tion vanishes, due to the KKT conditions. On the other hand, by definition of αt+1,βt+1 as maximizing the
Lagrangian with respect to wt, ξt, we have

T∑
t=1

Lt(wt, ξt) =

T∑
t=1

L(wt, ξt,αt+1,βt+1) ≥
T∑
t=1

f(wt) + h(ξt).

Let w̄T = 1
T

∑T
t=1 wt and ξ̄T = 1

T

∑T
t=1 ξt. Combining the two inequalities above, and using Jensen’s inequality,

we get that

f(w̄T ) + h(ξ̄T ) ≤ 1

T

T∑
t=1

f(wt) + h(ξt) ≤ f(w?) + h(ξ?) +R

as required.

C Proof of Thm. 1

We begin with a few definitions. First, note that we can write the function class H⊗k G as

{x 7→ 〈h(x),g(x)〉,h ∈ Hk,g ∈ Gk},
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where
Hk = {x 7→ (h1(x), . . . , hk(x)) : h1, . . . , hk ∈ H}

and
Gk = {x 7→ (g1(x), . . . , gk(x)) : g1, . . . , gk ∈ G disjoint}.

For any fixed g ∈ Gk, define
Hkg = {x 7→ 〈h(x),g(x)〉 : h ∈ Hk}.

Also, for any sequence of data points x = (x1, . . . ,xm), define

Gkx = {g(x1), . . . ,g(xm) : g ∈ Gk}.

Note that since G has VC-dimension dG , then by Sauer’s lemma, we for any fixed (x1, . . . ,xm) it holds that

|{g(x1), . . . , g(xm) : g ∈ G}| ≤
(
em

dG

)dG
≤ mdG ,

where we use the assumption that dG > 2 (note that the form of Sauer’s lemma used here assumes m ≥ dG , but
our theorem holds vacuously otherwise). Therefore, we have

|Gkx| ≤ mkdG (7)

for any x. Finally, let

R̂m(Hkg) = sup
f∈Hk

g

1

m

m∑
i=1

σif(xi)

be the empirical counterpart of Rm(Hkg) (without expectation over σi).

Let λ > 0 be a parameter whose value will be determined later. We have the following:

exp
(
λmRm(H⊗k G)

)
= exp

(
λE

[
sup

g∈Gk,h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

])

≤ E

[
exp

(
λ sup

g∈Gk,h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

= E

[
sup
g∈Gk

λ exp

(
sup
h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

≤
∑
g∈Gk

x

E

[
exp

(
λ sup

h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

=
∑
g∈Gk

x

E
[
exp

(
λmR̂m(Hkg)

)]
=

∑
g∈Gk

x

exp
(
λmRm(Hkg)

)
E
[
exp

(
λ
(
mR̂m(Hkg)−mRm(Hkg)

))]
(8)

Let us now consider the random variable mR̂m(Hkg)−E[mRm(Hkg)]. Clearly, it is zero-mean. Also, it satisfies the
bounded difference property with parameter 2: namely, for any instantiation of σ1, . . . , σm, changing one of these
values results in changing the value of mR̂m(Hkg) = supf∈Hk

g

∑
i σif(xi) by at most 2. Invoking McDiarmid’s

inequality, we get that

Pr
(∣∣∣mR̂m(Hkg)− E[mRm(Hkg)]

∣∣∣ > x
)
≤ exp

(
− x2

2m

)
.

for all x > 0.

Using this inequality, and invoking Theorem 1 in [12] (which is a variant of Azuma’s inequality for Martingales
with subgaussian tails) with respect to the random variable mR̂m(Hkg)− E[mRm(Hkg)], we get that Eq. (8) can
be upper bounded by ∑

g∈Gk
x

exp
(
λmRm(Hkg) + 14mλ2

)
.
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Using Eq. (7), which bounds the cardinality of Gkx, we can upper bound the above by

≤ mkdG exp

(
λm sup

g∈Gk

Rm(Hkg) + 14mλ2

)
,

Now, recall that this is an upper bound on exp
(
λmRm(H⊗k G)

)
, from which we started in Eq. (8). Taking

logarithms and dividing by λm, we get that

Rm(H⊗k G) ≤ kdG log(m)

λm
+ sup

g∈Gk

Rm(Hkg) + 14λ.

Choosing λ which minimizes the expression above, we get that

Rm(H⊗k G) ≤ sup
g∈Gk

Rm(Hkg) + 8

√
kdG log(m)

m
.

It remains to upper bound the first term in the inequality above. For any fixed g ∈ Gk, let Aj be the region of
the data space in which gj(x) = 1. Then we have

Rm(Hkg) = E sup
h1,...,hk

1

m

m∑
i=1

σi

k∑
j=1

hj(xi)gj(xi)

= E sup
h1,...,hk

1

m

k∑
j=1

∑
i:xi∈Aj

σihj(xi)

≤
k∑
j=1

E sup
h∈H

1

m

∑
i:xi∈Aj

σih(xi).

Now, if we assume that Rm(H) ≤
√
dH/m for any sample of size m, then we can rewrite the above as

k∑
j=1

|i : xi ∈ Aj |
m

E sup
h∈H

1

|i : xi ∈ Aj |
∑

i:xi∈Aj

σih(xi) ≤
k∑
j=1

|i : xi ∈ Aj |
m

√
dH

|i : xi ∈ Aj |

=

√
dH
∑k
j=1

√
|i : xi ∈ Aj |

m
,

from which the result follows.


