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Abstract

We consider a multi-armed bandit problem
where the decision maker can explore and ex-
ploit different arms at every round. The ex-
ploited arm adds to the decision maker’s cu-
mulative reward (without necessarily observ-
ing the reward) while the explored arm re-
veals its value. We devise algorithms for this
setup and show that the dependence on the
number of arms, k, can be much better than
the standard

√
k dependence, depending on

the behavior of the arms’ reward sequences.
For the important case of piecewise station-
ary stochastic bandits, we show a significant
improvement over existing algorithms. Our
algorithms are based on a non-uniform sam-
pling policy, which we show is essential to the
success of any algorithm in the adversarial
setup. Finally, we show some simulation re-
sults on an ultra-wide band channel selection
inspired setting indicating the applicability of
our algorithms.

1. Introduction

Multi-armed bandits have long been a canonical frame-
work for studying online learning under partial infor-
mation constraints. In this framework, a learner has
to repeatedly obtain rewards by choosing from a fixed
set of k actions (arms), and gets to see only the re-
ward of the chosen action. The goal of the learner is
to minimize regret, namely the difference between her
own cumulative reward and the cumulative reward of
the best single action in hindsight. We focus here on
algorithms suited for adversarial settings, which have
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reasonable regret even without any stochastic assump-
tions on the reward generating process.

A central theme in multi-armed bandits is the
exploration-exploitation tradeoff : The learner must
choose highly-rewarding actions most of the time in
order to minimize regret, but also needs to do some
exploration in order to determine which actions to
choose. Ultimately, the tradeoff comes from the as-
sumption that the learner is constrained to observe
only the reward of the action she picked.

While being a compelling and widely applicable frame-
work, there exist several realistic bandit-like settings,
which do not correspond to this fundamental assump-
tion. For example, in ultra-wide band (UWB) com-
munications, the decision maker, also called the “sec-
ondary,” has to decide in which channel to transmit
and in what way. There are typically many possible
channels (i.e., frequency bands) and several transmis-
sion methods (power, code used, modulation, etc.; see
(Oppermann et al., 2004)). In some UWB devices, the
secondary can sense a different channel (or channels)
than the one it currently uses for transmission. In
fact, in some settings, the secondary cannot sense the
channel it is currently transmitting in because of in-
terference. The UWB environment is extremely noisy
since it potentially contains many other sources, called
“primaries.” Some of these sources are sources whose
behavior (which channel they use, for how long, and
in which power level) can be very hard to predict as
they represent a mobile device using WiMAX, WiFI
or some other communication protocol. It is therefore
sensible to model the behavior of primaries as an ad-
versarial process or a piecewise stationary process. We
should mention that UWB networks are highly com-
plex, with many issues such as power constraints and
multi-agency that have been considered in the multi-
armed bandit framework (Liu & Zhao, 2010; Avner &
Mannor, 2011; Lai et al., 2008), but the decoupling of
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sensing and transmission has not been considered to
the best of our knowledge. More abstractly, our work
relates to any bandit-like setting, where we are free
to query the environment for some additional partial
information, irrespective of our actual actions.

In such settings, the assumption that the learner can
only observe the reward of the action she picked is
an unnecessary constraint, and one might hope that
removing this constraint and constructing suitable al-
gorithms would allow better performance. We empha-
size that this is far from obvious: In this paper, we
will mostly focus on the case where the learner may
query just a single action, so in some sense the learner
gets the same “amount of information” per round as
the standard bandit setting (i.e., the reward of a single
action out of k actions overall). The goal of this paper
is to devise algorithms for this setting, and analyze
theoretically and empirically whether the hope for im-
proved performance is indeed justified. We emphasize
that our results and techniques naturally generalize to
cases where more than one action can be queried, and
cases where the reward of the selected action is always
revealed (see Sec. 7).

Specifically, our contributions are the following:

• We present a “decoupled” multi-armed bandit al-
gorithm, which is suited to our setting. The algo-
rithm is based on a certain querying distribution,
which is adaptive and depends on the distribution
by which the actions are actually picked. We show
a “data-dependent” regret guarantee for the algo-
rithm, which is never worse than that of standard
bandit algorithms, and can be much better (in
terms of dependence on the number of actions k),
depending on how the actions’ rewards behave.

• We prove that in certain settings (in particular,
piecewise stochastic rewards), the decoupling as-
sumption allows us to devise algorithms with sig-
nificantly better performance than any possible
standard bandit algorithm.

• Our algorithms are based on a certain adap-
tive querying distribution, in contrast to previous
works in the stochastic case where the querying
distribution was uniform. We show that in some
sense, such an adaptive policy is necessary in an
adversarial setting, in order to get performance
improvements compared to standard bandit algo-
rithms.

• We perform a preliminary experimental study,
corroborating our theoretical findings and indi-
cating that our algorithmic approach indeed leads

to improved results, compared to standard ap-
proaches.

The proofs of our theorems are provided in the ap-
pendix of the full version (Avner et al., 2012).

Related Work. The idea of decoupling exploration
and exploitation has appeared in a few previous works,
but in different settings and contexts. For example,
(Yu & Mannor, 2009) discuss a setting where the
learner is allowed to query an additional action in a
multi-armed bandit setting, but the focus there was
on algorithms for stochastic bandits, as opposed to
adversarial bandits as we do here. (Agarwal et al.,
2010) study a bandit setting with (one or more) queries
per round. However, they focus on the problem of
bandit convex optimization, which is much more gen-
eral than ours, and exploration and exploitation re-
mains coupled in their framework. A different line
of work ((Even-Dar et al., 2006; Audibert et al., 2010;
Bubeck et al., 2011)) considers multi-armed bandits in
a stochastic setting, where the goal is to identify the
best action by performing pure exploration. While this
work also conceptually “decouples” exploration and
exploitation, the goal and setting are quite different
than ours.

2. Problem Setting

We use [k] as shorthand for {1, . . . , k}. Bold-face let-
ters represent vectors, and 1A represents the indicator
function for an event A. We use the standard big-
Oh notation O(·) to hide constants, and Õ(·) to hide
constants and logarithmic factors. For a distribution
vector p on the k-simplex, we use the notation

‖p‖1/2 =

 k∑
j=1

√
pj

2

to describe the ‘`1/2’-norm of the distribution. It is
straightforward to show that for a distribution vector,
this quantity is always in [1, k]. In particular, it is k
for the uniform distribution, and gets smaller the more
non-uniform the distribution is, attaining the value of
1 when p is a unit vector.

Our setting is a variant of the standard adversarial
multi-armed bandit framework, focusing (for simplic-
ity) on an oblivious adversary and a fixed horizon. In
this setting, we have a fixed set of k > 1 actions and
a fixed known number of rounds T . Each action i
at each round t has an unknown associated reward
gi(t) ∈ [0, 1]. At each round, a learner chooses one
of the actions it, and obtains the associated reward
git(t). The basic goal in this setting is to minimize the
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regret with respect to the best single action in hind-
sight, namely

max
i

T∑
t=1

gi(t)−
T∑
t=1

git(t).

Unless specified otherwise, we make no assumptions
on how the rewards gi(t) are generated (other than
boundedness), and they might even be generated ad-
versarially by an agent with full knowledge of our al-
gorithm. However, we assume that the rewards are
fixed in advance and do not depend on the learner’s
(possibly random) choices in previous rounds.

In standard multi-armed bandits, at the end of each
round, the learner only gets to know the reward git(t)
of the action it which was actually picked, but not
the reward of other actions. Instead, in this paper
we focus on a different setting, where the learner, af-
ter choosing an action it, may query a single action jt
and get to see its associated reward gjt(t). This setting
is a (slight) relaxation of the standard bandit setting,
since we can always query jt = it. However, here it is
possible to query an action different than it. We em-
phasize that the regret is still measured with respect
to the chosen actions it, and the querying only has
informational value. In order to compare our results
with those obtainable in the standard setting, we will
use the term standard bandit algorithm to refer to al-
gorithms which are not free to query rewards, and are
limited to receiving the reward of the chosen action.
A typical example is the EXP3.P (Auer et al., 2002),
with a Õ(

√
kT ) regret upper bound, holding with high

probability, or the Implicitly Normalized Forecaster of
(Audibert & Bubeck, 2009) with O(

√
kT ) regret.

An interesting variant of our setting is when the
learner gets to query more than one action, or gets
to see git(t) on top of gjt(t). Such variants are further
discussed in Sec. 7.

3. Basic Algorithm and Results

In analyzing our “decoupled” setting, perhaps the first
question one might ask is whether one can always get
improved regret performance, compared to the stan-
dard bandit setting. Namely, that for any reward as-
signment, the attainable regret will always be signifi-
cantly smaller. Unfortunately, this is not the case: It
can be shown that there exists an adversarial strategy
such that the regret of standard bandit algorithms is
Θ̃(
√
kT ), whereas the regret of any “decoupled” algo-

rithm will be1 Ω(
√
kT ). Therefore, one cannot hope to

1One simply needs to consider the strategy used to ob-
tain the Ω(

√
kT ) regret lower bound in the standard bandit

always obtain better performance. However, as we will
soon show, this can be obtained under certain realistic
conditions on the actions’ rewards.

We now turn to present our first algorithm (Algo-
rithm 1 below) and the associated regret analysis.
The algorithm is rather similar in structure to stan-
dard bandit algorithms, picking actions at random in
each round t according to a weighted distribution p(t)
which is updated multiplicatively. The main differ-
ence is in determining how to query the reward. Here,
the queried action is picked at random, according to a
query distribution q(t) which is based on but not iden-
tical to p(t). More particularly, the queried action jt
is chosen with probability

qjt(t) =

√
pjt(t)∑k

j=1

√
pj(t)

. (1)

Roughly speaking, this distribution can be seen as a
“geometric average” between p(t) and a uniform dis-
tribution over the k actions. See Algorithm 1 for the
precise pseudocode.

Algorithm 1 Decoupled MAB Algorithm

Input: Step size parameter µ ∈ [1, k], confidence
parameter δ ∈ (0, 1)
Let η = 1/

√
µT , β = 2η

√
6 log(3k/δ) and γ =

η2(1 + β)2k2

∀ j ∈ [k] let wj(1) = 1.
for t = 1, . . . , T do

∀ j ∈ [k], let pj(t) = (1− γ)
wj(t)∑k
l=1 wl(t)

+ γ
k

Choose action it with probability pit(t)
Query reward gjt(t) with probability

qjt(t) =

√
pjt (t)∑

j

√
pj(t)

∀ j ∈ [k], let g̃j(t) = 1
qj(t)

(gj(t)1jt=j + β)

∀ j ∈ [k], let wj(t+ 1) = wj(t) exp(ηg̃j(t))
end for

Readers familiar with bandit algorithms might notice
the existence of the common “exploration component”
γ/k in the definition of pj(t). In standard bandit al-
gorithm, this is used to force the algorithm to explore
all arms to some extent. In our setting, exploration
is performed via the separate query distribution qj(t),
and in fact, this γ/k term can be inserted into the
qj(t) definition instead. While this would be more aes-
thetically pleasing , it also seems to make our proofs

setting (Auer et al., 2002). The lower bound proof can be
shown to apply to a “decoupled” algorithm as well. Intu-
itively, this is because the hardness for the learner stems
from distinguishing slightly different distributions based on
at most T samples, which has nothing to do with the cou-
pling constraint.
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and results more complicated, without substantially
improving performance. Therefore, we will stick with
this formulation.

Before discussing the formal theoretical results, we
would like to briefly explain the intuition behind this
querying distribution. Most bandit algorithms (in-
cluding ours) build upon a standard multiplicative up-
dates approach, which updates the distribution p(t)
multiplicatively based on each action’s rewards. In
the bandit setting, we only get partial information on
the rewards, and therefore resort to multiplicative up-
dates based on an unbiased estimate of them. The key
quantity which controls the regret is the variance of
these estimates, in expectation over the action distri-
bution p(t). In our case, this quantity turns out to

be on the order of
∑k
j=1 pj(t)/qj(t). Now, standard

bandit algorithms, which may not query at will, are
essentially constrained to have qj(t) = pj(t), leading
to an expected variance of k and hence the k in their
Õ(
√
kT ) regret bound. However, in our case, we are

free to pick the querying distribution q(t) as we wish.

It is not hard to verify that
∑k
j=1 pj(t)/qj(t) is mini-

mized by choosing q(t) as in Eq. (1), with the value of
‖p(t)‖1/2. Thus, roughly speaking, instead of depen-

dence on k, we get a dependence on 1
T

∑T
t=1 ‖p(t)‖1/2,

as will be seen shortly.

The theoretical analysis of our algorithm relies on the
following technical quantity: For any algorithm pa-
rameter choices µ, δ, and for any v ∈ [1, k], define

P (v, δ, µ) = Pr

(
1

T

T∑
t=1

‖p(t)‖1/2 > v

)
,

where the probability is over the algorithm’s random-
ness, run with parameters µ, δ, with respect to the
(fixed) reward sequence. The formal result we obtain
is the following:

Theorem 1. Suppose that T is sufficiently large (and
thus η and β sufficiently small) so that (1 + β)2 ≤ 2.
Then for any v ∈ [1, k], it holds that with probability
at least 1− δ − P (v, δ, µ) that the sequence of rewards
gi1(1), . . . , giT (T ) returned by Algorithm 1 satisfies

max
i

T∑
t=1

gi(t)−
T∑
t=1

git(t)

≤ Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
where the Õ notation hides numerical constants and
factors logarithmic in k and δ.

At this point, the nature of this result might seem a bit
cryptic. We will soon provide more concrete examples,

but would like to give a brief general intuition. First
of all, if we pick µ = v = k, then P (v, δ, µ) = 0 always
(as ‖p(t)‖1/2 ≤ k), and the bound becomes Õ(

√
kT ),

holding with probability 1 − δ, similar to standard
multi-armed bandit guarantees. This shows that our
algorithm’s regret guarantee is never worse than that
of standard bandit algorithms. However, the theorem
also implies that under certain conditions, the result-
ing bound may be significantly better. For example, if
we run the algorithm with µ = 1 and have v = O(1),

then the bound becomes Õ
(√

T
)

for sufficiently large

T . This bound is meaningful only if P (O(1), δ, 1) is
reasonably small. This would happen if the distribu-
tion vectors p(t) chosen by the algorithm tend to be
highly non-uniform, since it leads to a small value for
1
T

∑T
t=1 ‖p(t)‖1/2.

We now turn to provide a concrete scenario, where
the bound we obtain is better than those obtained by
standard bandit algorithms. Informally, the scenario
we discuss assumes that although there are k actions,
where k is possibly large, only a small number of them
are actually “relevant” and have a performance close
to that of the best action in hindsight. Intuitively,
such cases would lead to the distribution vectors p(t)
to be non-uniform, which is favorable to our analysis.

Theorem 2. Suppose that the reward of each action
is chosen i.i.d. from a distribution supported on [0, 1].
Furthermore, suppose that there exist a subset G ⊂ [k]
of actions and a parameter ∆ > 0 (where |G|,∆ are
considered constants independent of k, T ), such that
the expected reward of any action in G is larger than
the expected reward of any action in [k] \G by at least
∆. Then if we run our algorithm with

µ = kmin{1, max{0, 4
3−

1
3 logk(T )}},

it holds with probability at least 1− δ that the regret of
the algorithm is at most

Õ
(√

kmax{0, 43−
1
3 logk(T )}T

)
,

where the Õ notation hides numerical constants and
factors logarithmic in δ, k.

The bound we obtain interpolates between the usual
Õ(
√
kT ) bound obtained using a standard bandit al-

gorithm, and a considerably better Õ(
√
T ), as T gets

larger compared with k. We note that a mathemati-
cally equivalent form of the bound is

max

{(
k

T

)2/3

,

(
1

T

)1/2
}
T.

Namely, the average per-round regret scales down as
(k/T )2/3, until T is sufficiently large and we switch to
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a (1/T )1/2 regime. In contrast, the bound for standard
bandit algorithms is always of the form (k/T )1/2, and
the rate of regret decay is significantly slower.

We emphasize that although the setting discussed
above is a stochastic one (where the rewards are cho-
sen i.i.d.), our algorithm can cope simultaneously with
arbitrary rewards, unlike algorithms designed specifi-
cally for stochastic i.i.d. rewards (which do admit bet-
ter dependence in T , although not necessarily in k).

Finally, we note in practice, the optimal choice of µ
depends on the (unknown) rewards, and hence can-
not be determined by the learner in advance. How-
ever, this can be resolved algorithmically by a stan-
dard doubling trick (cf. (Cesa-Bianchi & Lugosi,
2006)), without materially affecting the regret guaran-
tee. Roughly speaking, we can guess an upper bound
v on 1

T

∑T
t=1 ‖p(t)‖1/2 and pick µ = v, and if the cu-

mulative sum
∑
‖p(t)‖1/2 eventually exceeds Tv at

some round, then we double v and µ and restart the
algorithm.

4. Decoupling Provably Helps in some
Adversarial Settings

So far, we have seen how the bounds obtained for our
approach are better than the ones known for standard
bandit algorithms. However, this doesn’t imply that
our approach would indeed yield better performance
in practice: it might be possible, for instance, that
for the setting described in Thm. 2, one can provide
a tighter analysis of standard bandit algorithms, and
recover a similar result. In this section, we show that
there are cases where decoupling provably helps, and
our approach can provide performance provably better
than any standard bandit algorithm, for information-
theoretic reasons. We note that the idea of decoupling
has been shown to be helpful in cases reminiscent of
the one we will be discussing (Yu & Mannor, 2009), but
here we study it in the more general and challenging
adversarial setting.

Instead of the plain-vanilla multi-armed bandit set-
ting, we will discuss here a slightly more general set-
ting, where our goal is not to achieve regret with re-
spect to the best single action, but rather to the best
sequence of S > 1 actions. More specifically, we wish
to obtain a regret bound of the form

max
1=T1≤T2≤...≤TS+1=T

i1,...,iS∈[k]

S∑
s=1

Ts+1∑
t=Ts+1

gis(t)−
T∑
t=1

git(t).

This setting is well-known in the online learning litera-
ture, and has been considered for instance in (Herbster

& Warmuth, 1998) for full-information online learning
(under the name of “tracking the best expert”) and in
(Auer et al., 2002) for the bandit setting (under the
name of “regret against arbitrary strategies”).

This setting is particularly suitable when the best ac-
tion changes with time. Intuitively, our decoupling
approach helps here, since we can exploit much more
aggressively while still performing reasonable explo-
ration, which is important for detecting such changes.

The algorithm we use follows the lead of (Auer et al.,
2002) and is presented as Algorithm 2. The only dif-
ference compared to Algorithm 1 is that the wj(t+ 1)
parameters are computed differently. This change fa-
cilitates more aggressive exploration.

Algorithm 2 Decoupled MAB Algorithm For Switch-
ing

Input: Step size parameter µ ∈ [1, k], confidence
parameter δ ∈ (0, 1), number of switches S
Let η =

√
S/µT , α = 1/T , β = 2η

√
6 log(3k/δ) and

γ = η2(1 + β)2k2

∀ j ∈ [k] let wj(1) = 1.
for t = 1, . . . , T do

∀ j ∈ [k], let pj(t) = (1− γ)
wj(t)∑k
l=1 wl(k)

+ γ
k

Choose action it with probability pit(t)
Query reward gjt(t) with probability qjt(t) =√

pjt (t)∑
j

√
pj(t)

∀ j ∈ [k], let g̃j(t) = 1
qj(t)

(gj(t)1jt=j + β)

∀ j ∈ [k], let wj(t + 1) = wj(t) exp(ηg̃j(t)) +
eα
k

∑T
i=1 wi(t)

end for

The following theorem, which is proven along similar
lines to Thm. 1, shows that in this setting as well, we
get the same kind of dependence on the distribution
vectors p(t) as in the standard bandit setting.

Theorem 3. Suppose that T is sufficiently large (and
thus η and β sufficiently small) so that (1 + β)2 ≤ 2.
Then for any v ∈ [1, k], it holds that with probabil-
ity at least 1 − δ − P (v, δ, µ) that the sequence of re-
wards gi1(1), . . . , giT (T ) returned by algorithm 2 sat-
isfies the following, simultaneously over all segmenta-
tions of {1, . . . , T} to S epochs and a choice of action
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is to each epoch:

S∑
s=1

Ts+1∑
t=Ts+1

gis(t)−
T∑
t=1

git(t)

≤ Õ

(√
S

(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
.

The Õ notation hides numerical constants and factors
logarithmic in k and δ.

In particular, we can also get a parallel version of
Thm. 2, which shows that when there are only a small
number of “good” actions (compared to k), the leading
term has decaying dependence on k, unlike standard
bandit algorithms where the dependence on k is always√
k.

Theorem 4. Suppose that the reward of each action
is chosen i.i.d. from a distribution supported on [0, 1].
Furthermore, suppose that at each epoch s, there exists
a subset Gs ⊂ [k] of actions and a parameter ∆ > 0
(where |Gs|,∆ are considered constants independent of
k, T ), such that the expected reward of any action in
Gs is larger than the expected reward of any action in
[k]\Gs by at least ∆. Then if we run Algorithm 2 with

µ = kmin{1, max{0, 4
3−

1
3 logk(T )}},

it holds with probability at least 1− δ that the regret of
the algorithm is at most

Õ
(√

Skmax{0, 43−
1
3 logk(T )}T

)
,

where the Õ notation hides numerical constants and
factors logarithmic in δ and k.

Now, we are ready to present the main negative re-
sult of this section, which shows that in the setting of
Thm. 2, any standard bandit algorithm cannot have
a regret better than Ω(

√
kT ), which is significantly

worse. For simplicity, we will focus on the case where
S = 2: namely, that we measure regret with respect
to a single action from round 1 till some t0, and then
from t0 +1 till T . Moreover, we consider a simple case
where |G1| = |G2| = 1 and ∆ = 1/5, so there is just
a single action at a time which is significantly better
than all the other actions in expectation.

Theorem 5. Suppose that T ≥ Ck for some suffi-
ciently large universal constant C. Then in the setting
of Thm. 2, there exists a randomized reward assign-
ment (with |G1| = |G2| = 1 and ∆ = 1/5), such that
for any standard bandit algorithm, its expected regret
(over the rewards assignment and the algorithm’s ran-
domness) is at least 0.007

√
(k − 1)T .

The constant 0.007 is rather arbitrary and is not the
tightest possible.

We note that a related Ω(
√
T ) lower bound has been

obtained in (Garivier & Moulines, 2011). However,
their result does not apply to the case S = 2 and more
importantly, does not quantify a dependence on k. It
is interesting to note that unlike the standard lower
bound proof for standard bandits (Auer et al., 2002),
we obtain here an Ω(

√
kT ) regret even when ∆ > 0 is

fixed and doesn’t decay with T .

5. The Necessity of a Non-Uniform
Querying Distribution

The theoretical results above demonstrated the effi-
cacy of our approach, compared to standard bandit
algorithms. However, the exact form of our querying
distribution (querying action i with probability pro-
portional to

√
pj(t)) might still seem a bit mysterious.

For example, maybe one can obtain similar results just
by querying actions uniformly at random? Indeed, this
is what has been done in some other online learning
scenarios where queries were allowed (e.g., (Yu & Man-
nor, 2009; Agarwal et al., 2010)). However, we show
below that in the adversarial setting, an adaptive and
non-uniform querying distribution is indeed necessary
to obtain regret bounds better than

√
kT . For sim-

plicity, we return to our basic setting, where our goal
is to compete with just the best single fixed action in
hindsight.

Theorem 6. Consider any online algorithm over k >
2 actions and horizon T , which queries the actions
based on a fixed distribution. Then there exists a strat-
egy for the adversary conforming to the setting de-
scribed in Thm. 2, for which the algorithm’s regret is
at least c

√
kT for some universal constant c.

A proof sketch is presented in the appendix of the full
version. The intuition of the proof is that if the query-
ing distribution is fixed, and there are only a small
number of “good” actions, then we spend too much
time querying irrelevant actions, and this hurts our
regret performance.

6. Experiments

We compare the decoupled approach with common
multi-armed bandit algorithms in a simulated adver-
sarial setting. Our user chooses between k communica-
tion channels, where sensing and transmission can be
decoupled. In other words, she may choose a certain
channel for transmission while sensing (i.e., querying)
a different, seemingly less attractive, channel.
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We simulate a heavily loaded UWB environment with
a single, alternating, channel which is fit for transmis-
sion. The rewards of k − 1 channels are drawn from
alternating uniform and truncated Gaussian distribu-
tions with random parameters, yielding adversarial re-
wards in the range [0, 6]. The remaining channel yields
stochastic rewards drawn from a truncated Gaussian
distribution bounded in the same range but with a
mean drawn from [3, 6]. The identity of the better
channel and its distribution parameters are re-drawn
at exponentially distributed switching times.

Figure 1. Average reward for different algorithms over
time. Shaded areas around plots represent the standard
deviation over repetitions.

Figure 1 displays the results of a scenario with k = 10
channels, comparing the average reward acquired by
the different algorithms over T = 10, 000 rounds. We
implemented Algorithm 1, Exp3 (Auer et al., 2002),
Exp3.P (Auer et al., 2002), a simple round robin policy
(which just cycles through the arms in a fixed order)
and a “greedy” decoupled form of round robin, which
performs uniform queries and picks actions greedily
based on the highest empirical average reward. The
black arrows indicate rounds in which the identity
of the stochastic arm and its distribution parameters
were re-drawn. The results are averaged over 50 rep-
etitions of a specific realization of rewards. Although
we have tested our algorithm’s performance on several
realizations of switching times and rewards with very
good results, we display a single realization of these
for the sake of clarity.

Figure 2 displays the dynamics of channel selection for
two of the k = 10 channels. The thick plots represent
the number of times a channel was chosen over time,
and the thin plots represent the number of times it
was queried. The dashed plots represent a channel
which was drawn as the better channel during some
periods, resulting in a relatively high average reward,
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Figure 2. Number of times channels were chosen and
queried over time, for two of k = 10 arms. Arrows mark
times in which channel 2 was drawn as the better channel.

while the solid plots represent a channel with a low
average reward. The increased flexibility of the decou-
pled approach is evident from the graph, as well as the
adaptive, nonlinear sampling policy.

Comments: We implement Algorithm 1 and not Al-
gorithm 2 since the number of switches is unknown
a-priori. Also, the rewards are in the range [0, 6] in
order to keep all implemented algorithms on a similar
scale, without violating the boundedness assumption.

7. Discussion

In this paper, we analyzed if and how one can benefit
in settings where exploration and exploitation can be
“decoupled:” namely, that one can query for rewards
independently of the action actually picked. We devel-
oped some algorithms for this setting, and showed that
these can indeed lead to improved results, compared to
the standard bandit setting, under certain conditions.
We also performed some experiments that corroborate
our theoretical findings.

For simplicity, we focused on the case where only a
single reward may be queried. If c > 1 queries are
allowed, it is not hard to show parallel guarantees to
those in this paper, where the dependence on k is re-
placed by dependence on k/c. Algorithmically, one
simply needs to repeatedly sample from the query dis-
tribution c times, instead of a single time. We con-
jecture that similar lower bounds can be obtained as
well. Interestingly, it seems that being allowed to see
the reward of the action actually picked, on top of
the queried reward, does not result in significantly
improved regret guarantees (other than better con-
stants).

Several open questions remain. First, our results do
not apply when the rewards are chosen by an adap-
tive adversary (namely, that the rewards are not fixed
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in advance but may be chosen individually at each
round, based on the algorithm’s behavior in previous
rounds). This is not just for technical reasons, but also
because data and algorithm dependent quantities like
P (v, δ, µ) do not make much sense if the rewards are
not considered as fixed quantities.

A second open question concerns the possible correla-
tion between sensing and exploration. In some appli-
cations it is plausible that the choice of which arm to
exploit affects the quality of the sample of the arm that
is explored. For instance, in the UWB sensing example
discussed in the introduction transmitting and receiv-
ing in the same channel is much less preferred than
sensing in another channel because of interference in
the same frequency band. It would be interesting to
model such dependence and take it into account in the
learning process.

Finally, it remains to extend other bandit-related al-
gorithms, such as EXP4 (Auer et al., 2002), to our set-
ting, and study the advantage of decoupling in other
adversarial online learning problems.
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A. Appendix

A.1. Proof of Thm. 1

We begin by noticing that for any possible distribution p1(t), . . . , pk(t), it must hold that ‖p(t)‖1/2 ∈ [1, k]. We
will use this observation implicitly throughout the proof.

For notational simplicity, we will write P (v) instead of P (v, δ, µ), since we will mainly consider things as a
function of v where δ, µ are fixed.

We will need the following two lemmas.

Lemma 1. Suppose that β ≤ 1. Then it holds with probability at least 1− δ that for any i = 1, . . . , k,

T∑
t=1

g̃i(t) ≥
T∑
t=1

gi(t)−
log(k/δ)

β

Proof. Let Et denote expectation with respect to the algorithm’s randomness at round t, conditioned on the
previous rounds. Since exp(x) ≤ 1 + x+ x2 for x ≤ 1, we have by definition of g̃i(t) that

Et [exp (β(gi(t)− g̃i(t)))]

= Et
[
exp

(
β

(
gi(t)−

gi(t)1jt=i
qi(t)

)
− β2

qi(t)

)]
≤

(
1 + Et

[
β

(
gi(t)−

gi(t)1jt=i
qi(t)

)]
+ Et

[(
β

(
gi(t)−

gi(t)1jt=i
qi(t)

))2
])

exp

(
− β2

qi(t)

)

≤

(
1 + 0 + β2Et

[(
gi(t)1jt=i
qi(t)

)2
])

exp

(
− β2

qi(t)

)
≤
(

1 +
β2

qi(t)

)
exp

(
− β2

qi(t)

)
.

Using the fact that (1 + x) exp(−x) ≤ 1, we get that this expression is at most 1. As a result, we have

E

[
exp

(
β

T∑
t=1

(gi(t)− g̃i(t))

)]
≤ 1.

Now, by a standard Chernoff technique, we know that

Pr

(
T∑
t=1

(gi(t)− g̃i(t)) > ε

)
≤ exp(−βε)E

[
exp

(
β

T∑
t=1

(gi(t)− g̃i(t))

)]
≤ exp(−βε).

Substituting δ = exp(−βε), solving for ε, and using a union bound to make the result hold simultaneously for
all i, the result follows.

We will also need the following straightforward corollary of Freedman’s inequality (Freedman, 1975) (see also
Lemma A.8 in (Cesa-Bianchi & Lugosi, 2006))

Lemma 2. Let X1, . . . , XT be a martingale difference sequence with respect to the filtration {Ft}t=1,...,T , and with
|Xi| ≤ B almost surely for all i. Also, suppose that for some fixed v > 0 and confidence parameter P (v) ∈ (0, 1),

it holds that Pr(
∑T
t=1 E[X2

t |Ft−1] > vT ) ≤ P (v). Then for any δ ∈ (0, 1), it holds with probability at least
1− δ − P (v) that

T∑
t=1

Xt ≤

√
2 log

(
1

δ

)
vT +

B

2
log

(
1

δ

)
.
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We can now turn to prove the main theorem. We define the potential function Wt =
∑k
j=1 wj(t), and get that

Wt+1

Wt
=

k∑
j=1

wj(t)∑k
l=1 wl(t)

exp(ηg̃j(t)). (2)

We have that ηg̃j(t) ≤ 1, since by definition of the various parameters,

ηg̃j(t) ≤
η(1 + β)

qj(t)
≤ η(1 + β)√

γ/k

√
‖p(t)‖1/2 ≤ k

η(1 + β)
√
γ

≤ 1.

Using the definition of pj(t) and the inequality exp(x) ≤ 1 + x+ x2 for any x ≤ 1, we can upper bound Eq. (2)
by

k∑
j=1

pj(t)− γ/k
1− γ

(
1 + ηg̃j(t) + η2g̃j(t)

2
)

≤ 1 +
η

1− γ

k∑
j=1

pj(t)g̃j(t) +
η2

1− γ

k∑
j=1

pj(t)g̃j(t)
2.

Taking logarithms and using the fact that log(1 + x) ≤ x, we get

log

(
Wt+1

Wt

)
≤ η

1− γ

k∑
j=1

pj(t)g̃j(t) +
η2

1− γ

k∑
j=1

pj(t)g̃j(t)
2.

Summing over all t, and canceling the resulting telescopic series, we get

log

(
WT+1

W1

)
≤ η

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t) +
η2

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t)
2. (3)

Also, for any fixed action i, we have

log

(
WT+1

W1

)
≥ log

(
wi(T + 1)

W1

)
= η

T∑
t=1

g̃i(t)− log(k). (4)

Combining Eq. (3) with Eq. (4) and slightly rearranging and simplifying, we get

T∑
t=1

g̃i(t)−
1

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t) ≤
log(k)

η
+

η

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t)
2. (5)

We now start to analyze the various terms in this expression. At several points in what follows, we will implicitly
use the definition of qj(t) and the fact that ‖p(t)‖1/2 ∈ [1, k].

Let Et denote expectation with respect to the randomness of the algorithm on round t, conditioned on the
previous rounds. Also, let

g′j(t) =
gj(t)1jt=j
qj(t)

,

and note that g̃j(t) = g′j(t) + β
qj(t)

and Et[g′j(t)] = gj(t). We have that

k∑
j=1

pj(t)(g̃j(t)) =

k∑
j=1

pj(t)g
′(t) + β

k∑
j=1

pj(t)

qj(t)
=

k∑
j=1

pj(t)g
′(t) + β‖p(t)‖1/2. (6)
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Also,
∑k
j=1 pj(t)(g

′(t)− g(t)) is a martingale difference sequence (indexed by t), it holds that

Et


 k∑
j=1

pj(t)(g
′(t)− g(t))

2
 ≤ Et


 k∑
j=1

pj(t)g
′(t)

2
 ≤ k∑

r=1

qr(t)

 k∑
j=1

pj(t)
1r=j
qj(t)

2

=

k∑
r=1

p2r(t)

qr(t)
=
√
‖p(t)‖1/2

k∑
r=1

p3/2r (t) ≤ ‖p(t)‖1/2,

and

k∑
j=1

pj(t)(g
′(t)− g(t) ≤

k∑
j=1

pj(t)g
′(t) ≤ max

j

pj
qj(t)

≤
√
‖p(t)‖1/2 ≤

√
k.

Therefore, applying Lemma 2, and using the assumptions stated in the theorem, it holds with probability at
least 1− δ − P (v) that

T∑
t=1

k∑
j=1

pj(t)g
′(t) ≤

T∑
t=1

k∑
j=1

pj(t)g(t) +

√
2 log

(
1

δ

)
vT +

√
k

2
log

(
1

δ

)
. (7)

Moreover, we can apply Azuma’s inequality with respect to the martingale difference sequence
∑k
j=1 pj(t)g(t)−

git(t), indexed by t (since it is chosen with probability pit(t)), and get that with probability at least 1− δ,

T∑
t=1

k∑
j=1

pj(t)g(t)− git(t) ≤

√
1

2
log

(
1

δ

)
T . (8)

Combining Eq. (6), Eq. (7) and Eq. (8) with a union bound, and recalling that the event
∑T
t=1 ‖p(t)‖1/2 ≤ vT

is assumed to hold with probability at least 1− P (v), we get that with probability at least 1− 2δ − P (v),

T∑
t=1

k∑
j=1

pj(t)(g̃j(t))−
T∑
t=1

git(t) ≤ βvT +

√
2 log

(
1

δ

)
vT +

√
1

2
log

(
1

δ

)
T +

√
k

2
log

(
1

δ

)
. (9)

We now turn to analyze the term
∑k
j=1 pj(t)g̃

2
j (t), using substantially the same approach. We have that

k∑
j=1

pj(t)g̃
2
j (t) =

k∑
j=1

pj(t)

(
g′j(t) +

β

qj(t)

)2

≤ 2

k∑
j=1

pj(t)g
′2
j (t) + 2β2

k∑
j=1

pj(t)

q2j (t)
≤ 2

k∑
j=1

pj(t)g
′2
j (t) + 2β2k2.

We note that
∑k
j=1 pj(t)g

′2(t) ≤ maxj
pj(t)

q2j (t)
= ‖p(t)‖1/2 ≤ k. This implies that

T∑
t=1

Et


 k∑
j=1

pj(t)g
′2(t)

2
 ≤ T∑

t=1

‖p(t)‖21/2 ≤

(
T∑
t=1

‖p(t)‖1/2

)2

≤ (vT )2.

Applying Lemma 2, we get that with probability at least 1− δ − P (v),

T∑
t=1

k∑
j=1

pj(t)g
′2
j (t) ≤

T∑
t=1

Et

 k∑
j=1

pj(t)g
′2
j (t)

+ vT

√
2 log

(
1

δ

)
+
k

2
log

(
1

δ

)
.

Moreover,

Et

 k∑
j=1

pj(t)g
′2
j (t)

 ≤ k∑
r=1

qr(t)
pr(t)

q2r(t)
= ‖p(t)‖1/2,
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so overall, we get that with probability at least 1− δ − P (v),

T∑
t=1

k∑
j=1

pj(t)g̃
2
j (t) ≤ 2vT

(
1 +

√
2 log

(
1

δ

))
+ k log

(
1

δ

)
+ 2β2k2. (10)

Combining Lemma 1, Eq. (9) and Eq. (10) with a union bound, substituting into Eq. (5), and somewhat
simplifying, we get that with probability at least 1− δ − P (v),

max
i

T∑
t=1

gi(t)−
T∑
t=1

git(t) ≤ γT + 2vT
(
β + 2η

√
6 log(3/δ)

)
+ 2
√

5 log(3/δ)vT +
log(3k/δ)

β
+

log(k)

η

+ Õ
(√

k + ηk + k2β2η
)
.

where Õ hides numerical constants and factors logarithmic in δ. Substituting our choices of γ and β, and again
somewhat simplifying, we get the bound

max
i

T∑
t=1

gi(t)−
T∑
t=1

git(t) ≤ η

(
8

√
6 log

(
3k

δ

)
vT

)
+

1

η

(√
1

24
log

(
3k

δ

)
+ log(k)

)
+ 2η2k2T

+ 2
√

5 log(3/δ)vT + Õ
(√

k + ηk + k2η3
)
.

Plugging in η =
√

1/µT , we get the bound stated in the theorem.

A.2. Proof of Thm. 2

For notational simplicity, we will use the O-notation to hide both constants and second-order factors (as T/k →
∞). Inspecting the proof of Thm. 1, it is easy to verify2 that it implies that with probability at least 1 − δ −
P (v, δ, µ),

max
i∈[k]

T∑
t=1

gi(t)−
T∑
t=1

k∑
j=1

pj(t)gj(t) ≤ Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
.

Suppose w.l.o.g. action 1 is in G. Then it follows that

T∑
t=1

k∑
j=1

pj(t) (g1(t)− gj(t)) ≤ Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
.

This bound holds for any choice of rewards. Now, we note that each gj(t) is chosen i.i.d. and independently

of pj(t)), and thus
∑k
j=1 pj(t)((g1(t) − gj(t)) − E[g1(t) − gj(t)]) is a martingale difference sequence. Applying

Azuma’s inequality, we get that with probability at least 1− δ over the choice of rewards,

T∑
t=1

k∑
j=1

pj(t) (g1(t)− gj(t)) ≥
T∑
t=1

k∑
j=1

pj(t) (E[g1(t)− gj(t)])−
√

2 log(1/δ)T

≥
T∑
t=1

∑
j∈[k]\G

pj(t)∆−
√

2 log(1/δ)T .

Thus, by a union bound, with probability at least 1 − 2δ − P (v, δ, µ) over the randomness of the rewards and
the algorithm, we get

T∑
t=1

∑
j∈[k]\G

pj(t) ≤ Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
, (11)

2The difference from Thm. 1 is that the term
∑T

t=1 git(t) is replaced by
∑k

i=1 pi(t)gi(t). In the proof, we transformed
the latter to the former by a martingale argument, but we could have just left it there and achieve the same bound.



Decoupling Exploration and Exploitation in Multi-Armed Bandits

where Õ hides an inverse dependence on ∆. Now, we relate the left hand size to 1
T

∑T
t=1 ‖p(t)‖1/2. To do so,

we note that for any vector x with support of size |G|, it holds that ‖x‖1/2 ≤ |G|‖x‖1. Using this and the fact
that (a+ b)2 ≤ 2a2 + 2b2, we have

‖p(t)‖1/2 =

∑
j∈G

√
pj(t) +

∑
j∈[k]\G

√
pj(t)

2

≤ 2

∑
j∈G

√
pj(t)

2

+ 2

 ∑
j∈[k]\G

√
pj(t)

2

≤ 2|G|+ k
∑

j∈[k]\G

pj(t).

Plugging this back to Eq. (11), and recalling that |G| is considered a constant independent of k, T , we get that
with probability at least 1− 2δ − P (v, δ, µ), it holds that

1

T

T∑
t=1

‖p(t)‖1/2 ≤ Õ

(√(
v2

µ
+ µ+ v

)
k2

T
+
k3

µT
+

k3

T 5/2

)
.

Recall that this bound holds for any v. In particular, if we pick v = k, then P (v, δ, µ) = 0, and we get that with
probability at least 1− 2δ,

1

T

T∑
t=1

‖p(t)‖1/2 ≤ Õ
(

k2√
µT

+
k3

µT
+

k3

T 5/2

)
. (12)

This gives us a high-probability bound, holding with probability at least 1− 2δ, on 1
T

∑T
t=1 ‖p(t)‖1/2. But this

means that if we pick v to equal the right hand size of Eq. (12), then by the very definition of P (v, δ, µ), we get
P (v, δ, µ) = 2δ. Using this choice of v and applying Thm. 1, it follows that with probability at least 1− 4δ, the
regret obtained by the algorithm is at most

Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)
where v = max

{
1 , Õ

(
k2√
µT

+
k3

µT
+

k3

T 5/2

)}
. (13)

Now, it remains to optimize over µ to get a final bound. As a sanity check, we note that when µ = k and T ≥ k
we get

v = Õ

(√
k3

T
+
k2

T
+

k3

T 5/2

)
≤ Õ(k),

and a regret bound of Õ(
√
kT ), same as a standard bandit algorithm. On the other hand, when µ = 1 and

T ≥ Ω̃(k4), we get v = Õ(1) and a regret bound of Õ(
√
T ), which is much better. The caveat is that we need

T to be sufficiently large compared to k in order to get this effect. To understand what happens in between, it
will be useful to represent this bound a bit differently. Let α = logT (k) ∈ (0, 1], so that k = Tα, and let µ = T β

(where we need to ensure that β ∈ [0, α], as µ ∈ [1, k]). Then, a rather tedious but straightforward calculation
shows that the regret bound above equals

Õ
(
T

1−β
2 + T 2α−β + T 3α− 3β+1

2 + T 3α− β2−2 + T
1+β
2 + T 1/2 + Tα+

1−β
4 + T

3α−β
2 + T

3
2α−

3
4 + T 2α− 3

2

)
.

Using the fact that β ≤ α ≤ 1, we can drop the T
1−β
2 +T 1/2 terms, since it is always dominated by the T

1+β
2 term

in the expression. The same goes for the T
3
2α−

3
4 +T 2α− 3

2 terms, since they are dominated by the T
3α−β

2 term (as

β ≤ α ≤ 1). This also holds for the T
3α−β

2 term, which is dominated by the T 2α−β term, and the T 3α− β2−2 term,
which is dominated by the T 2α−β term. Thus, we now need to find the β minimizing the maximum exponent,
i.e.,

min
β

max

{
2α− β, 3α− 3β + 1

2
,

1 + β

2
, α+

1− β
4

}
.

This expression can be shown to be optimized for β = 1
3 max{0, 4α− 1}, where it equals 1

2 + 1
6 max{0, 4α− 1}.

Substituting back α = logk(T ), we get the regret bound

Õ
(
T

1
2+

1
6 max{0,4α−1}

)
= Õ

(
T

1
2+

α
6 max{0,4− 1

α}
)

= Õ
(
T

1
2 k

1
6 max{0,4− 1

α}
)

= Õ

(√
kmax{0, 43− 1

3 logk(T )}T

)
,
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obtained using

µ = T β = T
1
3 max{0,4α−1} = T

α
3 max{0,4− 1

α} = kmax{0, 43− 1
3 logk(T )}.

The derivation above assumed that α ≤ 1 (namely that T ≥ k). For T ≤ k, we need to clip µ to be at most k,
and the regret bound obtained above is vacuous, as it is then larger than order of

√
kT ≥ T . Thus, the bound

we have obtained holds for any relation between k, T .

A.3. Proof of Thm. 3

The proof is very similar to the one of Thm. 1, and we will therefore skip the derivation of some steps which are
identical.

We define the potential function Wt =
∑k
j=1 wj(t), and get that

Wt+1

Wt
=

k∑
j=1

wj(t)∑k
l=1 wl(t)

exp(ηg̃j(t)) + eα.

Using a similar derivation as in the proof of Thm. 1, we get

log

(
Wt+1

Wt

)
≤ η

1− γ

k∑
j=1

pj(t)g̃j(t) +
η2

1− γ

k∑
j=1

pj(t)g̃j(t)
2 + eα

Summing over t = Ts + 1, . . . , Ts+1, we get

log

(
WTs+1+1

WTs+1

)
≤ η

1− γ

Ts+1∑
t=Ts+1

k∑
j=1

pj(t)g̃j(t) +
η2

1− γ

Ts+1∑
t=Ts+1

k∑
j=1

pj(t)g̃j(t)
2. (14)

Now, for any fixed action is, we have

wi(Ts+1 + 1) ≥ wi(Ts + 2) exp

η Ts+1∑
t=Ts+2

g̃is(t)


≥ eα

k
WTs+1 exp

η Ts+1∑
t=Ts+2

g̃is(t)


≥ α

k
WTs+1 exp

η Ts+1∑
t=Ts+1

g̃is(t)

 ,

where in the last step we used the fact that by our parameter choices, ηg̃is(t) ≤ 1 (see proof of Thm. 1).
Therefore, we get that

log

(
WTs+1+1

WTs+1

)
≥ log

(
wis(Ts+1 + 1)

WTs+1

)
≥ η

Ts+1∑
t=Ts+1

g̃is(t) + log(α/k). (15)

Combining Eq. (14) with Eq. (15) and slightly rearranging and simplifying, we get

Ts+1∑
t=Ts+1

g̃is(t)−
1

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t) ≤
log(k/α)S

η
+

η

1− γ

Ts+1∑
t=Ts+1

k∑
j=1

pj(t)g̃j(t)
2 +

eα(Ts+1 − Ts)
η

.

Summing over all time periods s, we get overall

S∑
s=1

Ts+1∑
t=Ts+1

g̃is(t)−
1

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t) ≤
log(k/α)S

η
+

η

1− γ

T∑
t=1

k∑
j=1

pj(t)g̃j(t)
2 +

eαT

η
.
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In the proof of Thm. 1, we have already provided an analysis of these terms, which is not affected by the
modification in the algorithm. Using this analysis, we end up with the following bound, holding with probability
at least 1− δ − P (v, η, µ):

S∑
s=1

Ts+1∑
t=Ts+1

gis(t)−
T∑
t=1

git(t) ≤ η

(
8

√
6 log

(
3k

δ

)
vT

)
+

1

η

√
1

24
log

(
3k

δ

)
+ 2η2k2T

+ 2
√

5 log(3/δ)vT +
log(k/α)S + eαT

η
+ Õ

(√
k + ηk + k2η3

)
,

where Õ hides numerical constants and factors logarithmic in δ. Plugging in α = 1/T and η =
√
S/µT , we get

the bound stated in the theorem.

A.4. Proof of Thm. 4

The proof is almost identical to the one of Thm. 2, and we will only point out the differences.

Starting in the same way, the analysis leads to the following bound:

S∑
s=1

Ts+1∑
t=Ts+1

k∑
j=1

pj(t) (gis(t)− gj(t)) ≤ Õ

(√
S

(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)

This bound holds for any choice of rewards. Since each gj(t) is chosen i.i.d. and independently of pj(t)), we

get that
∑k
j=1 pj(t)((gis(t) − gj(t)) − E[gis(t) − gj(t)]) is a martingale difference sequence. Applying Azuma’s

inequality, we get that with probability at least 1− δ over the choice of rewards,

S∑
s=1

Ts+1∑
t=Ts+1

k∑
j=1

pj(t) (gis(t)− gj(t))

≥
S∑
s=1

Ts+1∑
t=Ts+1

k∑
j=1

pj(t) (E[gis(t)− gj(t)])−
√

2 log(1/δ)T

≥
S∑
s=1

Ts+1∑
t=Ts+1

∑
j∈[k]\Gs

pj(t)∆−
√

2 log(1/δ)T .

Thus, by a union bound, with probability at least 1 − 2δ − P (v, δ, µ) over the randomness of the rewards and
the algorithm, we get

S∑
s=1

Ts+1∑
t=Ts+1

∑
j∈[k]\Gs

pj(t) ≤ Õ

(√(
v2

µ
+ µ+ v

)
T +

k2

µ
+

k2

T 3/2

)

As in the proof of Thm. 2, we use the inequality ‖p(t)‖1/2 ≤ 2|Gs| + k
∑
j∈[k]\G pj(t) and the assumption that

|Gs| is considered a constant independent of k, T , to get

1

T

T∑
t=1

‖p(t)‖1/2 ≤ Õ

(√
S

(
v2

µ
+ µ+ v

)
k2

T
+
k3

µT
+

k3

T 5/2

)
.

The rest of the proof now follows verbatim the one of Thm. 4, with the only difference being the addition of the
S factor in the square root.

A.5. Proof of Thm. 5

Following standard lower-bound proofs for multi-armed bandits, we will focus on deterministic algorithms, We
will show that there exists a randomized adversarial strategy, such that for any deterministic algorithm, the
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expected regret is lower bounded by Ω(
√
kT ). Since this bound holds for any deterministic algorithm, it also

holds for randomized algorithms, which choose the action probabilistically (this is because any such algorithm
can be seen as a randomization over deterministic algorithms).

The proof is inspired by the lower bound result3 of (Garivier & Moulines, 2011). We consider the following random
adversary strategy. The adversary first fixes ∆ = 1/5. It then chooses an action a ∈ {2, . . . , k} uniformly at
random, and an action t0 ∈ [t] with probability

Pr(t0 = T ) =
1

2
and Pr(t0 = t) =

1

2(T − 1)
∀t 6= T

The adversary then randomly assigns i.i.d. rewards as follows (where we let B(p) denote a Bernoulli distribution
with parameter p, which takes a value of 1 with probability p and 0 otherwise):

gi(t) ∼


B
(
1
2

)
i = 1

B
(
1
2 −∆

)
i ∈ [k] \ {1, a}

B
(
1
2 −∆

)
i = a, t ≤ t0

B
(
1
2 + ∆

)
i = a, t > t0

In words, action 1 is the best action in expectation for the first t0 rounds (all other actions being statistically
identical), and then a randomly selected action a becomes better. Also, with probability 1/2, we have t0 = T ,
and then the distribution does not change at all. Note that both t0 and a are selected randomly and are not
known to the learner in advance.

For the proof, we will need some notation. We let E[·] denote expectation with respect to the random adversary
strategy mentioned above. Also, we let Eat0 [·] denote expectation over the adversary strategy, conditioned on the
adversary picking action a ∈ [k] and shift point t0 ∈ {1, . . . , T}. In particular, we let ET denote expectation
over the adversary strategy, conditioned on the adversary picking t0 = T (which by definition of t0, implies that
the reward distribution remains the same across all rounds, and the additional choice of the action a does not
matter). Finally, define the random variable Na

t to be the number of times the algorithm chooses action a, in
the time window {t, t+ 1, . . . ,min{T, t+ dd

√
T e}, where d is a positive integer to be determined later.

Let us fix some t0 < T and some action a > 1. Let Pat0 denote the probability distribution over the sequence

of dd
√
T e rewards observed by the algorithm at time steps t0 + 1, . . . , t0 + dd

√
T e, conditioned on the adversary

picking action a and shift point t0. Also, let PT denote the probability distribution over such a sequence,
conditioned on the adversary picking t0 = T and no distribution shift occurring. Then we have the following
bound on the Kullback-Leibler divergence between the two distributions:

Dkl

(
P∅||Pat0

)
=

t0+dd
√
Te∑

t=t0

Dkl

(
P∅(git(t) | git0 (t0), . . . , git−1(t−1)) || P

a
t0(·|git0 (t0), . . . , git−1(t−1))

)
=

t0+dd
√
Te∑

t=t0

P∅(it = a)Dkl

(
1

2
−∆,

1

2
+ ∆

)
= E∅

[
Na
t0

]
2∆ log

(
1 + 2∆

1− 2∆

)
≤ 2∆E∅

[
Na
t0

]
.

Using a standard information-theoretic argument, based on Pinsker’s inequality (see (Garivier & Moulines, 2011),
as well as Theorem 5.1 in (Auer et al., 2002)), we have that for any function f(r) of the reward sequence r,
whose range is at most [0, b], it holds that

Eat0 [f(r)]− E∅[f(r)]] ≤ b
√

1

2
Dkl

(
P∅||Pat0

)
.

3This result also lower bounds the achievable regret in a setting quite similar to ours. However, the construction is
different and more importantly, it does not quantify the dependence on k, the number of actions.
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In particular, applying this to Na
t0 , we get

Eat0
[
Na
t0

]
≤ ET

[
Na
t0

]
+ dd
√
T e
√

∆ET
[
Na
t0

]
.

Averaging over all t0 ∈ {1, . . . , T − dd
√
T e}, a ∈ {2, . . . , k} and applying Jensen’s inequality, we get

∑k
a=2

∑T−dd
√
Te

t0=1 Eat0
[
Na
t0

]
(k − 1)(T − dd

√
T e)

≤
ET
[∑k

a=2

∑T−dd
√
Te

t0=1 Na
t0

]
(k − 1)(T − dd

√
T e)

+ dd
√
T e

√√√√∆ET
[∑k

a=2

∑T−dd
√
Te

t0=1 Na
t0

]
(k − 1)(T − dd

√
T e)

.

Now, let N>1 denote the total number of times the algorithm chooses an action in {2, . . . , k}. It is easily seen
that

k∑
a=2

T−dd
√
Te∑

t0=1

Na
t0 ≤ dd

√
T eN>1,

because on the left hand side we count every single choice of an action > 1 at most dd
√
T e times. Plugging it

back and slightly simplifying, we get∑k
a=2

∑T−dd
√
Te

t0=1 Eat0
[
Na
t0

]
(k − 1)(T − dd

√
T e)

≤ dd
√
T e

(k − 1)(T − dd
√
T e)

ET
[
N>1

]
+

√
d3∆d

√
T e3

(k − 1)(T − dd
√
T e)

ET [N>1]. (16)

The left hand side of the expression above can be interpreted as the expected number of pulls of the best action
in the time window [t0, . . . , t0+dd

√
T e], conditioned on the adversary choosing t0 ≤ T−dd

√
T e. Also, ∆ET [N>1]

is clearly a lower bound on the regret, if the adversary chose t0 = T and action 1 remains the best throughout
all rounds. Thus, denoting the regret by R, we have

E[R] ≥ Pr
(
t0 ≤ T − dd

√
T e
)
E
[
R
∣∣∣t0 ≤ T − dd√T e]+ Pr(t0 = T )E [R|t0 = T ]

≥ T − dd
√
T e

2(T − 1)
E
[
R
∣∣∣t0 ≤ T − dd√T e]+

1

2
ET [R]

≥ T − dd
√
T e

2(T − 1)
∆

d√T − ∑k
a=2

∑T−dd
√
Te

t0=1 Eat0
[
Na
t0

]
(k − 1)(T − dd

√
T e)

+
∆

2
ET [N>1].

We now choose d =
√
k − 1/10, plug in ∆ = 1/5 and Eq. (16), and make the following simplifying assumptions

(which are justified by picking the constant C in the theorem to be large enough):

T − dd
√
T e

T − 1
≥ 4

5
,

dd
√
T e

(k − 1)(T − dd
√
T e)
≤ 6

5

d

(k − 1)
√
T

=
3

25
√

(k − 1)T
,
d
√
T e2√
T
≤ 6

5

√
T .

Performing the calculation, we get the following regret lower bound:

2

250

√
(k − 1)T +

(
1

10
− 6

625
√

(k − 1)T

)
ET [N>1]− 3

3125

√
2
(√

(k − 1)T
)
ET [N>1],

and lower bounding the
√

(k − 1)T in the middle term by 1, we can further lower bound the expression by

2

250

√
(k − 1)T +

113

1250
ET [N>1]− 3

3125

√
2
(√

(k − 1)T
)
ET [N>1].

How small can this expression be as a function of ET [N>1]? It is easy to verify that the minimum of any function
f(x) = wx−

√
vx is attained for x = v/4w2, with a value of −v/4w. Plugging in this value (for the appropriate

choice of v, w) and simplifying, the result stated in the theorem follows.
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A.6. Proof Sketch of Thm. 6

The proof idea is a reduction to the problem of distinguishing biased coins. In particular, suppose we have two
Bernoulli random variables X,Y , one of which has a parameter 1

2 and one of which has a parameter 1
2 + ε. It

is well-known that for some universal constant c, one cannot succeed in distinguishing the two, with a fixed
probability, using only at most c/ε2 samples from each.

We begin by noticing that for the fixed distribution (p1, . . . , pk), there must be two actions each of whose
probabilities is at most 1/(k − 1) (otherwise, there are at least k − 1 actions whose probabilities are larger than
1/(k− 1), which is impossible). Without loss of generality, suppose these are actions 1, 2. We construct a bandit
problem where the reward of action 1 is sampled i.i.d. according to a Bernoulli distribution with parameter 1

2 ,
and the reward of action 2 is sampled i.i.d. according to a Bernoulli distribution with parameter 1

2 + ε, where

ε =
√
c′k/T for some sufficiently small c′. The rest of the actions receive a deterministic reward of 0. Note that

this setting corresponds to the one of Thm. 2, with ∆ = 1/2. We now run this algorithm for T = c′k/ε2 rounds.
By picking c′ small enough, we can guarantee that with overwhelming probability, the algorithm samples actions
1, 2 less than c/ε2 times. By the information-theoretic lower bound, this implies that the algorithm must have
chosen a suboptimal action for at least Ω(T ) times with constant probability. Therefore, the expected regret is
at least Ω(εT ), which equals Ω(

√
kT ) by our choice of ε.


