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Abstract

This paper addresses the problem of learn-
ing when high-quality labeled examples are
an expensive resource, while samples with
error-prone labeling (for example generated
by crowdsourcing) are readily available. We
introduce a formal framework for such learn-
ing scenarios with label sources of varying
quality, and we propose a parametric model
for such label sources (“weak teachers”), re-
flecting the intuition that their labeling is
likely to be correct in label-homogeneous re-
gions but may deteriorate near classification
boundaries. We consider learning when the
learner has access to weakly labeled random
samples and, on top of that, can actively
query the correct labels of sample points of its
choice. We propose a learning algorithm for
this scenario, analyze its sample complexity
and prove that, under certain conditions on
the underlying data distribution, our learner
can utilize the weak labels to reduce the num-
ber of expert labels it requires. We view this
paper as a first step towards the development
of a theory of learning from labels generated
by teachers of varying accuracy, a scenario
that is relevant in various practical applica-
tions.

1 Introduction

This work was motivated by the following problem:
There is considerable interest in the development of
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automated programs for diagnosis of brain tumors
from CT scans of the skull. Machine learning is a
natural approach for the development of such pro-
grams, but machine learning tools require the input
of large labeled samples. Thus, we would need large
amounts of images classified according to whether, say,
tumors appearing in the images are benign or malig-
nant. However, it is very difficult and expensive to
obtain such classifications from top human experts.
Alternatively, one could have medical students label
the images, which are available both in larger numbers
and at a much lower cost. The labeling provided by
students may be erroneous though. Especially so for
images that are difficult to classify. A possible compro-
mise may be to consult students for the vast majority
of the training images, but refer a few of tho images
to an expert–those that are most challenging to clas-
sify (or most crucial for the design of the classification
program).

Similar scenarios of utilizing such “weak” but readily
available teachers in the process of learning arise in
many other practical domains. For instance, weak la-
bels might be generated using Amazon’s Mechanical
Turk. While such crowdsourcing mechanisms are be-
coming more and more popular, no formal model for
learning with label sources of varying quality has been
developed yet. This work aims at providing a first
step in extending classical statistical learning theory
to this important area of applications. Many ques-
tions arise in this context: How should such weak
teachers be modeled? (Clearly, their errors are not
just random noise - the likelihood of mislabeling an
instance varies between instances, and averaging mul-
tiple queries to the same instance will not wash off an
error.) How should an output classifier be computed
from a mixture of expert-labeled and novice-labeled
training data? How should one decide which instances
to refer to an expert? Can such a paradigm save calls
to an expert without compromising prediction accu-
racy by too much?
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1.1 Outline of our model and results

We propose a formal model of what we call learning
from weak teachers. In this model, the learner gets a
randomly generated set of “weakly labeled” examples
(according to some mechanism for generating weak la-
bels), and may then pick some of the training exam-
ples and query their correct label. The learner’s goal
is to find a good label predictor while making as few
as possible such queries.

We address situations in which the quality of labels
provided by the weak teacher varies with the degree
of label homogeneity in a certain neighborhood of la-
beled points, presuming that a non-expert labeler is
more likely to err when the correct label depends on
subtle differences in the features than in clear-cut cases
that are far from a decision boundary. We formalize
this intuition as two requirements on the labeling rule
applied by the weak teacher. Our requirements are
formulated in terms of the expected label of ‘neigh-
boring instances’ (weighted by their similarity to the
instance we wish to label). The first requirement is
that for instances having that expected label close to
either 0 or 1, the weak teacher should provide that
value (with high probability). The second requirement
states that the weak teacher should “hesitate” when la-
beling instances for which that expected label on the
‘neighbors’ is close to 1/2 (that is, the similarity neigh-
borhood is label-heterogeneous). We then show that,
under some mild conditions concerning the data gener-
ating distribution, any labeling rule satisfying these re-
quirements can be utilized as a weak teacher for learn-
ing that will result in saving of exact-label queries.

Our algorithmic paradigm is based on estimating the
confidence that a learner can have in the quality of a
weak label for a point, and querying exact labels only
for points of low confidence. We introduce a precise
notion of that confidence and show that it can be reli-
ably estimated from finite samples. We hope that the
modeling of the problem, the formalization of required
data assumptions and the demonstration of algorith-
mic success will stimulate more research on this type
of learning tasks.

After introducing our notion of weak teachers (more
precisely, the requirements such teachers should meet)
in Section 3, we formulate some natural “mildness”
conditions on the underlying data-generating distri-
bution in Section 4. We then propose a learning algo-
rithm that utilizes weakly labeled examples in Section
5, and in Section 6 we analyze its the sample complex-
ity and show that our proposed learning paradigm suc-
ceeds in utilizing a weakly labeled training sample to
generate label predictors of high accuracy while reduc-
ing the required number of correctly labeled examples.

1.2 Previous work

While we are not aware of any theoretical work that
proposes and analyzes a general formal model for
learning with a mixture of weak and strong supervi-
sion, there have been experimental studies investigat-
ing similar scenarios. Vijayanarasimhan and Grauman
[11] consider learning from two types of teachers in
the context of image annotation tasks. They develop
a learning algorithm that allows the learner to choose
between labels provided by strong and weak types of
supervision, based on the expected information gain
from each such label. There are various recent ex-
perimental studies on the use of crowdsourcing and
the problem of detecting levels of expertise of label-
sources, e.g., [7], [8], [12], [13]. In motivation maybe
most similar to our work is a study by Sheng et al.
[10]. They, experimentally, investigate multiple label-
ing as method for replacing correct supervision with
less reliable but vastly available weak labels.

Most of the work on supervised classification learn-
ing theory assumes that the supervision, the labels
provided for the training examples, are correct labels.
There are two established directions in which this as-
sumption is relaxed that are related to our work. The
first is learning from noisy data. The learning with
noise model assumes (in its most common version)
that there is some small parameter η (the noise level)
such that each example in the training set gets its cor-
rect label with probability (1−η), and with probability
η its label is flipped [2], [4], [6]. However, while this
is an appropriate model for, say, transmission noise,
where the noise level is independent of the specific ex-
ample, we are interested in modeling labeling flaws
that stem from non-expert human labelers, where we
will encounter varying label quality depending on the
difficulty to label the example in question.

The second relevant framework is active learning,
where the learner gets an unlabeled sample generated
by the environment, but can then choose a subset from
the sample for which the labels should be disclosed
[5]. The difference between our proposed weak teach-
ers model and active learning is that in our model the
learner does get some label-related information (in the
form of weak teacher labels) for each of the sample
points, not just for those actively queried.

2 Preliminaries

Let (X ,∆) be some domain set endowed with a metric
∆ : X 2 → R+ (R+ denoting the set of non-negative
real numbers) and {0, 1} a label set (often, the domain
set is a subset of a Euclidean space and ∆(x, y) is the
Euclidean distance ||x − y||). Given some probability
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distribution, P over X ×{0, 1}, we denote its marginal
distribution over X by D and let p denote the condi-
tional probability distribution over the labels, defined
by p(x) = Pr(X,Y )∼P (Y = 1 | X = x). For this, we use
the notation P = (D, p). We define the β-ball around
a point x ∈ X by Bβ(x) = {y ∈ X | ∆(x, y) ≤ β}.

Let h : X → {0, 1} be a hypothesis. We define the er-
ror of h with respect to P as ErrP (h) = Pr(x,y)∼P (y 6=
h(x)). For a class H of hypotheses on X , we denote
the smallest error of a hypothesis h ∈ H with respect
to P by optH(P ) := minh∈H ErrP (h).
Definition 1. An algorithm A is an agnostic learner
for some hypothesis class H over X if for all ε > 0
and δ > 0 there exists a sample size m = mA(ε, δ) such
that, for all distributions P over X×{0, 1}, when given
an i.i.d. sample of size m from P , then with probability
at least 1 − δ over the sample, A outputs a classifier
h ∈ H with error at most optH(P ) + ε.

By basic VC-dimension theory (see, for example, [3])
there is an agnostic learner for a class H if and only
if H has finite VC-dimension. In case of finite VC-
dimension, d, the basic ERM (empirical risk mini-
mization) paradigm is an agnostic learner for H with
mERM(ε, δ) = Õ(d+log(1/δ)

ε2 ).

2.1 Similarity notions

Many machine learning paradigms are based on the
postulate that “similar points tend to have similar
labels”. Our modeling of weak teachers is based on
having such a measure of similarity between instances
(which might be related, but not necessarily equal, to
the metric ∆ over the domain of instances). We start
our discussion of weak teachers with the notion of simi-
larity between domain points. This notion of similarity
is part of the modeling of the weak teacher, and we do
not require that it is known to the learner.
Definition 2. Let X be a domain set. A similarity
function is a symmetric function s : X 2 → [0, 1] with
maxy∈X s(x, y) = s(x, x) = 1 for all x ∈ X .

In this work, we consider similarity functions of the
form s(x, y) = f(∆(x, y)) where f : R+ → [0, 1] is a
continuous non-increasing function. Note that most of
the kernels over Euclidean spaces can be cast as such.
Example 1. Let our domain X be some Euclidean
space Rn

1. We can model the notion of similarity using an
n-variate Gaussian distribution with variance α
around a domain point x, i.e. for all x, y ∈ X

s(x, y) =
1√

(2πα)n
e
||x−y||2

2α

2. One can model the similarity as a “landfill” func-
tion. For some radius α, threshold 0 < t ≤ 1 and
slope c > 0, we have for all x, y ∈ X

s(x, y) =


1 if ||y − x|| ≤ α
1− c(||y − x|| − α) if α ≤ ||y − x||

≤ α+ 1−t
c

t otherwise.

3 Our modeling of weak teachers

Learning tasks utilizing label supervision from a non-
perfectly-reliable source (or, “weak teachers”) may
arise in a variety of practical learning scenarios. The
nature of labeling errors by such supervision may vary
between such tasks. Consequently, it is unlikely that
there exists a generic precise way in which such “weak
labels” are modeled. Just the same, the following
properties seem to be common to many practical ex-
amples of weak labelings and they distinguish such la-
belings from the common model of random labeling
noise (as discussed in [2]).

1. The probability of mislabeling an instance varies
between instances (some instances are easy to la-
bel, and even novice supervisors are not likely to
err on them).

2. The labeling is error is rather persistent - it cannot
be canceled out by averaging repeated labelings of
a given instance.

These properties are, of course, not sufficient to de-
termine the nature of weak-teacher’s errors. In this
work we consider one possible way of modeling weak
teachers. As an intuitive motivation for our modeling,
consider the example of diagnostic labeling of medical
brain images described in the introduction.

Our modeling of weak teachers is based on a notion
of instance similarity. We postulate that the chance
of mislabeling an instance depends on how likely it is
that instances similar to it have a different label. A
novice doctor is likely to label images, which are “sur-
rounded” by similarly labeled images, correctly. Like-
wise, the labels provided by weak teachers will be more
often wrong for images whose similarity neighborhood
is heterogeneous in terms of the (true) labels. Our
formal definitions below aim to capture this intuition.

3.1 The requirements from weak teachers

We define our notion of weak labeling by imposing
two requirements. Any labeling rule that meets these
requirements can be utilized by our learning paradigm
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to save label queries to a strong teacher. We consider
probabilistic labeling rules, w : X → [0, 1], where for
any instance x, w(x) is the probability that the rule
assigns to x the label 1. Our first requirement is to
assign the majority label of a neighborhood (with high
probability) if this majority is sufficiently large. Our
second requirement is to assign both labels (that is,
have w(x) in the central region of the [0, 1] interval) if
the neighborhood is not homogeneous.

The formalization of these requirements relies on the
following definition of the similarity neighborhood of
an instance and the s-smoothed labeling function:

Definition 3. Given a probability distribution D over
X and a similarity function s over X ,

1. The neighborhood distribution of an instance x ∈
X is a probability distribution Ds(x) over X . As-
suming D has density function d the density ds(x)

of Ds(x) is defined as

ds(x)(y) =
d(y)s(x, y)

Ey∼Dd(y)s(x, y)
.

Namely, the neighborhood distribution of a point
x is a version of D biased towards points similar
to x.

2. Given a distribution, P = (D, p) over X × {0, 1},
the s-smoothed labeling function πs : X → {0, 1}
is the expectation of the label value over the neigh-
borhood distribution:

πs(x) = Ez∼Ds(x)p(z).

The value min{πs(x), 1− πs(x)} indicates the hetero-
geneity of the neighborhood around x1.

In this paper we assume that the similarity notion is
such that πs(x) satisfies a Lipschitz condition. We
prove in the supplementary material [1] that this holds
for a large family of similarity notions (including the
ones in Example 1) with a Lipschitz constant that is
independent of the underlying data distribution.

The labeling function w : X → [0, 1] (where w(x) is
the probability of assigning the label 1 to the instance
x) of the weak teacher is required to comply with the
s-smoothed labeling function πs of the neighborhoods
in the following sense:

Definition 4. Let ν ≤ µ ∈ [0, 1/2]. A probabilistic
labeling function, w : X → [0, 1], qualifies as a weak

1Slightly abusing the notions, we will often refer to the
neighborhood of a point x instead of points distributed ac-
cording to the neighborhood distribution. Note the dis-
tinction between the neighborhood of a point, which refers
to the neighborhood distribution induced by a similarity
and the (metric) ball around a point.

teacher with threshold µ and slack ν whenever, for all
x ∈ X ,

w(x)

 ≤ µ+ ν if πs(x) ≤ µ
∈ (µ− ν, 1− µ+ ν) if πs(x) ∈ (µ, 1− µ)
≥ 1− µ− ν if πs(x) ≥ 1− µ

In other words, when the neighborhood of an instance
x is rather label homogeneous (as reflected by πs(x) ≤
µ for the label 0 and πs(x) ≥ 1−µ for the label 1), the
weak teacher should give high probability (≥ 1 − µ −
ν) to assigning that value. On the other hand, when
the neighborhood of x is heterogeneous in terms of its
labels (πs(x) in the central region of the [0, 1] interval),
the weak teacher is expected to assign non-negligible
probability (≥ µ− ν) to each of the two labels.

In contrast to this, a teacher is strong if it always as-
signs the label according to the distribution P .

Example 2. 1. We can model a weak teacher that
chooses a random point according to Ds(x) and
returns its label. In this case, we have a weak
teacher without threshold (i.e. it satisfies the def-
inition for any threshold µ ∈ [0, 1/2]) and slack 0
with w(x) = πs(x) for all x ∈ X .

2. We can allow a weak teacher small deviations
from πs(x), thus a weak teacher without threshold
and with slack ν could be modeled by any function
which satisfies w(x) ∈ (πs(x) − ν, πs(x) + ν) for
all x ∈ X .

3. A weak teacher could also use µ as a threshold of
confidence to decide whether to label a point de-
terministically according to the majority of simi-
lar points or to flip an unbiased coin for the label.
In this case we have for all x ∈ X

w(x) =

 0 if πs(x) ≤ µ
1/2 if πs(x) ∈ (µ, 1− µ)
1 if πs(x) ≥ 1− µ

For the sake of simplicity of our arguments, we will
from now on assume that the weak teacher labels ex-
actly according to the heterogeneity of the neighbor-
hoods, i.e. w(x) = πs(x) as in the first of these exam-
ples. We would like to stress that our analysis holds
for the more general notion of a weak teacher as for-
malized by definition 4.

4 Mildness properties of distributions

Many learning paradigms can be viewed as utilizing a
notion of similarity between instances for which sim-
ilar points are likely to assume similar labels (near-
est neighbor algorithms make the most explicit use of
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such an assumption). We now introduce properties of
distributions that capture a certain compliance of the
labeling function with the similarity.

“Nice” distributions

The following definition formalizes the property of
having not too many label-heterogeneous neighbor-
hoods. This can be viewed as stating that the under-
lying marginal distribution over the instances is sparse
around the label decision boundaries.

Definition 5. For values 0 ≤ λ ≤ 1/2 and 0 ≤ κ ≤ 1,
we say that a distribution P = (D, p) is (λ, κ)-nice
with respect to a similarity function s if

Pr
x∼D

(min{πs(x), 1− πs(x)} ≥ λ) ≤ κ

That is, the average label over a local neighborhoods is,
for most of the instances, either close to 0 or close to
1.

For a function ψ : [0, 1/2] → [0, 1], we say that a
distribution P is ψ-nice if it is (λ, ψ(λ))-nice for all
0 ≤ λ ≤ 1/2.

Note that ψ-niceness always holds for ψ being the con-
stant 1 function. We require ψ to be a monotonically
decreasing function with ψ(0) = 1. A distribution
is intuitively very nice, if there exists a small λ and
a small κ such that the distribution is (λ, κ)-nice (in
other words, if the average label in local neighborhoods
is λ-close to either 0 or 1 for all but a κ mass of the
instances).

“Local conservative” distributions

Our second mildness requirement bounds the proba-
bility of points that have a label different from the
vast majority of their neighbors (w.r.t. our measure of
similarity). We call this property “local conservative-
ness”.

Definition 6. For values 0 ≤ λ ≤ 1 and 0 ≤ κ ≤ 1,
we say that a distribution P = (D, p) is (λ, κ)-locally
conservative with respect to a similarity function s, if

Pr
x∼D

(|πs(x)− p(x)| > 1− λ) ≤ κ

That is, for most of the instances, the average label
over their neighborhood is a good approximation of the
probability of having label 1 for that instance.

For a function ϕ : [0, 1]→ [0, 1], we say that a distribu-
tion P is ϕ-locally conservative if it is (λ, ϕ(λ))-locally
conservative for all 0 ≤ λ ≤ 1.

Note that every distribution is ϕ-locally conservative
if ϕ is the constant 1 function. In order to let ϕ-local

conservativeness be a meaningful property we there-
fore need to require that ϕ is a monotonically increas-
ing function with ϕ(0) = 0. Intuitively, a distribution
is very locally conservative, if there exists a not too
small λ and a very small κ such that the distribution
is (λ, κ)-locally conservative. See the supplementary
material [1] for further discussion of these properties.

5 Our learning algorithm

Our algorithmic paradigm is based on evaluating the
confidence that we should assign labels provided by the
weak teacher. Once we have a method for estimating
that confidence, the learning algorithm runs as follows:

1. Obtain two random samples of domain points, S
and T (sampled i.i.d. according to the marginal
distribution) and query the weak teacher for the
labels of the points in S.

2. Use these labels to estimate our confidence in the
correctness of the labels that would be assigned
by the weak teacher to each point of T .

3. Query the strong teacher about the labels of
points in T for which that confidence is low.

4. Label the high confidence points of T using the
weak teacher’s labels on the sample S.

5. Pass T with the labels obtained (by this proce-
dure) to an agnostic learner.

In our setting the confidence (or uncertainty) of the
weak teacher corresponds to the homogeneity of the la-
bels of neighborhoods. However, the learner does not
know the weak teacher’s notion of similarity for the
neighborhoods. It thus needs to estimate the uncer-
tainty about the weak teacher’s labels using the metric
of the input feature space. For each point x in T , we
let the algorithm estimate the homogeneity by averag-
ing the weak labels of points in S in a ball of radius β
around it. Given a labeled set of weakly labeled points,
S ⊆ X × {0, 1}, and some radius β > 0 we define the
(S, β)-estimate of πs(x) by

wS,β(x) =
1
|S|

∑
(z,y)∈Bβ(x)∩S

y.

The algorithm uses a threshold parameter η for the
uncertainty of the weak teacher’s labels in order to
decide whether or not to call the strong teacher. We
fix some radius, β > 0, and, given a weakly labeled
sample S and a point x ∈ T , use wS,β(x) to estimate
πs(x). The algorithm calls the strong teacher for x if
min{wS,β(x), 1− wS,β(x)} ≥ η and otherwise labels x
with 1 or 0 depending on whether min{wS,β(x), 1 −
wS,β(x)} ≥ 1/2 or not.
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6 Analysis

In this section we analyze the algorithm outlined
above.

We start by showing in 6.1 that for a sufficiently large
sample S we can guarantee that with high probability
wS,β is a close approximation of the smoothed label-
ing function πs, thus we can estimate the uncertainty
from samples of distribution independent size. In 6.2
we then prove that the algorithm is guaranteed to out-
put a good label predictor while saving queries to the
strong teacher.

More concretely, we show, in Theorem 1 that a large
enough sample of weakly-labeled points suffices to pro-
vide a reliable estimate of the s-smooth labeling func-
tion, πs. Then, in Lemma 3, we show that having
such an estimate, Step 4 of our algorithm provides
a labeling that is very close to that provided by the
true labeling function (where the quality of this ap-
proximation depends on the local conservativeness of
the data-generating distribution, and the algorithm’s
choice of confidence threshold, η). Theorem 2 then
combines the previous results to show that, given any
learnable hypothesis class and a batch learning algo-
rithm for it (that uses usual correctly labeled exam-
ples), using that algorithm as a subroutine, our algo-
rithm is guaranteed to learn the class with a number of
strong-teacher queries that is smaller than the number
of labeled examples the subroutine algorithm requires
(where the sample size gain depends on the niceness
of the underlying data distribution).

Throughout this section, we fix some ψ and ϕ and
consider only distributions P over X × {0, 1} that are
ψ-nice, ϕ-locally conservative and have deterministic
labels, i.e. p(x) ∈ {0, 1} for all x ∈ X .

6.1 Estimation of the uncertainty

Here we prove that by choosing a sufficiently large size
for the weakly labeled set S, we can obtain a close ap-
proximation of the s-smoothed labeling function (and
thus of the confidence or the uncertainty in the weak
teachers labels). We start by showing that we can ob-
tain such an approximation if we assume πs to be Lip-
schitz i.e. if we have |πs(x)−πs(y)|

∆(x,y) ≤ L for all x, y ∈ X
for some constant L ∈ R. We then claim that for a
large family of similarity notions, the s-smoothed la-
beling function πs is guaranteed to be Lipschitz with
a constant that is independent of the underlying dis-
tribution. This claim is formalized and proved in the
supplementary material [1].

Given a set of weakly labeled points, S ⊆ X ×
{0, 1}, and some parameter β > 0 recall that we

define the (S, β)-estimate of πs(x) by wS,β(x) =
1
|S|
∑

(z,y)∈Bβ(x)∩S y. We start by showing that for a
sufficiently large set S, we can guarantee that with
high probability the β-ball around a domain point x
contains many points from S.

Lemma 1. For every δ, every k ∈ N, every β > 0
and every γ > 0, there exists an M ∈ N such that
for an i.i.d. D-sample S of size at least M we have
Prx∼D[|S ∩ Bβ(x)| ≥ k] ≥ 1 − γ with probability at
least 1− δ (over the choice of S).

Proof. We use the following result from [9] (Lemma
21, p. 68): If D is a distribution over some domain
X and C1, . . . , Cr is a sequence of subsets of X , then
ES∼Dn [

∑
Ci:S∩Ci=∅D(Ci)] ≤ r

ne . Let R be the number
of balls of radius β/2 that are needed to cover the
space X and let C1, . . . , CR be such a cover. Now, if
we divide the sample S into k subsets S1, . . . , Sk, each
of size n (we can consider this as taking k samples of
size n), we obtain that

ES1,...,Sk∼Dn [
∑

Ci:S∩Ci≤k

D(Ci)]

≤ ES1,...,Sk∼Dn [
∑

Ci:(∃Sj :Ci∩Sj=∅)

D(Ci)]

≤ ES1,...,Sk∼Dn [
k∑
j=1

(
∑

Ci:(Ci∩Sj=∅)

D(Ci))] ≤
kR

ne
.

Thus, by Markov’s inequality, it follows that for every
δ > 0 and every γ > 0 there is a size M(= kn) such
that we have Prx∼D[|S ∩ Bβ(x)| ≥ k] ≥ 1 − γ with
probability at least (1− δ) over i.i.d. samples S of size
M .

Next, we show that if the β-ball around a domain
point x contains sufficiently many points from S then
wS,β(x) is close to πs(x) with high probability.

Lemma 2. Assume that the s-smoothed labeling rule,
πs : X → [0, 1] satisfies the Lipschitz condition with a
constant L, let x be any domain point and β > 0 and
let S be an i.i.d. D-sample, that is labeled by the weak
teacher, then, for every ε > 0 the probability (over the
choice of S) that |wS,β(x) − πs(x)| ≥ βL + ε is less
than e−2kε2 , where k = |S ∩Bβ(x)|.

Proof. By the Lipschitz condition, for every u ∈ |S ∩
Bβ(x)| we have |πs(x) − πs(u)| ≤ βL. We can view
S as generated by first sampling the instances ac-
cording to D, and then sampling the labels using the
weak teacher. Once the instances have been fixed,
we can view the labels assigned to the various points
u by the weak teacher as an independent Bernoulli
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random variables with expectation πs(u). There-
fore, the expectation of wS,β(x) = 1

kΣu∈S∩Bβ(x)`w(u)
equals 1

kΣu∈S∩Bβ(x)πs(u). Since for each such u we
have |πs(x) − πs(u)| ≤ βL, we get that |E(wS,β(x) −
πs(x))| ≤ βL. The result now follows from Hoeffding’s
inequality.

These lemmas imply that we can approximate πs(x)
with arbitrarily high precision by choosing a suffi-
ciently large size for the set S and a sufficiently small
radius β:
Theorem 1. Assume that for some underlying data
distribution D the s-smoothed labeling rule, πs : X →
[0, 1] satisfies the Lipschitz condition with a constant
L. Then for every ε > 0, δ > 0, every γ > 0 there are
values M and β determined by ε, δ, L and γ such that
for a weakly labeled i.i.d. D-sample S of size at least
M we have Prx∼D[|wS,β(x)− πs(x)| ≤ ε] ≥ 1− γ with
probability at least 1− δ (over the choice of S).

Proof. For a sample size M and parameters β and k,
say that a pair (x, S) ∈ X × XM is (β, k)-good, if
|S ∩ Bβ(x)| ≥ k and that such a pair is (ε, β)-approx,
if |wS,β(x) − πs(x)| ≤ ε. Lemma 1 implies that for
any γ and δ, we can choose M large enough so that
Prx∼D, S∼DM [(x, S) is (β, k)-good] ≥ 1− γ − δ. From
this, we get that for every η

Pr
x∼D

[
Pr

S∼DM
[(x, S) is not (β, k)-good ] ≥ η

]
≤ (γ + δ)/η.

Thus, we changed the order of quantifiers (in Lemma
1) and have that for any δ and η, we can choose a
sample size M such that

Pr
x∼D

[
Pr

S∼DM
[(x, S) is (β, k)-good ] ≥ 1− η

]
≥ 1− δ.

Choosing β = ε/L, Lemma 2 implies that, for every x
and every k, conditioned upon S being such that the
pair (x, S) is (β, k)-good, the probability over S ∼ DM

that (x, S) is (2ε, β)-approx is at least 1− e−2kε2 . For
a fixed x with PrS∼DM [(x, S) is (β, k)-good ] ≥ 1 − η
this yields

Pr
S∼DM

[(x, S) is (2ε, β)-approx] ≥ (1− η)(1− e−2kε2).

For a given ε and γ, we can choose k and η such (1−
η)(1 − e−2kε2) ≥ 1 − γ. Thus we have shown that for
any ε, γ and δ, we can choose β and M , so that

Pr
x∼D

[
Pr

S∼DM
[(x, S) is (2ε, β)-approx] ≥ 1− γ

]
≥ 1− δ.

As above, we can change the order of quantification
over x and S, which yields the claim of the theorem.

6.2 Sample complexity analysis

Given a weakly labeled set S and a point x in X , we
let pS denote the label that x receives by the proce-
dure that we use for members of the set T (before be-
ing passed to the agnostic learner). We denote the
induced probability distribution over X × {0, 1} by
PS = (D, pS). We start by showing that if wS,β is a
good estimate for πs then the distribution PS is close
to the true distribution P in the following sense:
Lemma 3. Let η be the threshold for the uncertainty
the algorithm uses and assume that S is such that we
have Prx∼D[|wS,β(x) − πs(x)| ≤ ε0] ≥ 1 − γ, then for
every l : X → {0, 1},

|ErrPS (l)− ErrP (l)| ≤ ϕ(η + ε0) + γ.

Proof. We have |wS,β(x)−πs(x)| ≤ ε0 with probability
at least 1 − γ. We now assume that this inequality
holds, which yields the additive factor γ.

Consider a random x drawn according to D. It suf-
fices to bound the probability that pS(x) 6= p(x). If we
have min{πs(x), 1−πs(x)} ≤ η+ ε0 and the true label
p(x) does correspond to the majority of labels in the
neighborhood, then the algorithm assigns the correct
label pS(x) = p(x) (assuming that η and ε0 were cho-
sen small enough for wS,β(x) ≤ η+2ε0 ≤ 1/2 to hold).
Further, if we have min{πs(x), 1 − πs(x)} ≥ η + ε0,
the algorithm calls the strong teacher as this implies
min{wS,β(x), 1 − wS,β(x)} ≥ η, thus in this case we
have pS(x) = p(x) as well.

The probability that we have min{πs(x), 1− πs(x)} ≤
η+ε0 and the true label p(x) not corresponding to the
majority of labels in the neighborhood (i.e. p(x) = 1
and min{πs(x), 1 − πs(x)} = πs(x) or p(x) = 0 and
min{πs(x), 1 − πs(x)} = 1 − πs(x)), is bounded by
ϕ(η + ε0) because of the local conservativeness.

Now we bound the error of our algorithm if it uses an
agnostic learner as a subroutine (see Definition 1).
Lemma 4. Let H be a hypothesis class of finite VC-
dimension and let B be an agnostic learner for H.
Then, for all ε > 0 and δ > 0, there is a finite sample
size M and a threshold η for our algorithm such that,
for a weakly labeled sample S of size at least M and
an unlabeled sample T of size mB(ε/2, δ/2), we have

ErrP (h) ≤ optH(P ) + ε

with probability at least 1 − δ, where h ∈ H is the
hypothesis that our algorithm outputs.

Proof. We can choose a threshold η for the algorithm,
a γ > 0 and an ε0 such that 2(ϕ(η + ε0) + γ) < ε/2,
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where ϕ is the local conservativeness of the distribu-
tion. Further, we can choose an M such that with
probability 1−δ/2 we have Prx∼D[|wS,β(x)−πs(x)| ≤
ε0] ≥ 1 − γ by Theorem 1. Let h∗ be the hy-
pothesis with minimal error with respect to P , i.e.
ErrP (h∗) = optH(P ). Then Lemma 3 implies

ErrPS (h∗) ≤ ErrP (h∗) + ϕ(η + ε0) + γ

Thus, the guarantee on the agnostic learner B yields
that with probability at least 1− δ/2 we have

ErrPS (h) ≤ ErrP (h∗) + ϕ(η + ε0) + γ + ε/2

In order to get a bound on the error of h with respect
to the original distribution P we use Lemma 3 again.
This implies that with probability at least 1 − δ we
have ErrP (h) ≤ ErrP (h∗) + 2(ϕ(η + ε0) + γ) + ε/2 ≤
optH(P ) + ε.

We now bound the expected number of calls to the
strong teacher that the algorithm makes.
Lemma 5. Let P be a ψ-nice distribution. If η is
the threshold for the uncertainty the algorithm uses
and the weakly labeled sample S is such that we have
Prx∼D[|wS,β(x)−πs(x)| ≤ ε0] ≥ 1−γ for some γ > 0,
then the expected number of calls to the strong teacher
the algorithm makes is bounded by |T |(ψ(η − ε0) + γ).

Proof. The algorithm makes a call to the strong
teacher if min{wS,β(x), 1 − wS,β(x)} ≥ η. We have
Prx∼D(min{πs(x), 1 − πs(x)} ≥ η − ε0) ≤ ψ(η − ε0)
by the niceness. As we have |wS,β(x) − πs(x)| ≤ ε0
with probability 1−γ we get Prx∼D(min{wS,β(x), 1−
wS,β(x)} ≥ η) ≤ ψ(η − ε0) + γ. This implies the
claim.

The following theorem summarizes our algorithms
sample complexity, as established in this section:
Theorem 2. Let H be a hypothesis class of finite VC-
dimension and let B be an agnostic learner for H.
Then, for every ε > 0, δ > 0, functions ψ and ϕ, and
every γ, ε0 and η satisfying 2(ϕ(η+ε0)+γ) ≤ ε/2, there
exists a sample size M , such that our algorithm, given
a weakly labeled random sample S of size at least M
and a random unlabeled sample T of size mB(ε/2, δ/2)
generated by a distribution P over X × {0, 1} that is
ϕ-locally conservative and ψ-nice, with probability ex-
ceeding (1− δ) outputs a hypothesis with error at most
optH(P )+ε using at most (ψ(η−ε0)+γ)mB(ε/2, δ/2)
calls to the strong teacher.

Note that the sample complexity of ERM for classes of
finite VC dimension depends quadratically on 1/ε and
only logarithmically on 1/δ. Thus we can approximate
mB(ε/2, δ/2) with 1/4mB(ε, δ) and get:

Corollary 1. For every ε0 > 0 and γ > 0, if the
parameter η, chosen by the learning algorithm, is such
that 4(ψ(η− ε0) + γ) < 1, then the expected number of
calls to the strong teacher that our algorithm makes is
less than the sample size of strongly-labeled examples
that would be needed by the agnostic learner B without
access to weakly labeled points.

Discussion While the condition 2(ϕ(η + ε0) + γ) ≤
ε/2 in Theorem 2 requires the parameters η, ε0 and
γ to be set sufficiently small, the corollary shows that
we save queries to the strong teacher in comparison
to the agnostic learner B only if 4(ψ(η − ε0) + γ) <
1 (and, by the conclusion of the theorem, the saving
is proportional to that quantity) which requires these
parameters to be not too small.

In other words, we need to set the threshold for the al-
gorithm so small, that the local conservativeness guar-
antees that there are not too many points with a label
different from the (roughly) 1 − η majority of their
neighborhood. On the other hand, we need to leave
the threshold large enough for our algorithm not to
call the strong teacher too often.

Can both these requirement be met simultaneously?
We believe that in “natural” situations, the first re-
quirement is not an issue. In other words, we believe
that “natural” distributions are highly locally conser-
vative. For example, if our domain is the unit ball in
Rn, we assume that the labels are defined by a homo-
geneous halfspace and similarity corresponds to the
Euclidean metric, then for any λ ≤ 1/2, this distri-
bution is (λ, 0)-locally conservative. This enables the
learner to choose a relatively large value for the thresh-
old η, so that the second requirement is met (allowing
significant savings in the number of strong labels).

7 Concluding remarks

We view this paper as a first step in a practically rel-
evant research direction that, as far as we can tell,
has not received much attention terms of theoretical
foundations. There are many directions in which this
work can be extended. This paper focuses on a spe-
cific model of weak teachers, while it is not hard to
come up with practical scenarios that call for a differ-
ent modelling. Another natural direction for extend-
ing this research is the consideration of a hierarchy of
teachers, and connecting this with budgeted learning.
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