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Abstract

Online learning and competitive analysis are two widely studied frameworks for online
decision-making settings. Despite the frequent similarity of the problems they study, there
are significant differences in their assumptions, goals and techniques, hindering a unified
analysis and richer interplay between the two. In this paper, we provide several con-
tributions in this direction. We provide a single unified algorithm which by parameter
tuning, interpolates between optimal regret for learning from experts (in online learning)
and optimal competitive ratio for the metrical task systems problem (MTS) (in competitive
analysis), improving on the results of Blum and Burch (1997). The algorithm also allows
us to obtain new regret bounds against “drifting” experts, which might be of independent
interest. Moreover, our approach allows us to go beyond experts/MTS, obtaining simi-
lar unifying results for structured action sets and “combinatorial experts”, whenever the
setting has a certain matroid structure.
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1. Introduction

Online learning, in its decision-theoretic formulation, captures the problem of a decision-
maker who iteratively needs to make decisions in the face of future uncertainty. In each
round, the decision-maker picks a certain action from an action set, and then suffers a
cost associated with that action. The cost vector is not known in advance, and might
even be chosen by an adversary with full knowledge of the decision-maker’s strategy. The
performance is typically measured in terms of the regret, namely the difference between the
total accumulated cost and the cost of an arbitrary fixed policy from some comparison class.
Non-trivial algorithms usually attain regret which is sublinear in the number of rounds.

While online learning is a powerful and compelling framework, with deep connections to
statistical learning, it also has some shortcomings. In particular, it is well-recognized that
regret against a fixed policy is often too weak, especially when the environment changes
over time and thus no single policy is always good. This has led to several papers (e.g.,
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Herbster and Warmuth (1998); Hazan and Seshadhri (2009); Crammer et al. (2010); Rakhlin
et al. (2011)) which discuss performance with respect to stronger notions of regret, such as
adaptive regret or tracking the best expert. A related shortcoming of online learning is that
it does not capture well problems with states, where costs depend on the decision-maker’s
current configuration as well as on past actions. Consider, for instance, the problem of
allocating jobs to servers in an online fashion. Clearly, the time it takes to process jobs
strongly depends on the system state, such as its overall load, determined by all previous
allocation decisions. The notion of regret does not capture this setting well, since it measures
the regret with respect to a fixed policy, while assuming that at each step this policy faces
the exact same costs.

Thus, one might desire algorithms for a much more ambitious framework, where we need
to compete against arbitrary policies, including an optimal offline policy which has access to
future unknown costs, and where we can model states. Such problems have been intensively
studied in the field of competitive analysis (for a detailed survey, see Borodin and El-Yaniv
(1998)). In such a framework, attaining sublinear regret is hopeless in general. Instead, the
main measure used is the competitive ratio, that bounds the ratio of the total cost of the
decision-maker and the total cost of an optimal offline policy, in a worst-case sense. This
usually provides a weaker performance guarantee than online learning, but with respect to
a much stronger optimality criterion.

While problems studied under these two frameworks are often rather similar, there has
not been much research on general connections between the two. The main reason for this
situation (other than social factors stemming from the separate communities studying them)
is some crucial differences in the modeling assumptions. For example, in order to model
the notion of state, competitive analysis usually assumes a movement cost of switching
between states. In the online learning framework, this would be equivalent to having an
additional cost associated with switching actions between rounds. Another difference is
that in competitive analysis one assumes 1-lookahead, i.e., the decision-maker knows the
cost vector in the current round. In contrast, online learning has 0-lookahead, and the
decision-maker does not know the cost vector of the current round until making a decision.
Such differences, as stated in Cesa-Bianchi and Lugosi (2006), “have so far prevented the
derivation of a general theory allowing a unified analysis of both types of problems” (p. 3).

We note that one particular setting, known as learning from experts (in the online learn-
ing framework) and metrical task systems (MTS) with a uniform metric (in the competitive
analysis framework), has been jointly studied in Blum and Burch (1997). In particular, the
latter paper showed how certain algorithms, based on tuning some parameters, were able
to interpolate between a reasonable regret bound and a reasonable competitive ratio. The
interpolation was performed using the notion of α-unfair competitive ratio, which forces
the policy we compete with to pay α times more for the movement cost. In the limit, α
goes to infinity, and thus the competing policy becomes essentially static, and the setting
becomes reminiscent of online learning.

While these are important and interesting results, they are specific to the setting of
experts/MTS. In modern online learning, learning from experts is now known to be a very
special case of much more general settings, such as “combinatorial experts” (see Chapter
5 in Cesa-Bianchi and Lugosi (2006)), and online convex optimization. Thus, a natural
question is whether unifying analysis and algorithms exist in such cases as well.
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Our Contributions: In this paper, we contribute to this research direction by pro-
viding a novel unified algorithmic approach, based on recent primal-dual LP techniques
developed in competitive analysis (see the survey of Buchbinder and Naor (2009)). First,
we show that in the experts/MTS setting, our algorithm attains both optimal regret and
an optimal competitive ratio (unlike the results in Blum and Burch (1997), which do not
obtain optimal competitive ratios), as well as optimal results for settings in between, such
as shifting and drifting experts. The regret bound for drifting experts is new, to the best
of our knowledge, and might be of independent interest.

Furthermore, we show how our approach can be applied to more general, “structured”
learning/competitive analysis settings, which satisfy matroid constraints. Matroids play an
important role in combinatorial optimization since the pioneering work of Edmonds in the
1960s and they naturally capture structured action sets such as spanning trees and sparse
subsets. In the context of online convex optimization, our results may be viewed as online
learning over the matroid base polytope. As in the experts/MTS case, we also get regret
bounds against actions which shift or drift a limited amount. Moreover, this can be done in
a fine-grained way which respects the problem structure (e.g. competing with spanning trees
where only a bounded number of individual edges can change over time). Our algorithms
are straightforward, and the various performance guarantees are all obtained just by tuning
two parameters.

A key technical feature in our algorithms is that in intermediate steps weights can have
negative values, thus deviating from the standard approach of both approximation and
online algorithms, and multiplicative updates and weight sharing algorithms.

We emphasize that although some of the settings we discuss might also be treatable by
more “conventional” online learning tools, we obtain relevant algorithms naturally from our
framework, rather than requiring a case-by-case construction (which is common for online
learning over structured sets, see Koolen et al. (2010)).

Overall, we hope that our work on combining online learning and competitive analysis
provides a step towards bringing these two rich and mature fields closer together. We
also hope that the tools we develop may lead to practical algorithms which combine the
advantages of both worlds. On one hand, the practical performance and usefulness of online
learning, and on the other hand the robustness to highly dynamic and state-dependent
environments of competitive analysis.

Related Work: There are several works related to ours, other than Blum and Burch
(1997) which we have already discussed. However, to the best of our knowledge, none of
them attempt to provide a single algorithmic approach which connects online learning with
competitive analysis. For example, Bansal et al. (2010) show an analysis of experts and the
unfair MTS problem, using a primal-dual approach similar to ours. However, a different
algorithm and analysis is applied to each of the problems, the algorithms are considerably
more complex, and do not scale as well to the more general setting of matroids. Blum et al.
(2003) discuss algorithms for decision making on lists and trees, for both a competitive
analysis setting and an online learning setting, and show how they can be combined using
the hedge algorithm (Freund and Schapire (1997)) to provide simultaneous guarantees. Pa-
pers such as Blum et al. (1999) and Abernethy et al. (2010) discuss competitive-analysis
algorithms derived using tools from online learning, e.g., regularization. Other works at-
tempt to strengthen the standard regret framework of online learning, such as learning with

3



Buchbinder Chen Naor Shamir

global cost functions (Even-Dar et al. (2009)) and using more adaptive notions of regret
as discussed above. The matroid settings that we consider partially overlap with those
of Koolen et al. (2010), which were studied in the standard online learning framework.
For these settings, we obtain similar optimal results for online learning, without the need
for case-by-case constructions, and again get an interpolation between online learning and
competitive analysis.

2. Preliminaries: Online Learning and Competitive Analysis

We begin by describing online learning and competitive analysis, as applied to the settings
we consider. To facilitate our unified analysis, we will strive to use the same notation and
terminology for both settings, sometimes using conventions from one to describe the other.

Online learning in the experts setting proceeds in T rounds. We consider a finite action
set E , where |E| = n. In the beginning of each round t, the decision-maker maintains a
distribution vector wt−1 over E (which can be seen as a randomized policy over picking one
out of n “experts” at that round). Then, a cost vector ct is revealed, and the decision-maker
incurs the (expected) cost 〈wt−1, ct〉. Vector ct may be generated in an arbitrary, possibly
adversarial way, and we only assume that each vector’s entry is bounded in [0, 1] (which
can be easily relaxed by scaling). The decision-maker then chooses a new vector wt for the
next round. The goal of the decision-maker is to minimize regret, defined as

T∑
t=1

〈wt−1, ct〉 −
T∑
t=1

〈w∗, ct〉,

where w∗ = arg min{w≥0,‖w‖1=1}{
∑T

t=1〈w, ct〉}. For this bound to be non-trivial, we expect
a regret which grows sublinearly with T . A more ambitious goal studied in the literature (e.g.
Herbster and Warmuth (1998)) is tracking the best expert, or regret against “shifting” ex-
perts. In that case, we wish to minimize

∑T
t=1〈wt−1, ct〉−

∑T
t=1〈w∗t , ct〉, where w∗0, . . . ,w

∗
T−1

is the best sequence of distributions which change at most k times (i.e. w∗i 6= w∗i+1 for at
most k values of i). In this paper, we will in fact study a more general framework, which
we call “drifting” experts, in which the regret is against the optimal sequence w∗0, . . . ,w

∗
T−1

such that
∑T

t=1
1
2‖w

∗
t −w∗t−1‖1 ≤ k. This generalizes shifting experts, since any k-shifting

sequence is also a k-drifting sequence. We are not familiar with existing explicit results in
the literature for drifting experts.

In the more general framework that we consider here, rather than just picking single
elements of E , we assume that the decision-maker can pick subsets of E , from a family of
subsets I which has some structure. Such settings were considered in several online learning
papers, such as Kalai and Vempala (2005) and Koolen et al. (2010). For example, consider
web advertising, where we can place exactly s ads on some website at any given timepoint,
out of n ads overall. This can be naturally modeled as an online learning problem, where
I is all of E ’s subsets of size s, and we want to compete against the set of best s ads in
hindsight. As another example, consider online learning of spanning trees, which is relevant
in the context of communication networks. In that case, E is a set of edges in a graph, and
C is the convex hull of all subsets of edges which form a spanning tree. The goal in these
settings is to minimize regret with respect to the best single element of w ∈ C in hindsight,
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namely
T∑
t=1

〈wt−1, ct〉 −min
w∈C

T∑
t=1

〈w, ct〉.

It turns out that the latter two settings, the basic experts setting, as well as many other
settings, satisfy a matroid structure. Matroids are extremely useful combinatorial objects1,
which are formally defined as follows, see e.g., Schrijver (2003). Let E be a finite set and let
I be a nonempty collection of subsets of E , called independent sets. M = (E , I) is called
a matroid if for every S1 ⊆ S2, if S2 ∈ I then also S1 ∈ I. Additionally, if S1,S2 ∈ I and
|S1| > |S2|, then there exists an element e ∈ S1 \ S2 such that S2 ∪ {e} ∈ I. The latter
property is called the set exchange property. For S ⊆ E , a subset B of S is called a base
of S if B is a maximal independent subset of S. A well known fact is that for any subset
S of E , any two bases of S have the same size, called the rank of S, denoted by r (S).
For example, s-sparse subsets are the bases of an s-uniform matroid, where r(E) = s, and
experts are the special case with s = 1. Spanning trees in a graph G = (V,E) are bases
of a graphic matroid with E = E and I being the collection of all subsets of E that form
a forest, with rank r(E) = |V | − 1. The base polytope of a matroid M is defined as the
convex hull of the incidence vectors of the bases ofM. We refer to this polytope as B(M).
The density of a matroidM, γ (M), is defined as maxS⊆E,S6=∅{|S|/r(S)}. For example, the
density of the s-subsets matroid is n/s. The density of a graphic matroid (spanning trees)
in a graph G = (V,E) is maxS⊆V,|S|>1{|E(S)|/(|S| − 1)}, where E(S) is the set of edges in
the subgraph defined by the vertices of S.

We focus on algorithms which work over bases of matroids, interpolating online learning
and competitive analysis, and obtaining results in intermediate settings such as competing
against shifting and drifting targets. For computational efficiency, our algorithms maintain
a distribution wt over E (rather than the possibly-exponentially large I). In competitive
analysis, this is known as a fractional solution. Since all vertices of B(M) are matroid bases,
any such fractional solution always corresponds to a valid distribution over the bases. Hence
we may use the fractional solution to actually sample from a consistent distribution on the
bases of the matroid. Such a procedure is known as rounding. Pipage rounding is an
example of a relevant rounding technique which is fast and easy to implement (see Chekuri
and Vondrak (2009) for a description). Since these are known techniques, which are not the
focus of our paper, we omit the implementation details.

We now turn to describe the matroid general setting in the competitive analysis frame-
work. We first note that the analogue of the experts setting is known as the metrical task
system (MTS) problem on a uniform metric, first formulated in Borodin et al. (1992). MTS
abstracts many important online decision problems, e.g., process migration. In the online
setting, the decision-maker sequentially needs to choose a vector wt in a high-dimensional
simplex and incur costs depending on arbitrarily-chosen cost vectors. However, there are
some important differences.

First, the decision-maker pays a movement cost for changing from wt−1 to wt, which
equals 1

2‖wt − wt−1‖1, and not only a cost depending on ct (known as the service cost).
Second, the service cost incurred in round t is defined to be 〈wt, ct〉, and not 〈wt−1, ct〉.

1. For instance, they play a crucial role in the analysis of greedy algorithms, and have deep connections to
submodular functions which have recently gained popularity in machine learning.

5



Buchbinder Chen Naor Shamir

In other words, the decision-maker is allowed to first see the cost vector ct, and only then
choose the new vector wt and pay accordingly. This is called 1-lookahead. In contrast, in
the experts setting the decision-maker first pays the cost 〈wt−1, ct〉 and only then chooses
a vector wt. This is called 0-lookahead. We decompose the total cost paid by the decision-
maker into the service cost S1 (with 1-lookahead) and the movement cost M as follows:

S1 =
T∑
t=1

〈wt, ct〉 , M =
T∑
t=1

1

2
‖wt −wt−1‖1.

To motivate these notions, we note that in the context of (say) MTS, one thinks of wt as
a distribution over n possible “states” the algorithm might be in, 1

2‖wt − wt−1‖1 as the
cost associated with changing that state, and ct as specifying the cost of processing a task
in each of the n states. Because of the movement cost, the ability of getting the cost ct
in advance does not trivialize the problem. To allow comparison to the experts setting, we
also define S0 =

∑T
t=1〈wt−1, ct〉 as the service cost of an algorithm whose action at round t

does not depend on ct. The framework naturally extends to the context of matroids - the
decision-maker needs to maintain over time a base in a matroid M = (E , I).

Another important difference, in comparison to the online learning framework, is the
performance measure. In competitive analysis the goal is not to compete against the best
fixed element in B(M), but rather against the optimal offline sequence w∗1, . . . ,w

∗
T , which

is a solution to

min
∀t=1,...,T | wt∈B(M)

T∑
t=1

〈wt, ct〉+
T∑
t=1

1

2
‖wt −wt−1‖1.

In other words, w∗1, . . . ,w
∗
T is the optimal sequence of the decision-maker’s choices, had she

known all the cost vectors in advance, and could have solved the problem offline. Clearly,
this is a much more ambitious goal than minimizing the regret with respect to a fixed w∗.
We let

S∗1 =
T∑
t=1

〈w∗t , ct〉 , M∗ =
T∑
t=1

1

2
‖w∗t −w∗t−1‖1

denote the service cost and the movement cost of this optimal sequence, and let OPT =
S∗1 +M∗ denote the total cost. Thus, the competitive ratio is defined as the minimal c ≥ 1,
such that for any sequence of cost vectors,

S1 +M ≤ c ·OPT + d,

where d is a constant independent of T . In competitive analysis, c is usually strictly greater
than one, and is independent of T . For example, in the MTS setting the attainable com-
petitive ratio is known to be O(lnn) (Borodin et al. (1992)).

A crucial refinement of competitive ratio, which we use for providing a unified analysis
of the two settings, is the notion of α-unfair competitive ratio, for α ≥ 1. This notion
modifies the sequence w∗1, . . . ,w

∗
T we compete against. Rather than defining it as the

sequence minimizing
∑T

t=1〈w∗t , ct〉 +
∑T

t=1
1
2‖w

∗
t − w∗t−1‖1, we define it as the sequence

which is the solution to:

min
∀t=1,...,T | wt∈B(M)

T∑
t=1

〈wt, ct〉+ α

T∑
t=1

1

2
‖wt −wt−1‖1.
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The optimal cost of the above is denoted as OPT(α). In words, the sequence we com-
pete against pays α times more than the decision-maker for movement. The case α = 1
corresponds to the standard competitive analysis setting. For α > 1, the setting becomes
easier, because it encourages the competing sequence to move less. In the limit α → ∞,
the optimal sequence necessarily satisfies w∗1 = . . . = w∗T , and the setting becomes rem-
iniscent of online learning where we compare ourselves against a fixed w∗ (although the
1-lookahead and the movement cost features remain). The α-unfair competitive ratio has
been proposed in Blum et al. (1992), and used to show connections between online learning
and competitive analysis (for experts/MTS) in Blum and Burch (1997).

To facilitate our regret bounds for k-drifting sequences, we let OPTk denote the cost of
the best k-drifting sequence (of valid vectors in B(M)) which minimizes

∑T
t=1〈wt−1, ct〉.

It is easy to show that OPT(α) ≤ OPTk + αk. Another simple observation, based on the
boundedness of ct, is that S0 =

∑T
t=1〈wt−1, ct〉 ≤

∑T
t=1〈wt, ct〉 +

∑T
t=1

1
2‖wt − wt−1‖1 =

S1 + M . Combining these two, we get the following useful observation which relate the
online learning and competitive analysis settings2:

Observation 1 Suppose we have an algorithm (in the α-unfair setting) whose total cost is
at most cOPT(α) + d, then we have an online learning algorithm with total cost

S0 ≤ S1 +M ≤ cOPT(α) + d ≤ cOPTk + cαk + d. (1)

3. Results

We first present our algorithm (Algorithm 1) and results for the experts/MTS setting. We
prove the following theorem.

Algorithm 1 Experts/MTS Algorithm (learning-style formulation)

Parameters: α ≥ 1,η > 0
Initialize wi,0 = 1

n for all i = 1, . . . , n.
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the cost vector at time t.
Using binary search, find the smallest value at such that

∑n
i=1wi,t = 1, where

wi,t = max

{
0,

(
wi,t−1 +

1

eηα − 1

)
e−η(ci,t−at) − 1

eηα − 1

}
(2)

end for

Theorem 2 For any α ≥ 1, η > 0, Algorithm 1 attains

S1 ≤ OPT(α) +
ln(n)

η
, M ≤

(
1 +

n

eηα − 1

)
(ηOPT(α) + ln (n)) . (3)

In particular, for α→∞ (regret against a fixed distribution), by Observation 1, we get

S0 ≤ S1 +M ≤ (1 + η)OPT(∞) +
ln(n)

η
+ ln (n) . (4)

2. An observation of a similar flavor was also given in Blum and Burch (1997).
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By plugging3 α = ln(n)/η and using Observation 1, we also obtain

S0 ≤ (1 + 3η) OPTk +
(k + 1) ln(n)

η
+ 3(k + 1) ln(n). (5)

Let us try to understand the bounds in the theorem. For Equation (3), if we set α = 1 and
η = ln(n)+ ln lnn, we get the best known bound for MTS on uniform metrics (Bansal et al.
(2010); Abernethy et al. (2010)). In particular, the bound is better than that obtained by
the analysis of Blum and Burch (1997), who also interpolate between experts and MTS. For

Equation (4), if we set η =
√

ln(n)
OPT(∞) , then our analysis yields a virtually optimal regret

bound of 2
√

OPT(∞) ln(n) + ln(n) for the experts setting. Moreover, it is not hard to see
that when α→∞, our algorithm reduces to the canonical multiplicative updates algorithm
(see Cesa-Bianchi and Lugosi (2006)). Equation (5) is a regret bound with respect to the
optimal k-drifting sequence. Setting η =

√
(k + 1) ln(n)/3OPTk, we get an essentially

optimal regret of less than 2
√

3(k + 1) ln(n)OPTk + 3(k + 1) ln(n) for this problem. We
emphasize that while there exist previous results for the case of shifting experts, here we
provide an algorithm and analysis for the strictly more general setting of drifting experts4.
We note that although OPT(∞) and OPTk may not be known in advance in order to tune
η, one can use a standard doubling trick to circumvent this (or obtain bounds in which these
quantities are replaced by the number of rounds T (Cesa-Bianchi and Lugosi (2006))).

The general case of a matroid M = (E , I) is handled by Algorithm 2, which works
similarly to Algorithm 1. The algorithm maintains a distribution vector wt ∈ B(M) over
the elements of E . Initially, we pick w0 to be a vector in B(M) such that maxe∈E{ 1

w0,e
} is

minimized. By a simple observation there is always such a base such that maxe∈E{ 1
w0,e
} =

γ (M) and this is the best possible (see Observation 5). In each round, we have an “update”
step in which we decrease the value we,t of each element in the matroid. Note that this can
even make the value of we,t negative. After this step, a sequence of up to n normalization
steps is implemented. Before each normalization step we consider the maximal tight set
with respect to our current solution. A set S ⊆ E is tight if

∑
e∈S we,t = r (S), and it is well

known that if S1 and S2 are tight, then so are S1 ∩S2 and S1 ∪S2. In particular, there is a
maximal tight set which contains all elements whose value we,t cannot be increased without
violating the matroid constraints. In each normalization step we therefore pick all elements
which are not in a tight set and increase their value, until an additional element joins a
tight set. For s-sparse subsets, checking if an element has joined a tight set can be easily
done in linear time, and for spanning trees a separation oracle for the forest polytope can
be applied (Singh (2008), Theorem 3.8). Generally, the above condition can be checked in
polynomial time by a reduction to submodular function minimization (see Schrijver (2003),
Chapter 40). The sequence of normalization steps ends when all elements become tight.

The performance guarantee of the algorithm is provided below. We note that aside from
a negligible additive factor, it is a natural generalization of Theorem 2, as the expert setting
corresponds to a matroid with r(E) = 1, γ (M) = n.

3. This value is chosen for simplicity, and is not the tightest possible.
4. There do exist results for regret against drifting targets in the `2 norm Zinkevich (2003). However, these

results do not require a significant change in the algorithm. In contrast, the standard multiplicative
updates algorithm can be shown to fail against `1 drift, so a new algorithm is indeed required.
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Algorithm 2 Matroid Algorithm (learning-style formulation)

Parameters: α ≥ 1,η > 0
Find a fractional base w0 ∈ B(M) such that for each e ∈ E , we,0 ≥ 1

γ(M) .
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the current cost vector.

(Update step): For each e ∈ E , let we,t =
(
we,t−1 + 1

eηα−1

)
e−ηce,t − 1

eηα−1 .

(Normalization step): As long as
∑

e∈E we,t < r(E),

1. Let S be the set of elements that currently do not belong to a tight set.

2. For each e ∈ S update we,t =
(
we,t + 1

eηα−1

)
eηaS,t − 1

eηα−1 , where aS,t is the

smallest value such that there exists e ∈ S that joins a tight set.

end for

Theorem 3 For matroid M = (E , I), and any α ≥ 1, η > 0, Algorithm 2 attains

S1 ≤ OPT(α) +
r(E)

η
ln (γ (M)) +

nα

eηα − 1

M ≤
(

1 +
n− r(E) + 1

eηα − 1

)
(ηOPT(α) + ln (γ (M)))

For α→∞ (regret against a fixed distribution), by Observation 1, we get

S0 ≤ S1 +M ≤ (1 + η)OPT(∞) +
r(E) ln (γ (M))

η
+ ln (γ (M)) . (6)

By plugging α = ln (1 + (n− r(E) + 1) ln(n− r(E) + 1)) /η and using Observation 1,

S0 ≤ (1 + 2η) OPTk +
2(k + r(E)) ln(n− r(E) + 1)

η
+ 3(k + 1) ln(n− r(E) + 1). (7)

For Equation (6), if we set η =
√

r(E) ln(γ(M))
OPT(∞) , then our analysis yields a regret bound of

2
√
r(E) ln(γ (M))OPT(∞) + ln(γ (M)), for the experts setting. For example, for s-sparse

subsets, this corresponds to O
(√

s ln(n/s)OPT(∞) + ln(n/s)
)

, and for spanning trees over

|E| edges and |V | vertices, we get O(
√
|V | ln(|E| − |V |+ 1)OPT(∞)) + ln(|E| − |V | + 1).

This corresponds to the results of Koolen et al. (2010), and moreover, our latter result is
for spanning trees over general graphs rather than complete graphs. Equation (7) provides
a version for k-drifting sequence. Setting η =

√
(k + r(E)) ln(n− r(E) + 1)/OPTk, we get

regret of less than 4
√

(k + r(E)) ln(n− r(E) + 1)OPTk + 3(k + 1) ln(n− r(E) + 1) for this
problem. Since the drift is measured with respect to the `1 norm over B(M), it naturally
captures the structure of the problem. In particular, the drift is measured with respect to
changes in individual elements in the s-subsets or individual edges in the spanning trees.

9
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(P) min
∑T

t=1

∑n
i=1 ci,t · wi,t +

∑T
t=1

∑n
i=1 α · zi,t (D) max

∑T
t=0 at

∀t ≥ 0
∑n

i=1 wi,t = 1 ∀i and t = 0 a0 + bi,1 ≤ 0
∀t ≥ 1 and expert i zi,t ≥ wi,t − wi,t−1 ∀t ≥ 1 and i bi,t+1 ≤ bi,t + ci,t − at
∀t and expert i zi,t, wi,t ≥ 0 ∀t ≥ 1 and i 0 ≤ bi,t ≤ α

Figure 1: The primal and dual LP formulations for the MTS problem.

4. Proofs and Algorithm Derivation

In this section, we explain how we derive and analyze our algorithms. We focus on the
simpler case of experts/MTS (Algorithm 1 and Theorem 2). The derivation in the matroid
case is conceptually similar but technically more complex, and is provided in appendix A.

The derivation is based on a primal-dual linear programming analysis. It starts from
a very simple LP formulation (Figure 1) of the optimal (offline) α-unfair solution. Note
that in order to charge for α

∑T
t=1

1
2‖wt −wt−1‖1, it suffices to charge only on increasing

coordinates. Thus, we will charge both the optimal solution and our algorithm for increasing
variables. Figure 1 also contains a description of the dual program (D). This program plays
a central role in our analysis. We define D as the value of the dual program. It is well
known that D is a lower bound on the value of any primal solution.

To analyze Algorithm 1, it will be more convenient to describe it in the following equiv-
alent form (the equivalence is not hard to show). This form has a more explicit primal-dual
structure, and is the standard form used in the competitive analysis community. This form
explicitly contains the dual variables of (D).

Algorithm 3 Experts/MTS Algorithm (fractional primal-dual formulation)

Parameters: α ≥ 1,η > 0

Initialize wi,0 = 1
n , bi,1 = α− ln( e

ηα+n−1
n

)

η for all i = 1, . . . , n.

During execution, maintain the relation wi,t = max
{

0, e
η(α−bi,t+1)

eηα−1 − 1
eηα−1

}
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the cost vector at time t.
(Update step): Set bi,t+1 = bi,t + ci,t.
(Normalization step): Using binary search, find the smallest value at, and set
bi,t+1 = bi,t+1 − at, such that

∑n
i=1wi,t = 1.

end for

We interpret our algorithm as a primal-dual algorithm that increases dual variables and
sets the primal variables accordingly. We then show that the dual solution constructed by
the algorithm is feasible, and that the cost of our primal solution is bounded by the dual.
This will eventually lead to Equation (3) in Theorem 2. The other bounds in the theorem
are simple corollaries obtained by a direct calculation.

First, without loss of generality, we can assume that at the end of the normalization step
bi,t+1 ≤ α. Simple calculations show that for bi,t+1 = α, wi,t = 0. Thus, when bi,t+1 > α,
then wi,t+1 < 0 and is therefore set to 0 by the algorithm. If this happens we can run the

10
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algorithm with c′i,t < ci,t, the smallest value for which wi,t = 0. The algorithm’s behavior is
unchanged (and so is its cost). However, the optimal value of the primal (and so the dual
that we compare to) only reduces by decreasing the value of ci,t to c′i,t.

We next interpret the normalization step as increasing the value of at continuously and
setting the dual variable bi,t+1 = bi,t+ci,t−at. In the following, we analyze the performance
using a primal-dual method.

Primal (P ) is feasible: Clearly, in the beginning wi,0 is a feasible solution. By definition
we have wi,t ≥ 0 by the end of each iteration. In addition,

∑n
i=1wi,t = 1, which implies

wi,t ≤ 1.

Dual (D) is feasible: Since initially wi,0 = 1
n , then we can set for each i, bi,1 = α −

ln( e
ηα+n−1

n
)

η , a0 = −α +
ln( e

ηα+n−1
n

)

η , and we have that the first dual constraint is feasible.
The primal solution is feasible, thus 0 ≤ wi,t ≤ 1. By the primal dual relation we get:

0 ≤ eη(α−bi,t+1)−1
eηα−1 ≤ 1. Simplifying, we get 0 ≤ bi,t+1 ≤ α. Finally, the algorithm always

keeps the dual constraints with equality: bi,t+1 = bi,t + ci,t − at.

Primal-dual relation: Let ∆Dt be the change in the cost of the dual solution at time t.
We bound the cost of the algorithm in each iteration by the change in the cost of the dual.

Bounding the movement cost at time t: Let Mt be the movement cost at time t. As
we said we charge our algorithm (and OPT(α)) only for increasing the fractional value of
the elements. We get,

Mt =

n∑
i=1

max{0, wi,t − wi,t−1} =

n∑
i=1

max

{
0,

eη(α−bi,t+1) − 1

eηα − 1
− eη(α−bi,t+1+ci,t−at) − 1

eηα − 1

}

≤
n∑
i=1

eη(α−bi,t+1) − 1

eηα − 1
− eη(α−bi,t+1−at) − 1

eηα − 1
=

n∑
i=1

(
wi,t +

1

eηα − 1

)(
1− e−ηat

)
≤

n∑
i=1

(
wi,t +

1

eηα − 1

)
ηat = η

(
1 +

n

eηα − 1

)
∆Dt, (8)

where Inequality (8) follows since for any x, ex − 1 ≥ x. Thus,

M ≤
T∑
t=1

η

(
1 +

n

eηα − 1

)
∆Dt ≤ η

(
1 +

n

eηα − 1

)(
D + α−

ln(e
ηα+n−1

n )

η

)

≤ η

(
1 +

n

eηα − 1

)
D +

(
1 +

n

eηα − 1

)
ln (n) .

Bounding the service cost: Since the solution is feasible at times t and t− 1, we get:

0 =
n∑
i=1

(wi,t−1 − wi,t) =
n∑
i=1

(
eη(α−bi,t+1+ci,t−at) − 1

eηα − 1
− eη(α−bi,t+1) − 1

eηα − 1

)

=

n∑
i=1

(
wi,t +

1

eηα − 1

)(
eη(ci,t−at) − 1

)
≥

n∑
i=1

(
wi,t +

1

eηα − 1

)
η (ci,t − at) , (9)
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where Inequality (9) follows since for any x, ex − 1 ≥ x. Rearranging we get:

n∑
i=1

(
wi,t +

1

eηα − 1

)
ci,t ≤

n∑
i=1

(
wi,t +

1

eηα − 1

)
at. (10)

Note that,

0 =

n∑
i=1

(wi,T − wi,0) =

n∑
i=1

e
η(α−bi,1−

T∑
t=1

ci,t+
T∑
t=1

at)
− 1

eηα − 1
− eη(α−bi,1) − 1

eηα − 1


=

n∑
i=1

(
wi,0 +

1

eηα − 1

)e
η

(
T∑
t=1

at−
T∑
t=1

ci,t

)
− 1


≥

n∑
i=1

(
wi,0 +

1

eηα − 1

)
η

(
T∑
t=1

at −
T∑
t=1

ci,t

)
(11)

= η

(
1

n
+

1

eηα − 1

)( T∑
t=1

n∑
i=1

at −
T∑
t=1

n∑
i=1

ci,t

)
,

where Inequality (11) follows since ex − 1 ≥ x for any x. This implies,

T∑
t=1

n∑
i=1

at ≤
T∑
t=1

n∑
i=1

ci,t. (12)

We can now bound the service cost:

T∑
t=1

〈wt, ct〉 ≤
T∑
t=1

n∑
i=1

ci,t

(
wi,t +

1

eηα − 1

)
− 1

eηα − 1

T∑
t=1

n∑
i=1

at (13)

≤
T∑
t=1

n∑
i=1

atwi,t =
T∑
t=1

at (14)

= D +

(
α−

ln(e
ηα+n−1

n )

η

)
≤ D +

ln(n)

η
,

where Inequality (13) follows by Inequality (12), Inequality (14) follows by Inequality (10).
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(P) min
T∑

t=1

∑
e∈E

ce,t · we,t + α ·
T∑

t=1

∑
e∈E

ze,t (D) max
T∑

t=0

(
r(E)at −

∑
S⊂E

r(S)aS,t

)
∀t ≥ 0 and S ⊂ E

∑
e∈S

we,t ≤ r (S) ∀e ∈ E a0 −
∑
S|e∈S

aS,0 + be,1 ≤ 0

∀t ≥ 0
∑
e∈E

we,t = r (E) ∀t ≥ 1 and e ∈ E be,t+1 ≤ be,t + ce,t − at +
∑
S|e∈S

aS,t

∀t ≥ 1 and e ∈ E ze,t ≥ we,t − we,t−1 ∀t ≥ 1 and e ∈ E be,t ≤ α
∀t and e ∈ E ze,t, we,t ≥ 0 ∀t, e ∈ E ,S ⊂ E be,t, aS,t ≥ 0

Figure 2: The primal and dual LP formulations for the Matroid problem.

Appendix A. Proofs and Algorithm Derivation - the Matroid Case

In this Section we analyze Algorithm 2 that works for the general matroid setting, and
prove Theorem 3. As in the case of experts/MTS (uniform matroid), it is more convenient
to analyze our algorithm in an equivalent form which has an explicit primal-dual structure.

Algorithm 4 Matroid Algorithm (fractional primal-dual formulation)

Parameters: α ≥ 1,η > 0.
During the execution of the algorithm maintain the relation: we,t = f(be,t+1) =
eη(α−be,t+1)−1

eηα−1 .

Find a fractional base in the matroid such that for each e: we,0 ≥ 1
γ(M) , and set be,1

accordingly.
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the current cost vector.
(Update step): Set be,t+1 = be,t + ce,t.
(Normalization step): As long as

∑
e∈E we,t < r(E):

1. Let S be the set of elements that currently do not belong to a tight set.

2. For each e ∈ S update be,t+1 ← be,t+1−aS,t, where aS,t is the smallest value such
that there exists e ∈ S that joins a tight set.

end for

For our analysis, we need the following properties of matroids.

Claim 4 In any matroid for any set S ⊆ E:

|S|
n− r(E) + 1

≤ r(S). (15)

If r(E \ S) < r(E) then:
|S|

n− r(E) + 1
≤ r(E)− r(E \ S). (16)

Proof If r (E \ S) = r (E),

15
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|S|
n− r(E) + 1

=
|S|

(|S|+ |E \ S|)− r (E \ S) + 1
≤ |S|
|S|+ 1

< 1 ≤ r (S) .

If r (E \ S) < r (E),

|S|
n− r(E) + 1

=
|S|

|S|+ 1− (r(E)− |E \ S|)
≤ |S|
|S|+ 1− (r(E)− r (E \ S))

≤ r(E)− r (E \ S) ≤ r (S) , (17)

where Inequality (17) follows as (k − 1) / (k − x) ≤ x for any 1 ≤ x ≤ k−1. Inequality (16)
is proved using a similar argument.

Observation 5 There is always a fractional base in the matroid such that for each e:
we,0 ≥ 1

γ(M) .

Proof It is known that any fractional solution in the matroid polytope can be extended
(by only increasing variables) to a matroid base. Thus, we only need to prove that
we,0 = 1

γ(M) is in the matroid polytope. Hence, we should prove that for any S ⊆ E :∑
e∈S we,0 = |S|

γ(M) ≤ r(S), which follows by the definition of γ (M).

We now turn to derive Theorem 3. As in the case of Theorem 2, we focus on proving
Inequality (6), as the other bounds in the theorem follow by simple calculations.

We interpret line (2) in the algorithm as increasing the value of at and aS for elements
in a tight set continuously and setting the dual variable be,t+1 = be,t + ce,t−at +

∑
S|e∈S aS .

In the following, we analyze the performance using primal-dual method.

Primal (P ) is feasible: By Observation 5, we,0 is a feasible solution. By induction on
the steps, we prove that the algorithm produces a feasible solution (and wt remains in the
domain B(M)) . The update step reduces the value of each we,t. Then, in the normalization
step the value of each we,t can only grow. Since there are at most n elements, after at most
n iterations E is tight and thus the solution is feasible. Note that the algorithm never
increases elements in tight sets. Finally, by the end of the normalization step we get for all
e, we,t ≥ 0, otherwise if we,t < 0 then

∑
e′∈N\{e}we′,t > r(E) ≥ r(N \ {e}) which violates

the matroid constraints.

Dual is feasible: Since initially, we,0 ≥ 1
γ(M) , then we may set for each e, be,1 ≤ α −

ln(
eηα+γ(M)−1

γ(M)
)

η . Thus, by setting a0 = −α+
ln(

eηα+γ(M)−1
γ(M)

)

η and setting aS,0 = 0 for all S ⊂ E ,
we have that the first set of dual constraints is feasible. The primal solution is feasible, thus

0 ≤ we,t ≤ 1. By the primal dual relation we get: 0 ≤ eη(α−be,t+1)−1
eηα−1 ≤ 1. Simplifying we get

0 ≤ be,t+1 ≤ α. Finally, by the algorithm construction we always keep the dual constraints
with equality: be,t+1 = be,t + ce,t − at +

∑
S|e∈S aS .

Primal-dual relation: Let ∆D be the change in the cost of the dual solution. We bound
the cost of the algorithm in each iteration by the change in the cost of the dual.
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Bounding the movement cost at time t: Let Mt be the movement cost at time t. We
charge our algorithm (and OPT(r)) only for increasing the fractional value of the elements.
We get,

Mt =
∑
e∈E

max{0, we,t − we,t−1}

=
∑
e∈E

max

0,
eη(α−be,t+1) − 1

eηα − 1
− e

η

(
α−be,t+1+ce,t−at+

∑
S:e∈S

aS,t

)
− 1

eηα − 1


≤

∑
e∈E

eη(α−be,t+1) − 1

eηα − 1
− e

η

(
α−be,t+1−at+

∑
S:e∈S

aS,t

)
− 1

eηα − 1

=
∑
e∈E

(
we,t +

1

eηα − 1

)1− e
−η
(
at−

∑
S:e∈S

aS,t

)
≤

∑
e∈E

(
we,t +

1

eηα − 1

)
η

(
at −

∑
S:e∈S

aS,t

)
(18)

= η

r (E) at −
∑
S⊂E

r (S) aS,t +

n · at −
∑
S⊂E
|S| · aS,t

eηα − 1

 (19)

≤ η

(
1 +

n− r(E) + 1

eηα − 1

)
∆Dt, (20)

where Inequality (18) follows since for any x, ex − 1 ≥ x. Inequality (19) follows since
variable aS,t is nonzero only if S is a tight subset. Inequality (20) follows since,

n · at −
∑
S⊂E
|S| · aS,t

n− r(E) + 1
≤ r(E)at −

∑
S⊂E

r(S)aS,t,

which follows as,

n

n− r(E) + 1
at −

∑
S⊂E

|S|
n− r(E) + 1

aS,t =
n

n− r(E) + 1

(
at −

∑
S⊂E

aS,t

)
+
∑
S⊂E

|E \ S|
n− r(E) + 1

aS,t

≤ r(E)

(
at −

∑
S⊂E

aS,t

)
+
∑
S⊂E

(r(E)− r(S)) aS,t (21)

= r(E)at −
∑
S⊂E

r(S)aS,t,
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where Inequality (21) is implied by Claim 4, and noticing that at ≥
∑
S⊂E

aS,t for any 0 ≤ t ≤

T as, at any moment, the algorithm raises at most one variable aS,t along with at. Thus,

M ≤
T∑
t=1

η

(
1 +

n− r(E) + 1

eηα − 1

)
∆Dt

≤ η

(
1 +

n− r(E) + 1

eηα − 1

)D + α−
ln
(
eηα+γ(M)−1

γ(M)

)
η


= η

(
1 +

n− r(E) + 1

eηα − 1

)
D +

(
1 +

n− r(E) + 1

eηα − 1

)
ln

(
γ (M) · eηα

eηα + γ (M)− 1

)
≤ η

(
1 +

n− r(E) + 1

eηα − 1

)
D +

(
1 +

n− r(E) + 1

eηα − 1

)
ln (γ (M))

Bounding the service cost: First note that similarly to the uniform case we have:

0 =
∑
e∈E

(we,t−1 − we,t) =
∑
e∈E

e
η

(
α−be,t+1+ce,t−

(
at−

∑
S|e∈S

aS,t

))
− 1

eηα − 1
− eη(α−be,t+1) − 1

eηα − 1


=

∑
e∈E

(
we,t +

1

eηα − 1

)e
η

(
ce,t−

(
at−

∑
S|e∈S

aS,t

))
− 1


≥

∑
e∈E

(
we,t +

1

eηα − 1

)
η

ce,t −
at − ∑

S|e∈S

aS,t

 , (22)

where Inequality (22) follows since for any x, ex − 1 ≥ x. Rearranging we get:

∑
e∈E

(
we,t +

1

eηα − 1

)
ce,t ≤

∑
e∈E

(
we,t +

1

eηα − 1

)at − ∑
S|e∈S

aS,t

 (23)

In addition, since 0 ≤ be,t ≤ α for all e, t then,

T∑
t=1

at − ∑
S|e∈S

aS,t

 =

T∑
t=1

ce,t + be,1 − be,T ≤
T∑
t=1

ce,t + α (24)

Now we can bound the service cost:
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T∑
t=1

〈wt, ct〉 ≤
T∑
t=1

∑
e∈E

ce,t

(
we,t +

1

eηα − 1

)
− 1

eηα − 1

T∑
t=1

∑
e∈E

at − ∑
S|e∈S

aS,t

+
nα

eηα − 1
(25)

≤
T∑
t=1

∑
e∈E

we,t

at − ∑
S|e∈S

aS,t

+
nα

eηα − 1
(26)

=

T∑
t=1

(
r (E) at −

∑
S⊂E

r (S) aS,t

)
+

nα

eηα − 1

= D −

(
r (E) a0 −

∑
S⊂E

r (S) aS,0

)
+

nα

eηα − 1

= D +
r(E)

η
ln

(
γ (M) · eηα

eηα + γ (M)− 1

)
+

nα

eηα − 1

≤ D +
r(E)

η
ln (γ (M)) +

nα

eηα − 1
,

where Inequality (25) follows by Inequality (24), Inequality (26) follows by Inequality (23).
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