
Using More Data to Speed-up Training Time

Shai Shalev-Shwartz Ohad Shamir Eran Tromer
Benin School of CSE,

Hebrew University, Jerusalem, Israel
Microsoft Research,
New-England, USA

Blavatnik School of Computer Science
Tel Aviv University, Israel

Abstract

In many recent applications, data is plentiful.
By now, we have a rather clear understanding
of how more data can be used to improve the
accuracy of learning algorithms. Recently,
there has been a growing interest in under-
standing how more data can be leveraged to
reduce the required training runtime. In this
paper, we study the runtime of learning as
a function of the number of available train-
ing examples, and underscore the main high-
level techniques. We provide the first formal
positive result showing that even in the un-
realizable case, the runtime can decrease ex-
ponentially while only requiring a polynomial
growth of the number of examples. Our con-
struction corresponds to a synthetic learning
problem and an interesting open question is
whether the tradeoff can be shown for more
natural learning problems. We spell out sev-
eral interesting candidates of natural learning
problems for which we conjecture that there
is a tradeoff between computational and sam-
ple complexity.

1 Introduction

Machine learning are now prevalent in a large range
of scientific, engineering and every-day tasks, ranging
from analysis of genomic data, through vehicle and air-
craft control to locating information on the web and
providing users with personalized recommendations.
Meanwhile, our world has become increasingly “digi-
tized” and the amount of data available for training
is dramatically increasing. By now, we have a rather
clear understanding of how more data can be used to

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

improve the accuracy of learning algorithms. In this
paper we study how more data can be beneficiary for
constructing more efficient learning algorithms.

Roughly speaking, one way to show how more
data can reduce the training runtime is as fol-
lows. Consider learning by finding a hypothesis
in the hypothesis class that minimizes the training

Original
search space

New search space

Figure 1: The Basic Approach

error. In many
situations, this
search problem
is computation-
ally hard. One
can circumvent
the hardness
by replacing
the original
hypothesis class
with a different
(larger) hy-
pothesis class,
such that the search problem in the larger class is
computationally easier (e.g., the search problem in the
new hypothesis class reduces to a convex optimization
problem). On the flip side, from the statistical point
of view, the estimation error in the new hypothesis
class might be larger than the estimation error in the
original class, and thus, with a small number of exam-
ples, learning the larger class might lead to overfitting
even though the same amount of examples suffices for
the original hypothesis class. However, having more
training examples keeps the overfitting in check. In
particular, if the number of extra examples we need
for learning the new class is only polynomially larger
than the original number of examples, we end up
with an efficient algorithm for the original problem.
If, however, we don’t have those extra examples, our
only option is to learn the original hypothesis class,
which may be computationally harder.

We present a formal model for studying the runtime
of learning algorithms as a function of the available
number of examples. After defining the formal model,
we construct a binary classification learning problem

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

for which we can provably (based on standard cryp-
tographic assumption) demonstrate an inverse depen-
dence of the runtime on the number of examples.
While there have been previous constructions which
demonstrated a similar phenomenon, assuming the ex-
istence of a “perfect” hypothesis, we show this in the
much more natural agnostic model of learning. In
many natural learning problems perfect supervision is
rare but noisy labels are abundant. This is seen, for
example, in ”web” applications like search, spam filter-
ing, ads, image annotation, etc. Hence, it’s important
to study the noisy (and thus unrealizable) case, which
is precisely the focus of our paper. Our novel construc-
tion is the first construction in the unrealizable case
that demonstrates the existence of a tradeoff between
samples and computation. Previous examples of such
tradeoffs crucially relied on a realizability assumption.

A possible criticism is that our learning problem is
still rather synthetic. We continue by presenting sev-
eral learning problems, which arise in natural settings,
that have more efficient algorithms by relying on the
availability of more training data. Some of these ex-
amples are based on the intuition of Figure 1, but some
are also based on other ideas and techniques. However,
for all these problems, the analysis is based on upper
bounds without having matching lower bounds. This
raises several interesting open problems.

1.1 Related Work

Decatur, Goldreich, and Ron [9] were the first to
jointly study the computational and sample complex-
ity, and to show that a tradeoff between runtime and
sample size exists. In particular, they distinguish be-
tween the information theoretic sample complexity of
a class and its computational sample complexity, the
latter being the number of examples needed for learn-
ing the class in polynomial time. They presented a
learning problem which is not efficiently learnable from
a small training set, and is efficient learnable from a
polynomially larger training set. Servedio [17] showed
that for a concept class composed of 1-decision-lists
over {0, 1}n, which can be learned inefficiently using
O(1) examples, no algorithm can learn it efficiently us-
ing o(n) examples, and there is an efficient algorithm
using Ω(n) examples. The construction was also ex-
tended to k decision-lists, k ≥ 1, with larger gaps.

In contrast to [9, 17], which focused on learning under
the realizable case (namely, that the labels are gener-
ated by some hypothesis in the class), we mostly focus
on the more natural agnostic setting, where any distri-
bution over the example domain is possible, and there
may be no hypothesis h in our class that never errs.
This is not just a formality - in both [9, 17], the con-
struction crucially relies on the fact that the labels are

provided by some hypothesis in the class. In terms of
techniques, we rely on the cryptographic assumption
that one-way permutations exist, which is the same
assumption as in [17] and similar to the assumption in
[9]. We note that cryptographic assumptions are com-
mon in proving lower bounds for efficient learnability,
and in some sense they are even necessary [3]. How-
ever, our construction is very different. For example,
in both [9, 17], revealing information on the identity
of the “correct” hypothesis is split among many differ-
ent examples. Therefore, efficient learning is possible
after sufficiently many examples are collected, which
then allows us to return the “correct” hypothesis. In
our agnostic setting, there is no “correct” hypothe-
sis, so this kind of approach cannot work. Instead,
our efficient learning procedure computes and returns
an improper predictor, which is not in the hypothesis
class at all.

A potential weaknesses of our example, as well as the
example given in [9], is that our hypothesis class does
not consist of “natural” hypotheses. The class em-
ployed in [17] is more natural, but it is also a very
carefully constructed subset of decision lists. The goal
of the second part of the paper is to demonstrate gaps
(though based on upper bounds) for natural learning
problems.

Another contribution of our model is that it captures
the exact tradeoff between sample and computational
complexity rather then only distinguishing between
polynomial and non-polynomial time, which may not
be refined enough. Bottou and Bousquet [6] initiated
a study on learning in the data laden domain – a sce-
nario in which data is plentiful and computation time
is the main bottleneck. This is the case in many real
life applications nowadays. Shalev-Shwartz and Sre-
bro [19] continued this line of research and showed how
for the problem of training Support Vector Machines,
a joint statistical-computational analysis reveals how
the runtime of stochastic-gradient-descent can poten-
tially decrease with the number of training examples.
However, this is only demonstrated via upper bounds.
More importantly, the advantage of having more ex-
amples only improves running time by constant fac-
tors. In this paper, we will be interested in larger
factors of improvement, which scale with the problem
size.

2 Formal Model Description

We consider the standard model of supervised statis-
tical learning, in which each training example is an
instance-target pair and the goal of the learner is to
use past examples in order to predict the targets as-
sociated with future instances. For example, in spam

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

classification problems, an instance is an email mes-
sage and the target is either +1 (’spam’) or −1 (’be-
nign’). We denote the instance domain by X and the
target domain by Y. A prediction rule is a mapping
h : X → Y. The performance of a predictor h on
an instance-target pair, (x, y) ∈ X × Y, is measured
by a loss function `(h(x), y). For example, a natural
loss function for classification problems is the 0-1 loss,
`(h(x), y) = 1 if y 6= h(x) and 0 otherwise.

A learning algorithm, A, receives a training set of m
examples, Sm = ((x1, y1), . . . , (xm, ym)), which are as-
sumed to be sampled i.i.d. from an unknown distribu-
tion D over the problem domain Z ⊆ X×Y. Using the
training data, together with any prior knowledge or as-
sumptions about the distribution D, the learner forms
a prediction rule. The predictor is a random variable
and we denote it by A(Sm). The goal of the learner is
to find a prediction rule with low generalization error
(a.k.a. risk), defined as the expected loss:

err(h)
def
= E(x,y)∼D[`(h(x), y)] .

The well known no-free-lunch theorem tells us that
no algorithm can minimize the risk without making
some prior assumptions on D. Following the agnostic
PAC framework, we require that the learner will find
a predictor whose risk will be close to infh∈H err(h),
where H is called a hypothesis class (which is known
to the learner).

We use err(A(Sm)) to denote the expected risk of the
predictor returned by A, where expectation is with re-
spect to the random choice of the training set. We de-
note by time(A,m) the upper bound on the expected
runtime1 of the algorithm A when running on any
training set of m examples. The main mathematical
object that we propose to study is the following:

TH,ε(m) = min
{
t : ∃ A s.t. ∀ D, time(A,m) ≤ t
∧ err(A(m)) ≤ inf

h∈H
err(h) + ε

}
,

where when no t satisfies the above constraint we set
TH,ε(m) = ∞. Thus, TH,ε(m) measures the required
runtime to learn the class H with an excess error of ε
given a budget of m training examples. Studying this
function can show us how more data can be used to de-
crease the required runtime of the learning algorithm.
The minimum value ofm for which TH,ε(m) <∞ is the
information-theoretic sample complexity. This corre-
sponds to the case in which we ignore computation
time. The other extreme case is the value of TH,ε(∞).
This corresponds to the data laden domain, namely
data is plentiful and computation time is the only bot-
tleneck.

1To prevent trivialities, we also require that the runtime
of applying A(Sm) on any instance is at most time(A,m).

We continue with a few additional definitions. In gen-
eral, we make no assumptions on the distribution D.
However, we sometime refer to the realizable case,
in which we assume that the distribution D satisfies
minh∈H err(h) = 0. The empirical error on the train-
ing examples, called the training error, is denoted by

errS(h)
def
= 1

m

∑m
i=1 `(h(xi), yi). A common learn-

ing paradigm is Empirical Risk Minimization, denoted
ERMH, in which the learner can output any predictor
in H that minimizes errS(h). A learning algorithm is
called proper if it always returns a hypothesis from
H. Throughout this paper we are concerned with im-
proper learning, where the returned hypothesis can be
any efficiently computed function h from instances x
to labels y. Note that improper learning is just as
useful as proper learning for the purpose of deriving
accurate predictors.

2.1 A Warm-up Example

We illustrate how more data can reduce runtime by
presenting an example due to Pitt and Valiant [16].
Consider the problem of learning the class of 3-term
disjunctive normal form (DNF) formulas in the re-
alizable case. A 3-DNF is a Boolean mapping, h :
{0, 1}d → {0, 1}, that can be written as h(x) =
T1(x) ∨ T2(x) ∨ T3(x), where for each i, Ti(x) is a
conjunction of an arbitrary number of literals, e.g.
Ti(x) = x1 ∧ ¬x3 ∧ x5 ∧ ¬x7.

Since the number of 3-DNF formulas is at most 33d,
it follows that the information theoretic sample com-
plexity is O(d/ε). However, it was shown [16, 14]
that unless RP=NP, the search problem of finding a 3-
DNF formula which is (approximately) consistent with
a given training set cannot be performed in poly(d)
time. On the other hand, we will show below that if
m = Θ(d3/ε) then TH,ε(m) = poly(d/ε). Note that
there is no contradiction between the last two sen-
tences, since the former establishes hardness of proper
learning while the latter claims feasibility of improper
learning.

To show the positive result, observe that each 3-DNF
formula can be rewritten as ∧u∈T1,v∈T2,w∈T3(u∨v∨w)
for three sets of literals T1, T2, T3. Define ψ : {0, 1}d →
{0, 1}2(2d)3 such that for each triplet of literals u, v, w,
there are two indices in ψ(x), indicating if u ∨ v ∨ w
is true or false. Therefore, each 3-DNF can be rep-
resented as a single conjunction over ψ(x). As a re-
sult, the class of 3-DNFs over x is a subset of the
class of conjunctions over ψ(x). The search problem
of finding an ERM over the class of conjunctions is
polynomially solvable (it can be cast as a linear pro-
gramming, or can be solved using a simple greedy al-
gorithm). However, the information theoretic sample

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

complexity of learning conjunctions over 2(2d)3 vari-
ables is O(d3/ε). We conclude that if m = Θ(d3/ε)
then TH,ε(m) = poly(d/ε).

It is important to emphasize that the analysis above
is not satisfactory for two reasons. First, we do not
know if it is not possible to improperly learn 3-DNFs in
polynomial time using O(d/ε) examples. All we know
is that the ERM approach is not efficient. Second, we
do not know if the information theoretic sample com-
plexity of learning conjunctions over ψ(x) is Ω(d3/ε).
Maybe the specific structure of the range of ψ yields a
lower sample complexity.

But, if we do believe that the above analysis indeed
reflects reality, we obtain two points on the curve
TH,ε(m). Still, we do not know how the rest of the
curve looks like. This is illustrated below.

?TH,ε(m)

m

3-DNF

Conjunction

Samples Time
ERM over 3-DNF d/ε not poly(d)
ERM over Conjunctions d3/ε poly(d/ε)

3 Main Result: Formal derivation of
gaps

In this section, we formally show a learning problem
which exhibits an inverse dependence of the runtime
on the number of examples. As discussed in the Sub-
section 1.1, it is distinguished from previous work in
being applicable to the natural agnostic setting, where
we do not assume that a perfect hypothesis exist. Since
this assumption was crucial in all previous works, the
construction we use is rather different.

To present the result, we will need the concept of a
one-way permutation. Intuitively, a one-way permuta-
tion over {0, 1}n is a permutation which is computa-
tionally hard to invert. More formally, let Un denote
the uniform distribution over {0, 1}n, and let {0, 1}∗
denote the set of all finite bit strings. Then we have
the following definition:

Definition 1. A one-way permutation P : {0, 1}∗ 7→
{0, 1}∗ is a function which for any n, maps {0, 1}n to
itself; there exists an algorithm for computing P (x),
whose runtime is polynomial in the length of x; and for
any (possibly randomized) polynomial-time algorithm
A and any polynomial p(n) over n, Prx∼Un(A(P (x)) =

x) < 1
p(n) for sufficiently large n.

It is widely conjectured that such one-way permuta-
tions exist. One concrete candidate is the RSA per-
mutation function, which treats x ∈ {0, 1}n as a num-
ber in {0, . . . , 2n− 1}, and returns P (x) = x3 mod N ,
whereN is a product of two “random” primes of length
n such that (p − 1)(q − 1) does not divide 3. How-
ever, since the existence of such a one-way permuta-
tion would imply P 6= NP , there is no formal proof
that such functions exist (see [10] for this and related
results).

The main result of this paper is the following theorem.

Theorem 1. There exists an agnostic binary clas-
sification learning problem over X = {0, 1}2n and
Y = {0, 1} with the following properties:

• It is inefficiently learnable with sample size m =
O(1/ε2), and running time O(2n +m).

• Assuming one-way permutations exist, there exist
no polynomial-time learning algorithm based on a
sample of size O(log(n)).

• It is efficiently learnable with a sample of size m =
O(n/ε2). Specifically, the training time is O(m),
resulting in an improper predictor whose runtime
is O(m3).

The theorem implies that in the regime where 1/ε2 ≤
log(n) ≤ n/ε2, we really get an inverse dependence
of the runtime on the training size. The theorem is
illustrated below:

TH,ε(m)

2n + 1
ε2

> poly(n)

n3

ε6

m
n
ε2log(n)1

ε2

To prove the theorem, we will define the following
learning problem. Let X = {0, 1}2n and Y = {0, 1}.
We will treat each x ∈ X as a pair (r, s), where r refers
to the first n bits in x, and s to the last n bits. Let
〈r, r′〉 =

∑n
i=1 rir

′
i mod 2 denotes inner product over

the field GF (2). Let P be a one-way permutation.
Then the example domain is the following subset of
X × Y:

Z = {((r, s), b) : r, s ∈ {0, 1}n, 〈P−1(s), r〉 = b}.

The loss function we use is simply the 0-1 loss,
`(h(x), y) = 1h(x)6=y.

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

The hypothesis class H consists of randomized func-
tions, parameterized by {0, 1}n, and defined as follows,
where U1 is the uniform distribution on {0, 1}:

H =

{
hx(r, s) =

{
〈x, r〉 s = P (x)

b ∼ U1 o.w.
: x ∈ {0, 1}n

}
.

Learning with O(log(n)) Samples is Hard

We consider the following “hard” set of distributions
{Dx}, parameterized by x ∈ {0, 1}n: each Dx is a
uniform distribution over all ((r, P (x)), 〈x, r〉). Note
that there are exactly 2n such examples, one for each
choice of r ∈ {0, 1}n. Also, note that for any such
distributionDx, infh∈H err(h) = 0, and this is achieved
with the hypothesis hx.

First, we will prove that with a sample size m =
O(log(n)), any efficient learner fails on at least one of
the distributions Dx. To see this, suppose on the con-
trary that we have an efficient distribution-free learner
A, that works on all Dx, in the sense of seeing m =
O(log(n)) examples and then outputting some hypoth-
esis h such that h((r, P (x))) = 〈x, r〉 with even some
non-trivial probability (e.g. at least 1/2 + 1/poly(n)).
We will soon show how we can use such a learner A,
such that in probability at least 1/poly(n), we get an
efficient algorithm A′, which given just P (x) and r,
outputs 〈x, r〉 with probability at least 1/2+1/poly(n).
However, by the Goldreich-Levin Theorem ([10], Theo-
rem 2.5.2), such an algorithm can be used to efficiently
invert P , violating the assumption that P is a one-way
permutation.

Thus, we just need to show how given P (x), r, we
can efficiently compute 〈x, r〉 with probability at least
1/poly(n). The procedure works as follows: we pick
m = O(log(n)) vectors r1, . . . , rm uniformly at ran-
dom from {0, 1}n, and pick uniformly at random bits
b1, . . . , bm. We then apply our learning algorithm
A over the examples {((ri, P (x)), bi)}mi=1, getting us
some predictor h′. We then attempt to predict 〈x, r〉
by computing h′((x, P (x))).

To see why this procedure works, we note that with
probability of 1/2m = 1/poly(n), we picked values for
b1, . . . , bm such that bi = 〈x, ri〉 for all i. If this event
happened, then the training set we get is distributed
like m i.i.d. examples from Dx. By our assumption
on A, and the fact that infh err(h) = 0, it follows that
with probability at least 1/poly(n), A will return a
hypothesis which predicts correctly with probability
at least 1/2 + 1/poly(n), as required.

Inefficient Distribution-Free Learning Possible
with O(1/ε2) Samples

Ignoring computational constraints, we can use the
following simple learning algorithm: given a training
sample {(ri, si), bi}mi=1, find the most common value s′

among s1, . . . , sm, compute x′ = P−1(s′) (inefficiently,
say by exhaustive search), and return the hypothesis
hx′ .

To see why this works, we will need the following
lemma, which shows that if hx has a low error rate,
then s = P (x) is likely to appear frequently in the
examples (the proof appears in Appendix A).

Lemma 1. For any distribution D over examples, and
any fixed x ∈ {0, 1}n, it holds that Prs(s = P (x)) =
1− 2err(hx).

Suppose that hx̂ is the hypothesis with a smallest gen-
eralization error in the hypothesis class. We now do a
case analysis: if err(hx̂) > 1/2− ε, then the predictor
hx′ returned by the algorithm is almost as good. This
because the probability in the lemma statement can-
not be negative, so for any x′ (and in particular the
one used by the algorithm), we have err(hx′) ≤ 1/2.

The other case we need to consider is that err(hx̂) ≤
1/2−ε. By the lemma, ŝ = P (x̂) is the value of s most
likely to occur in the sample (since hx̂ is the one with
smallest generalization error), and its probability of
being picked is at least 1−2∗(1/2−ε) = ε. This means
that after O(1/ε2) examples, then with overwhelming
probability, the s′ we pick is such that Prs(s = ŝ) −
Prs(s = s′) ≤ ε/2. But again by the lemma, this
implies that err(hx′) − err(hx̂) is at most ε/4. So hx′

that our algorithm returns is an ε/4-optimal classifier
as required.

Efficient Distribution-Free Learning Possible
with O(n/ε2) Samples

We will need the following lemma, whose proof appears
in Appendix A:

Lemma 2. Let D′ be some distribution over {0, 1}n,
and suppose we sample m′ vectors r1, . . . , rm′ from
that distribution. Then the probability that a freshly
drawn vector r is not spanned by r1, . . . , rm′ is at most
n/m′.

We use a similar algorithm to the one discussed ear-
lier for inefficient learning. However, instead of finding
the most common s′, computing x′ = P−1(s′) and re-
turning hx′ , which cannot be done efficiently, we build
a predictor which is at most ε worse than hx′ , and
doesn’t require us to find x′ explicitly.

To do so, let {((rij , sij), bij)}m′

j=1 be the subset of ex-
amples for which sij = s′. By definition of Z, we know

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

that for any such example, 〈x′, rij 〉 = 〈P−1(s′), rij 〉 =
bij . In other words, this gives us a set of values
ri1 , . . . , rim′ , for which we know 〈x′, ri1〉, . . . , 〈x′, rim′ 〉.
As a consequence, for any r in the linear subspace
spanned by ri1 , . . . , rim′ , we can efficiently compute
〈x′, r〉. Let B denote this subspace. Then our im-
proper predictor works as follows, given some instance
(r, s):

• If s = s′ and r ∈ B, output 〈x′, r〉 (note that this
is the same output as hx′ , by definition).

• If s 6= s′, output a random bit (note that this is
the same output as hx′ , by definition of hx′).

• If s = s′ and r /∈ B, output a bit uniformly at
random.

Note that checking whether r ∈ B can always be done
in at most O(m′3) ≤ O(m3) time, via Gaussian elimi-
nation.

Now, we claim that the probability of the third case
happening is at most ε/2. If this is indeed true, then
our improper predictor is only ε/2 worse (in terms of
generalization error) from hx′ , which based on the ar-
gument in the previous section, is already ε-close to
optimal.

So let us consider the possibility that s = s′ and
r /∈ B. If Prs(s = s′) ≤ ε, we are done, so let us
suppose that Prs(s = s′) > ε. This means that m′

is unlikely to be much smaller than εm. More pre-
cisely, by the multiplicative Chernoff bound, Pr(m′ <
εm/2) ≤ exp(−εm/8). Also, conditioned on some
fixed m′ ≥ εm/2, Lemma 2 assures us that Pr(r /∈
B|s = s′) ≤ n/m′ ≤ 2n/εm. Overall, we get the
following (the probabilities are over the draw of the
training set and an additional example ((r, s), b)):

Pr(s = s′, r /∈ B) =

Pr(s = s′, r /∈ B,m′ < εm
2) + Pr(s = s′, r /∈ B,m′ ≥ εm

2)

≤ Pr(m′ < εm
2) + Pr(m′ ≥ εm

2 , r /∈ B|s = s′)

≤ exp(−εm/8) +

∞∑
m′=εm/2

Pr(m′) Pr(r /∈ B|s = s′,m′)

≤ exp(−εm/8) +
2n

εm
.

By taking m = O(n/ε2) examples, we can ensure this
to be at most order ε.

4 Gaps for natural learning problems

In this section we collect examples of natural learning
problems in which we conjecture there is an inverse de-
pendence of the training time on the sample size. Some

of these examples already appeared in previous litera-
ture but not in such an explicit form. We base our in-
verse dependence conjecture on the current best known
upper bounds. Of course, an immediate open question
is to show matching lower bounds. However, our main
goal here is to demonstrate general techniques of how
to reduce the training runtime by requiring more ex-
amples.

The last two examples we present deal with other
learning settings like online learning and unsupervised
learning. These examples are interesting since they
show other techniques to obtain faster algorithms us-
ing a larger sample. For example, we demonstrate how
to use exploration for injecting structure into the prob-
lem, which leads better runtime. The price of the ex-
ploration is the need of a larger sample. For the unsu-
pervised setting, we recall an existing example which
shows polynomial gap for learning the support of a
certain sparse vector.

4.1 Agnostically Learning Preferences

Consider the set [d] = {1, . . . , d}, and let X = [d]× [d]
and Y = {0, 1}. That is, each example is a pair (i, j)
and the label indicates whether i is more preferable to
j.

Consider the hypothesis class of all permutations
over [d] which can be written as H = {hw(i, j) =
1[wi > wj] : w ∈ Rd}. The loss function is the 0-
1 loss. Since H is a finite set of size d!, the sample
complexity of learning H in the agnostic case, using
the ERM learning rule, is at most O(log(d!)/ε2) =
O(d log(d)/ε2). However, the runtime2 of naively im-
plementing the ERM rule is Ω(d!).

On the other hand, in the following we show that with
m = Θ(d2/ε2) it is possible to learn preferences in time
O(m). The idea is to define the hypothesis class of all
Boolean functions over X , namely, H1 = {H(i, j) =

Mi,j : M ∈ {0, 1}d2}. Clearly, H ⊂ H1. In addition,

|H1| = 2d
2

and therefore the sample complexity of
learning H1 using the ERM rule is O(d2/ε2). Last, it
is easy to verify that solving the ERM problem with
respect to H1 can be easily done in time O(m).

The question of whether it is possible to derive a poly-
nomial time algorithm whose sample complexity is
d log(d), matching the sample complexity of the in-
efficient ERM algorithm over H, has been posed as an
open problem in the context of online learning to gam-

2Observe that each hypothesis in H can be written as
a Halfspace: hw(i, j) = sign(〈w, ei − ej〉). Therefore, in
the realizable case (namely, exists h ∈ H which perfectly
predicts the labels of all the examples in the training set),
solving the ERM problem can be performed in polynomial
time.

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

ble [1, 15]. Recently, [12] showed an online learning
algorithm for this problem whose sample complexity
scales like d log3(d), and such that the runtime of each
iteration isO(d3). Using standard online-to-batch con-
versions (e.g. [7]) this yields a batch algorithm whose
sample complexity is O(d log3(d)/ε2) and whose run-
time is O(d4 log3(d)/ε2).

So, overall, we obtain the following apparent gaps, at
least in terms of upper bounds:

Samples Time
ERM over H d log(d)/ε2 not poly(d)

[12] d log3(d)/ε2 d4 log3(d)/ε2

ERM over H1 d2/ε2 d2/ε2

4.2 Agnostic Learning of Kernel-based
Halfspaces

We now consider the popular class of kernel-based lin-
ear predictors. In kernel predictors, the instances x are
mapped to a high-dimensional feature space ψ(x), and
a linear predictor is learned in that space. Rather than
working with ψ(x) explicitly, one performs the learn-
ing implicitly using a kernel function k(x,x′) which
efficiently computes inner products 〈ψ(x), ψ(x′)〉 .

Since the dimensionality of the feature space may be
high or even infinite, the sample complexity of learning
Halfspaces in the feature space can be too large. One
way to circumvent this problem is to define a slightly
different concept class by replacing the non-continuous
sign function with a Lipschitz continuous function,
φ : R→ [0, 1], which is often called a transfer function.
For example, we can use a sigmoidal transfer function
φsig(a) = 1/(1 + exp(−4La)), which is a L-Lipschitz
function. The resulting hypothesis class is Hsig =
{x 7→ φsig(〈w, ψ(x)〉) : ‖w‖2 ≤ 1}, where we interpret
the prediction φsig(〈w, ψ(x)〉) ∈ [0, 1] as the probabil-
ity to predict a positive label. The expected 0-1 loss
then amounts to `(w, (x, y)) = |y − φsig(〈w, ψ(x)〉)|.

Using standard Rademacher complexity analysis (e.g.
[4]), it is easy to see that the information theoretic
sample complexity of learning H is O(L2/ε2). How-
ever, from the computational complexity point of view,
the ERM problem amounts to solving a non-convex
optimization problem (with respect to w). Adapting
a technique due to [5] it is possible to show that an
ε-accurate solution to the ERM problem cam be cal-

culated in time exp
(
O
(
L2

ε2 log(Lε)
))

. The idea is to

observe that the solution can be identified if some-
one reveals us a subset of (L/ε)2 non-noisy examples.
Therefore we can perform an exhaustive search over
all (L/ε)2 subsets of the m examples in the training
set and identify the best solution.

In [18], a different algorithm has been proposed, that

learns the class Hsig using time and sample complexity
of at most exp

(
O
(
L log(Lε)

))
. That is, the runtime of

this algorithm is exponentially smaller than the run-
time required to solve the ERM problem using the
technique described in [5], but the sample complex-
ity is also exponentially larger. The main idea of the
algorithm given in [18] is to define a new hypotheses

class, H1 = {x 7→ 〈w, ψ̂(ψ(x))〉 : ‖w‖2 ≤ B}, where

B = O((L/ε)L) and ψ̂ is a mapping function for which

〈ψ̂(ψ(x)), ψ̂(ψ(x′))〉 =
2

2− 〈ψ(x), ψ(x′)〉

=
2

2− k(x,x′)
.

While it is not true that H ⊂ H1, it is possible to
show that H1 “almost” contains H in the sense that
for each h ∈ H there exists h1 ∈ H1 such that for
all x, |h(x) − h1(x)| ≤ ε. The advantage of H1 over
H is that the functions in H1 are linear and hence
the ERM problem with respect to H1 boils down to a
convex optimization problem and thus can be solved
in time poly(m), where m is the size of the training
set. In summary, we obtain the following:

Samples Time

ERMH L2/ε2 exp
(
O
(
L2

ε2
log(L

ε
)
))

ERMH1 exp
(
O
(
L log(L

ε
)
))

exp
(
O
(
L log(L

ε
)
))

4.3 Online Multiclass Categorization with
Bandit Feedback

This example is based on [13]. It deals with another
variant of the multi-armed bandit problem. It shows
how to use exploration for injecting structure into the
problem, which leads to a decrease in the required run-
time. The price of the exploration is a larger regret,
which corresponds to the need of a larger number of
online rounds for achieving the same target error.

The setting is as follows. At each online round, the
learner first receives a vector xt ∈ Rd and need to
predict one of k labels (corresponding to arms). Then,
the environment picks the correct label yt, without
revealing it to the learner, and only tells the learner
the binary feedback of if his prediction was correct or
not.

We analyze the number of mistakes the learner will
perform in T rounds, where we assume that there ex-
ists some matrix W ? ∈ Rk,d such that at each round
the correct label is yt = arg maxy∈[k](W

?x)y. We fur-
ther assume that the score of the correct label is higher
than the runner-up by at least γ, that the Euclidean
norm of each row of W ? is at most 1, and that the Eu-
clidean norm of each xt is at most 1. Finally, we also
assume that d is order of 1/γ2 (this is not restricting
due to the possibility of doing random projections).

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

We now consider two algorithms. The first uses a mul-
ticlass version of the Halving algorithm (see [13]) which
can be implemented with the bandit feedback and has
a regret bound of Õ(k2d). However, the runtime of
this algorithm is 2kd.

The second algorithm is the Banditron of [13]. The
Banditron uses exploration for reducing the learning
problem into the problem of learning multiclass clas-
sifier in the full information case, which can be per-
formed efficiently using the Perceptron algorithm. In
particular, in some of the rounds the Banditron guesses
a random label, attempting to “fish” the relevant infor-
mation. This exploration yields a higher regret bound
of O(

√
k2dT).

A third algorithm relevant to our setting has been de-
rived in [8]. Specializing this algorithm to our prob-
lem seems to yield the bound k2d2/ε on the number of
rounds, while requiring a runtime of d2+kd per round.

We can therefore draw the following table, which shows
a tradeoff between running time and number of rounds
required to obtain regret ≤ ε.

Rounds Time (per round)
Inefficient alg. k2d/ε 2kd

[8] k2d2/ε d2 + kd
Banditron k2d/ε2 kd

4.4 Sparse Principal Component Recovery

This example is taken from [2]. This time, it is in the
context of unsupervised statistical learning.

The problem is as follows: we have an i.i.d. sample of
vectors drawn from Rd. The distribution is assumed
to be Gaussian N (0,Σ), with a “spiked” covariance
structure. specifically, the covariance matrix Σ is as-
sumed to be of the form Id + zz>, where z is an un-
known sparse vector, with only k non-zero elements of
the form ±1/

√
k. Our goal in this setting is to detect

the support of z.

[2] provide two algorithms to deal with this prob-
lem. The first method is a simple diagonal thresh-
olding scheme, which takes the empirical covariance
matrix Σ̂, and returns the k indices for which the di-
agonal entries of Σ̂ are largest. It is proven that if
m ≥ ck2 log(d − k) (for some constant c), then the
probability of not perfectly identifying the support
of z is at most exp(−O(k2 log(d − k))), which goes
to 0 with k and d. Thus, we can view the sample
complexity of this algorithm as O(k2 log(d − k)). In
terms of running time, given a sample of size m =
O(k2 log(d − k)), the method requires computing the
diagonal of Σ̂ and sorting it, for a total runtime of
O(k2d log(d− k) + d log(d)) = O(k2d log(d)).

The second algorithm is a more sophisticated semidefi-
nite programming (SDP) scheme, which can be solved
exactly in time O(d4 log(d)). Moreover, the sample
complexity for perfect recovery is shown to be asymp-
totically O(k log(d − k)). Summarizing, we have the
following clear sample-time complexity tradeoff. Note
that here, the gaps are only polynomial.

Samples Time
SDP k log(d− k) d4 log(d)
Thresholding k2 log(d− k) k2d log(d)

5 Discussion

In this paper, we formalized and discussed the phe-
nomena of an inverse dependence between the running
time and the sample size. While this phenomena has
also been discussed in some earlier works, it was under
a restrictive realizability assumption, that a perfect
hypothesis exists, and the techniques mostly involved
finding this hypothesis. In contrast, we frame our dis-
cussion in the more modern approach of agnostic and
improper learning.

In the first half of our paper, we provided a novel con-
struction which shows such a tradeoff, based on a cryp-
tographic assumption. While the construction indeed
has an inverse dependence phenomenon, it is not based
on a natural learning problem. In the second half of
the paper, we provided more natural learning prob-
lems, which seem to have this phenomenon. Some of
these problems were based on the intuition described
in the introduction, but some were based on other tech-
niques. However, the apparent inverse dependence in
these problems is based on the assumption that the
currently available upper bounds have matching lower
bounds, which is not known to be true. Thus, we
cannot formally prove that they indeed become com-
putationally easier with the sample size.

Thus, a major open question is finding natural learn-
ing problems, whose required running time has prov-
able inverse dependence on the sample size. We believe
the examples we outlined hint at the existence of such
problems, and provide clues as to the necessary tech-
niques. Other problems are finding additional exam-
ples where this inverse dependence seems to hold, as
well as finding additional techniques for making this
inverse dependence happen. The ability to leverage
large amounts of data to obtain more efficient algo-
rithms would surely be a great asset to any machine
learning application.

Acknowledgements: Shai Shalev-Shwartz acknowl-

edges the support of the Israeli Science Foundation grant

number 598-10.

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

References

[1] J. Abernethy. Can we learn to gamble efficiently? In
COLT, 2010. Open Problem.

[2] A. Amini and M. Wainwright. High-dimensional anal-
ysis of semidefinite relaxations for sparse prinicpal
components. Annals of Statistics, 37(5B):2877–2921,
2009.

[3] B. Applebaum, B. Barak, and D. Xiao. On basing
lower-bounds for learning on worst-case assumptions.
In FOCS, 2008.

[4] P. Bartlett and S. Mendelson. Rademacher and Gaus-
sian complexities: Risk bounds and structural re-
sults. Journal of Machine Learning Research, 3:463–
482, 2002.

[5] S. Ben-David and H. Simon. Efficient learning of linear
perceptrons. In NIPS, 2000.

[6] L. Bottou and O. Bousquet. The tradeoffs of large
scale learning. In NIPS, 2008.

[7] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On
the generalization ability of on-line learning algo-
rithms. IEEE Transactions on Information Theory,
50(9):2050–2057, September 2004.

[8] K. Crammer and C. Gentile. Multiclass classification
with bandit feedback using adaptive regularization. In
ICML, 2011.

[9] S. Decatur, O. Goldreich, and D. Ron. Computational
sample complexity. SIAM Journal on Computing, 29,
1998.

[10] O. Goldreich. Foundations of Cryptography. Cam-
bridge University Press, 2001.

[11] E. Hazan and S. Kale. Newtron: an efcient bandit
algorithm for online multiclass prediction. In NIPS,
2011.

[12] E. Hazan, S. Kale, and S. Shalev-Shwartz. Near-
optimal algorithms for online matrix prediction. Sub-
mitted, 2012.

[13] S. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient
bandit algorithms for online multiclass prediction. In
International Conference on Machine Learning, 2008.

[14] M. Kearns, R. Schapire, and L. Sellie. Toward effi-
cient agnostic learning. Machine Learning, 17:115–
141, 1994.

[15] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Re-
gret bounds for sleeping experts and bandits. Machine
learning, 80(2):245–272, 2010.

[16] L. Pitt and L. Valiant. Computational limitations
on learning from examples. Journal of the ACM,
35(4):965–984, October 1988.

[17] R. Servedio. Computational sample complexity and
attribute-efficient learning. J. of Comput. Syst. Sci.,
60(1):161–178, 2000.

[18] S. Shalev-Shwartz, O. Shamir, and K. Sridharan.
Learning kernel-based halfspaces with the zero-one
loss. In COLT, 2010.

[19] S. Shalev-Shwartz and N. Srebro. Svm optimization:
Inverse dependence on training set size. In ICML,
2008.

Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer

A Technical Results

A.1 Proof of Lemma 1

Using the definition of Z and hx, we have

1− err(hx) = Pr
((r,s),b)∼D

(b = hx(r, s))

= Pr(s = P (x)) Pr(b = hx(r, s)|s = P (x))+

Pr(s 6= P (x)) Pr(b = hx(r, s)|s 6= P (x))

= Pr(s = P (x)) ∗ 1 + Pr(s 6= P (x)) ∗ 1

2

=
1

2
(Pr(s = P (x)) + 1).

Rearranging, we get the result.

A.2 Proof of Lemma 2

Let pk denote the probability that after drawing
r1, . . . , rk, i.i.d., an independently drawn rk+1 is not
spanned by r1, . . . , rk. Also, let Bk be a Bernoulli ran-
dom variable with parameter pk. Whenever Bk = 1,
the dimensionality of the subspace spanned by the vec-
tors we drew so far increases by 1. Since we are in an
n-dimensional space, we must have B1 + . . .+Bm′ ≤ n
with probability 1. In particular, we have

n ≥ E[B1 + . . .+Bm′] = p1 + . . .+ pm′ .

Also, for any k ≤ m′, by the assumption that the
vectors are drawn i.i.d., we have

p′m = Pr(rm′+1 /∈ span(r1, . . . , rm′))

≤ Pr(rm′+1 /∈ span(r1, . . . , rk))

= Pr(rk+1 /∈ span(r1, . . . , rk)) = pk.

Combining the two inequalities, it follows that
m′pm′ ≤ n, so pm′ ≤ n/m′ as required.

