
Fault-Tolerant Compact Routing Schemes for General
Graphs

Shiri Chechik

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel.

Abstract

This paper considers compact fault-tolerant routing schemes for weighted gen-
eral graphs, namely, routing schemes that avoid a set of failed (or forbidden)
edges. We present a compact routing scheme capable of handling multiple edge
failures. Assume a source node s contains a message M designated to a des-
tination target t and assume a set F of edges crashes (unknown to s). Our
scheme routes the message to t (provided that s and t are still connected in
G \ F) over a path whose length is proportional to the distance between s and
t in G \F , to |F |3 and to some poly-log factor. The routing table required at a
node v is of size proportional to the degree of v in G and some poly-log factor.
This improves on the previously known fault-tolerant compact routing scheme
for general graphs, which was capable of overcoming at most 2 edge failures.

Keywords: forbidden sets, fault-tolerance, compact routing

1. Introduction

Routing is one of the most fundamental problems in distributed networks. A
routing scheme is a mechanism that allows delivering a message from a source
node s to a target node t. In the routing process, each node in the network
may receive packets of information and has to decide if the message already
reached its destination or not. If the message did not reach its destination
then the node has to forward the message to one of its neighbors, using only
its local information and the header of the message, containing the label of
the destination and possibly some other data. A key concern in designing a
routing scheme is to minimize the worst case multiplicative stretch, namely, the
maximum ratio between the length of a path obtained by the routing scheme
and the length of the shortest path between the source and the destination.
Another important goal is to minimize the size of the routing tables stored at
the nodes. Subsequently, the focus in designing a routing scheme is often on the

Email address: shiri.chechik@weizmann.ac.il (Shiri Chechik)

Preprint submitted to Elsevier June 30, 2011

tradeoff between the size of the routing tables and the maximum stretch of the
resulting routes.

The problem of designing compact and low stretch routing schemes has been
extensively studied (e.g. [17, 3, 5, 16, 9, 12, 15]). The first tradeoff between the
size of the routing tables and the maximum multiplicative stretch of the routing
scheme was considered by Peleg and Upfal [17]. In this paper, the total size of
the routing tables was considered (as opposed to the maximum table size of the
nodes) and only unweighted graphs were considered. Later, weighted graphs
were considered by Awerbuch et al. [3] and a bound on the maximum table
size was achieved. The weights on the edges correspond to distances, namely,
the distance of a path is the sum of the weights of its edges. Awerbuch et al.
show how to construct a routing scheme with maximum table size of Õ(n1/k)
and with multiplicative stretch dependent on k (O(k29k)) for any integer k ≥ 1.
Further improvements were later introduced by Awerbuch and Peleg [5] for
general integer k > 1, by Cowen [9] for k = 3 and by Eilam et al. [12] for k = 5.
These tradeoffs were later improved by Thorup and Zwick [19], obtaining the
best one known so far. They present a routing scheme with table size of Õ(n1/k)
and a multiplicative stretch of 2k − 1 using handshaking by which the source
and target agree on an o(log2 n) bit header that is attached to all packets, or a
stretch of 4k− 5 without using handshaking. Corresponding lower bounds were
presented in [17, 13, 14, 20].

In this paper, we consider a natural and significant extension of routing
schemes for general weighted graphs, that may better suit many network set-
tings. Suppose that some of the links crash from time to time and it is still
required to deliver messages between the nodes, if possible, without recom-
puting the routing tables and the labels. Given a set F of edge failures, the
multiplicative stretch is with respect to the distance between the source node
and the destination node in the surviving graph G \ F . The objective is once
again to minimize both the routing table sizes and the stretch. This extension
was suggested in [8, 21], which consider this problem for graphs of bounded
treewidth or cliquewidth. It is shown how to assign each node a label of size
O(log2 n) (with some dependency on the tree/clique width) such that given the
labels of the source and target and the labels of a set F of “forbidden” vertices,
the scheme can route from the source to the target on the shortest path in G\F .

Later, in [1], the same extension was considered for unweighted graphs of
bounded doubling dimension. It is shown how to construct a labeling scheme
for a given unweighted graph of doubling dimension α such that for any desired
precision parameter ε > 0, the labeling scheme stores an O(1+ ε−1)2α log2 n-bit
label at each vertex. Given the labels of two end-vertices s and t, and the labels
of a set F of “forbidden” vertices, the scheme can route on a path of length at
most 1 + ε times the distance from s to t in G \ F .

Note that in both [8] and [1] the assumption is that the labels of the faulty
nodes are known to the source.

For weighted general graphs, the design of fault-tolerant compact routing
schemes was considered in [6]. However, the scheme of [6] only dealt with up
to 2 edge failures and bounded only the total size of the routing tables at all

2

the nodes. It is shown how to construct a routing scheme for a given parameter
k, that in the presence of a forbidden edge set F of size at most 2 (unknown
to the source), routes the message from the source s to the destination t over
a path of length O(k · dist(s, t, G \ F)), where dist(s, t, G \ F) is the distance
from s to t in G \ F . The total amount of information stored in the vertices of
G is O(kn1+1/k log (nW) log n), where W is the weight of the heaviest edge in
the graph (assuming the minimal weight is 1).

Our contributions. In this paper we present a compact fault-tolerant routing
scheme for weighted undirected general graphs. We manage to design a compact
routing scheme that handles multiple edge failures. More specifically, we prove
the following theorem. 1

Theorem 1.1. Given a graph G = (V, E) with edge weights ω such that ω(e) ∈
[1,W] for every edge e and a parameter k, one can efficiently construct a routing
scheme that given a source node s and a target node t, in the presence of a set
of failures F (unknown to s), can route a message from s to t in a distributed
manner over a path of length at most O(|F |2 · (|F |+log2 n) ·k ·dist(s, t, G\F)).
The scheme requires assigning to each node a label of length O(dlog (nW)e·log n)
bits and the routing table of a node v is of size at most O(dlog (nW)e · k · n1/k ·
deg(v) · log2 n) bits. The message passed during the routing process is of size
O(|F | · log n) bits.

2. General Framework

In this section we outline the general structure of our routing scheme. Let
G(V,E) be an n-node undirected weighted graph with edge weights ω such that
ω(e) ∈ [1,W] for every edge e (hence nW is an upper bound on the diameter).
For a given graph H and a tree T such that V (T) ⊆ V (H), let H|T be the
subgraph of H induced on the vertices of T .

Our results are based on the well known construction of tree cover, defined
as follows.

Tree covers:. Let G(V, E) be an undirected graph with edge weights ω, and let
ρ, k be two integers. Let Bρ(v) = {u ∈ V | dist(u, v,G) ≤ ρ} be the ball of
vertices of (weighted) distance at most ρ from v. A tree cover TC(G,ω, ρ, k) is
a collection T = {T1, . . . , T`} of rooted trees in G, with V (T) ⊆ V and a root
r(T) for every T ∈ T , with the following properties:

(i) For every v ∈ V there exists a tree T ∈ T such that Bρ(v) ⊆ T .

(ii) For every T ∈ T and every v ∈ T , dist(v, r(T), T) ≤ (2k − 1) · ρ.

(iii) For every v ∈ V , the number of trees in T that contain v is O(k · n1/k).

1Notice that by setting k = log n, the term n1/k in the theorem becomes a constant.

3

Proposition 2.1 ([4, 7, 16]). For any ρ and k, there exists a tree cover TC(G,ω, ρ, k)
constructible in time Õ(mn1/k).

A basic building block of our routing scheme is a procedure for routing on
subtrees of the graph. For that purpose we use the standard interval routing
scheme on trees ([18, 22]) defined as follows. Traverse the tree T according to
some Euler tour, let L(T) be the list of the vertices of T in the order in which
they were encountered during this Euler tour, keeping only the first occurrence
of each vertex. Each node v is identified with its index `(v) in L(T). For each
node v let fv be the descendant of v with the largest `(fv). It’s not hard to see
that a node u is a descendant of a node v if and only if `(v) ≤ `(u) ≤ `(fv).
Each node v stores the ranges (`(u), `(fu)) for every child u of v. The label of
a node v is the index `(v). The routing process at a node v is performed as
follows. If the message did not reach its destination t (namely, if `(v) 6= `(t))
then the node v checks if `(v) ≤ `(t) ≤ `(fv). If `(v) ≤ `(t) ≤ `(fv) then the
message is sent to the child u of v such that `(u) ≤ `(t) ≤ `(fu). Otherwise,
the message is sent to the parent of v. Note that the routing table used at a
node v is of size O(deg(v) · log n)-bits. While more efficient routing schemes on
trees are known (e.g. [19]), it is unclear how to use them to route to a node v
using only its index `(v) which is needed is our scheme. Moreover, our scheme
uses routing tables of size Ω(deg(v) · log n), therefore this does not increase the
asymptotic of the size of the routing tables.

Let us start with a high level overview of the way our routing scheme op-
erates. Consider vertices s, t ∈ V and suppose that a message is to be routed
from s to t. Our routing process involves at most dlog (nW)e iterations, where
iteration i is expected to succeed in passing the message in the case where
2i−1 < dist(s, t,G \ F) ≤ 2i. As iteration i handles the possibility that
dist(s, t, G \ F) is at most 2i, it may ignore edges of weight greater than 2i.
Formally, let Hi be the set of G edges of weight greater than 2i and let Gi be
G \Hi. Clearly, any two vertices that are connected in G by a path of length at
most 2i are still connected in Gi by the same path. Hence the routing process
may be restricted to Gi. To facilitate each iteration i, in the preprocessing phase
construct a tree cover TCi = TC(Gi, ω, 2i, k). Now for each tree T ∈ TCi in-
voke our scheme for routing on trees with failures presented in Section 3 on the
tree T and the graph Gi to assign each node v ∈ T a label L(v, T) and a routing
table Av(T).

Each node v stores a routing table Av, containing all the routing tables
Av(T) together with some unique identifier id(T) for each tree T such that
v ∈ T and T ∈ TCi for some 1 ≤ i ≤ dlog (nW)e.

In addition, for each node t ∈ V , let Ti(t) ∈ TCi be the tree containing
B2i(t). The label L(t) of each node t ∈ V has to store enough information
about each Ti(t) in order to allow routing on the tree Ti(t) to the target t.
Specifically, the label L(t) stores L(t, T) together with the unique identifier
id(T) for the tree T = Ti(t), for every 1 ≤ i ≤ dlog (nW)e.

The routing process is schematically done as follows. Let F denote the set
of failed edges at a given moment. In each iteration i from 1 to dlog (nW)e,

4

an attempt is made to route the message from the source s to the target t
in the graph Gi|Ti(t) \ F using the tree Ti(t) augmented with some additional
information to be specified later on. If the routing is unsuccessful, i.e., it is not
possible to route to t in Gi|Ti(t) \ F , then s is informed by the routing scheme
that it must proceed to the next iteration. Note that in order to route from s to
t in the tree Ti(t), the node s has to be familiar with the label L(t, T) given to
t by our scheme for the tree T = Ti(t); this information can be extracted from
t’s label L(t).

In order to complete the description of our routing scheme, it remains to
present our routing process from s to t in the graph Gi|Ti(t) \ F . In what
follows, we focus on describing our routing scheme in H|T \F for a given graph
H and a tree T , and describe the information stored in both the preprocessing
phase and the routing phase.

3. Routing on a Tree with Faults

In this section we consider a given graph H and a tree T in H, and design a
routing scheme such that when a set of edges F fails, if s and t are still connected
in H|T \F , then our routing procedure manages to deliver a message from s to t
on a path of length proportional to the depth of T , to F 3 and to some poly-log
factor. More specifically, we prove the following lemma.

Lemma 3.1. Consider a graph H with maximum edge weight WH and a tree T
of H (E(T) ⊆ E(H)). There is an efficiently constructible routing scheme such
that given a source node s and a target node t, in the presence of a set of failures
F (unknown to s), if s and t are connected in H|T \ F , will deliver a message
from s to t on a path of length O(f2(f · diam(T) + f ·WH + log2 n · diam(T))),
where f = |F | and diam(T) is the diameter of T . The size of the routing labels
used by the scheme is O(log n) bits and the routing table stored at a node v is of
size O(log2 n · degH(v)) bits, where degH(v) is the degree of v in the graph H.

Observe that removing f edges from the tree T partitions it into f + 1
connected subtrees. The general goal of our routing scheme is to find a path
from the subtree containing the source s to the subtree containing the target
node t. This is done by searching for edges that reconnects these subtrees. Each
time a new edge is discovered, the set of known subtrees that are reachable from s
is increased. This process continues until either reaching the subtree containing
t or until no such new edge can be found. In the latter the nodes can determine
that t is not reachable from s in H|T \ F .

The routing scheme described in this section is strongly based on the result of
Duan and Pettie [11] on connectivity oracles with edge failures. We first review
that result, and later show how to implement it in a distributed setting to achieve
our fault-tolerant routing scheme. Their algorithm operates on a given spanning
tree T of G. The algorithm traverses the tree T according to some Euler tour
and constructs the list L(T) of the vertices of V (G) in the order in which they
were encountered during this Euler tour, keeping only the first occurrence of

5

each vertex. For every v, let `(v) denote v’s index in L(T). The algorithm then
considers the adjacency matrix M of G, according to the ordering L(T), and
constructs a range reporting data structure on M (concretely, using the range
reporting data structure of Alstrup et al. [2]). Duan and Pettie [11] observe that
removing f edges from T partitions it into f + 1 connected subtrees and splits
L(T) into at most 2f +1 intervals, where the vertices of each connected subtree
are the union of some subset of these intervals (see Figure 1 for illustration).
Hence in order to decide connectivity in G \ F , it is enough to determine, for
all pairs of the 2f + 1 intervals, if there is an edge in E \ F connecting them.
This can be done efficiently by the range reporting data-structure constructed
on M .

10
18

16

1

2

3

4

5 6

7

8

9

11

10

13

14

12

17

15

1

2

3

4

5 6

7

8

9

11

13

14

12

15 18

16 17
(a) (b)

Figure 1: (a) The tree T and L(T). (b) The edges (3, 4) and (13, 15) fail, resulting with the
set of intervals {1− 3, 4− 6, 7− 14, 15− 17, 18} .

For the purpose of implementing the range reporting data structure in a
distributed manner, we use a less efficient range reporting data structure. We
first describe the well-known centralized range reporting data structure that is
used in our construction, and later, in Subsections 3.1 and 3.2, we show how
to implement this data structure in a distributed setting (which may be of
independent interest).

Consider a boolean matrix M̃ , in which queries of the following form need
to be answered: “Given a range of rows (r1, r2) and a range of columns (c1, c2),
return all cells that contain 1 in the matrix M̃ and are in the range of rows
(r1, r2) and the range of columns (c1, c2).” The problem can be transformed to
the following planar range reporting problem. Given a set P of N points in the
plane, construct a data structure that can answer queries of the form: “return
all points in the rectangle [x1, x2] × [y1, y2]”. This can be done by creating

6

a set of points P (M̃) containing a point p(c) for each cell c in the matrix M̃
that contains 1 and setting its x-coordinate to be the row of the cell c and its y-
coordinate to be the column of c. Now a query of the form (r1, r2)×(c1, c2) on M̃
can be answered by finding all points P (M̃) inside the rectangle [r1, r2]× [c1, c2].
A data structure that can answer efficiently planar range reporting queries can
be constructed as follows (cf. [10]). Given a set P of N nodes in the plane, first
construct a main balanced binary tree M built on the x-coordinate of the points
in P . For any internal or leaf node v in M, let P (v) be the subset of points of P
corresponding to the subtree of v in M. For any internal or leaf node v in M,
store a balanced binary tree T (v) built on the y-coordinate of the points in P (v).
In addition, form a connected list chaining the leaves of T (v), namely, provide
each leaf u with a pointer to the next leaf with the lowest y-coordinate that is
greater equal to the y-coordinate of u. Now given a query [x1, x2]× [y1, y2], the
query algorithm first selects O(log n) canonical subsets that together contain all
the points whose x-coordinate lie in [x1, x2]. Each such subset corresponds to
a node in M. In each such internal node v ∈ M, the query algorithm searches
for all nodes whose y-coordinate lie in [y1, y2] using the search tree T (v). The
search on T (v) takes O(log n + k′) time, where k′ is the number of nodes that
lie in [y1, y2] in T (v). All in all, the query time is O(log2 n + k), where k is the
number of nodes reported. Note that if we want to report only k′′ ≤ k points,
then the query can be answered in O(log2 n + k′′) time.

Next, we turn to describe how to implement this range reporting data struc-
ture on M in a distributed setting. In Subsection 3.1 we describe the prepro-
cessing phase, namely, the data that needs to be stored at the nodes in the
preprocessing phase, Subsection 3.2 describes the routing phase and finally in
Subsection 3.3 we prove the correctness of Lemma 3.1.

3.1. Preprocessing
In the preprocessing phase, construct the main balanced binary tree M built

on the nodes V according to their order in L(T), i.e., their indices `(v). For an
internal node ṽ ∈ M, let P (ṽ) be the set of nodes in V corresponding to the
subtree of ṽ in M. For a set of nodes S, denote by Eout(S) the set of edges in
E \ E(T) with exactly one endpoint in S. For an edge e = (u, v) ∈ Eout(S),
where w.l.o.g u ∈ S and v /∈ S, denote the incident node to e that is not in
S by Out(e, S) = v. For each internal node ṽ ∈ M, construct a balanced
binary tree T (ṽ) on Eout(P (ṽ)) sorted by Out(e, P (ṽ)) according to their order
in L(T), namely, T (ṽ) is a balanced binary tree whose nodes set is the set of
edges Eout(P (ṽ)). See Figure 2 for illustration.

Our algorithm looks for ways of progressing from its currently familiar
“piece” of the network represented as an interval I = (vi, ..., vj) of the ordered
list L(T) as explained earlier, to the “piece” containing the destination, which
is another such interval I ′, disconnected from I by the faults of F . Note that in
order to find all edges connecting some interval I = (vi, ..., vj) with some other
interval I ′, we need to check a set X(I, I ′) of O(log n) internal nodes in M.
Consider some node u ∈ V , and let p be the path from the leaf representing u
in M to the root of M, each non-leaf node x on the path p has two children,

7

one that is part of the path p and another node y, if y is a left child, add it to
SL(u), otherwise to SR(u). The node u itself is added to both SL(u) and SR(u).
Note that the set X(I, I ′) is a subset of SR(vi)∪SL(vj). Every node u stores an
identifier of the internal nodes in SR(u) ∪ SL(u). As explained above, for each
node ṽ in SR(u) ∪ SL(u), a balanced search tree T (ṽ) is constructed, and the
identifier of ṽ will contain an indication of the edge represented by the root of
T (ṽ). In addition, each internal node w in T (ṽ) represents an edge e = (x, y),
where one node, say x, is inside P (v) and the other, y, is outside it. The routing
table of x stores the edges of the left and right children of w in T (ṽ) as well
as the ranges they represent, where by storing an edge (x, y) we mean storing
(L(x, T), L(y, T)).

To summarize, the routing table Av(T) contains the identifiers of the internal
nodes SR(v)∪SL(v), where the identifier of each internal node ũ ∈ SR(v)∪SL(v)
contains the edge represented by the root of T (ũ). In addition, for every internal
node ũ ∈ M such that v ∈ P (ũ) and every edge (v, y) ∈ Eout(P (ũ)), let w be
the internal node in T (ũ) that represents (v, y), the routing table Av(T) stores
the edges of the left and right children of w in T (ũ) as well as the ranges they
represent (together with some identifier of the tree T (ũ)). The routing table
Av(T) of v also stores the index `(v). The label L(v, T) is just the index `(v).

3.2. The Routing Process
In this section we show how to route a message from a source s to a target

t on a single tree T with faults, allowing it to bypass the failures. After the
failures of at most f edges, the tree is divided into at most 2f + 1 intervals,
and the goal is to reconnect these intervals, if possible. In the beginning of the
routing process, the failed edges are not known to the nodes (except for their
endpoints), so clearly, the different intervals are not known, and of course the
way to reconnect the intervals is not known. During the routing process, some
of this data is revealed and is attached to the header of the message. More
specifically, the message accumulates information on the set of known intervals
and the discovered edges that reconnect these intervals. Let I be the graph
obtained by representing each discovered interval as a node and connecting two
nodes if the process has already found an edge connecting the intervals they
represent. The message carries along with it a copy of the graph I. The goal
is to reach as many intervals as possible in order to eventually reach t. As the
nodes do not necessarily know all the failures, some of the intervals are “fake”,
in the sense that inside an interval there may be a failure (which the message
still does not know about) that splits this interval, possibly into 3 intervals,
where two of them are already connected. The intuition is that as long as the
message does not encounter this failure, we do not care that the data it stores
is imprecise, namely, if the message never encounters this failure, it means that
this failure does not disturb our routing process and therefore we do not care
about it. The other possibility is that eventually the message will encounter
this failure, which will force it to update the set of intervals it carries along.
Notice that the latter can happen at most f times, where f is the number of
failed edges.

8

We now describe the routing process more formally. For simplicity, we first
describe a solution where the message forwarded during the routing process
is of size O(|F |2 · log n) bits, we later describe the small modifications needed
to reduce the message size to O(|F | · log n) bits. The header of the message
contains the following additional data: it stores the set of currently known
intervals, and for each pair of intervals I, I ′ it stores one of the following three
items: a discovered edge e(I, I ′) connecting them, an indication discon(I, I ′)
that these two intervals can not be connected, or an indication Unknown(I, I ′)
that it is still unknown if these two intervals can be connected. (Notice that
some of the intervals are already connected by the original tree T .) The goal is
to explore the pairs of intervals that are not decided yet, in order to eventually
reach t if possible, or to conclude that t is not reachable from s in H|T \ F .

At the beginning of this process, the source s is unaware of the failures,
hence the set of intervals contains only one interval (which represents the entire
tree T), and it just tries to route on T as if no failures occurred. The simplest
scenario is that the path connecting s and t in T is free from failures and the
message arrives at its destination. The more interesting case is when the routing
process encounters some failure along the way and thus can not complete the
normal routing process successfully.

In case a new failure is detected, the set of intervals is updated accordingly,
and the set of recovery edges is updated as well, where by a recovery edge we
mean an edge that reconnects two intervals that are not connected in T \ F .
Namely, assume the interval I is now split into at most three intervals I1, I2, I3,
and consider an edge e(I, I ′) that was previously believed to connect I to some
other interval I ′. This edge now connects one of the three intervals I1, I2, I3 to I ′,
and as we know the incident nodes of the edge, there is no problem to identify the
right one, say, I1, and update the information in the message header to include
e(I1, I

′). In addition, if it is already known that there is no way to reconnect I
to some other interval I ′ (i.e., the message header contains discon(I, I ′)), then
it is also impossible to reconnect I ′ to any of I1, I2, I3 and we update the data in
the message header by storing in it the indicators discon(I1, I

′), discon(I2, I
′)

and discon(I3, I
′).

At any stage during the routing process, the routing process may be in one
of three states. The first state is that the nodes can check if using the recovery
edges collected so far it is possible to reach t (for example, by running a DFS on
the graph I). In the second state, the nodes can verify if it is impossible to reach
t in H|T \ F . This case happens when it is already known that all the intervals
that are reachable from s can not be connected to any other interval and t is
still not reachable from s, where we say that an interval I is reachable from
some node v ∈ T if the interval containing v and the interval I are connected
in I. The third state is where it is still unclear if it is possible to reach t in
H|T \ F .

In the first state, the message is sent to t (assuming no new failures are
detected during the remaining part of the journey). In the second state, an
indication that t is not reachable in H|T \ F is sent to s. In the third state,
pick a pair of intervals (I, I ′) that have not been decided yet (i.e., such that

9

the message header contains Unknown(I, I ′)) and such that I is reachable from
the current node (and therefore also from s). If no such pair exists, it can be
determined that the routing is not possible. Next, search for a recovery edge
connecting I and I ′ as follows. First, forward the message to some node in I.
Once reaching I, check the potential search balanced trees, namely, the search
trees for the interval I. This data can be extracted from the routing tables of the
first and last nodes vi and vj in the interval I, recall that the set the potential
search trees is a subset of SR(vi) ∪ SL(vj). (Note that in order to route to the
nodes vi and vj , the nodes only need to be familiar with the indices `(vi) and
`(vj).) Now for each potential search tree T1 on an interval I1 ⊆ I, search for a
recovery edge reconnecting to I ′. The search on T1 can be done as follows. First
reach the node z containing the root of T1 (recall that the root of T1 represents
an edge (x, y) where x is in I1 and y is outside, so z = x and that the edge (x, y)
is part of the identifier of T1). The node z stores in its routing table the left and
right children of the root of T1 as well as the ranges they represent, so the node
z knows if it supposed to continue the search on the left or right child. This
process continues until reaching the leaves. If the leaf is not in the range I ′, then
it’s not hard to see that I1 and I ′ can not be connected. Otherwise, there are
two subcases. If the edge in the leaf is not faulty, then we found a recovery edge
reconnecting I and I ′. The second subcase is that this edge is faulty. Recall
that each leaf stores an identifier to the next leaf, so we can just check the next
leaf, and so on. This is repeated for all O(log n) potential subintervals of I, until
either finding the desired recovery edge connecting I and I ′ or deciding that it
is impossible to connect I to I ′.

3.3. Analysis
This section is devoted to proving Lemma 3.1.

Correctness.. We need to prove that if s and t are connected in H|T \ F , then
t will get the message. This follows almost trivially from [11] and is proved in
the following lemma.

Lemma 3.2. If s and t are connected in H|T \ F , then the message will reach
its destination using our routing scheme.

Proof: Assume s and t are connected in H|T \F . Consider only final intervals,
namely, intervals that were not split any more during the routing process. Let
Ifin be the final graph I. It’s not hard to verify that there must be a path of
final intervals in Ifin connecting the final interval of s with the final interval of t.
As our algorithm checks all possible pairs of intervals, it will eventually find that
path (or some other path p reaching t). Therefore, either the algorithm manages
to reach t on p, or it detects another failure on p, but this is in contradiction
with the fact that we consider final intervals.

Stretch Analysis..

10

Lemma 3.3. If s and t are connected in H|T \ F , then the length of the path
obtained by our routing scheme on H|T \ F is at most O(f2(f · diam(T) + f ·
WH + log2 n · diam(T))).

Proof: As mentioned above, there are at most O(f) real intervals. Therefore,
at most O(f2) pairs of real intervals need to be examined. In the beginning, the
routing process is unaware of these intervals, so it might check “fake” intervals.
At first glance, this appears to be a waste and it seems that we might need to
check more than O(f2) pairs of intervals. But a more careful inspection reveals
that it is enough to check only O(f2) pairs of intervals. To see why this is true,
assume we have already checked the pair of intervals I and I ′ and at some point
discover that I splits into two or three intervals, I1, I2, I3. There are two cases.
The first is that we discovered that I and I ′ can not be connected. In that case
we can determine that all I1, I2, I3 can not be connected to I ′, and actually
this works to our advantage, as in one check we saved two or three checks. The
second case is where I and I ′ were connected by an edge e = (u, v) such that
u ∈ I and v ∈ I ′. Notice that u must belongs to one of I1, I2, I3. Assume w.l.o.g.
that it belongs to I1. Then we can determine that I1 and I ′ are connected by the
edge e. In addition, each time we try to discover if two intervals are connected
or not, we either determine if this pair can be connected or not, or we discover
another failure. As mentioned earlier the latter can happen at most f times.
To conclude, there are at most O(f2) such checks.

Next we bound the maximum length of the path obtained by a single check
of two intervals. Assume we want to check the pair of intervals I and I ′. It must
be the case that one of the intervals is reachable by the edges of T together with
the recovery edges discovered so far. Therefore, the path leading to the relevant
interval is of length at most (f + 1) · diam(T) + f ·WH , where diam(T) is the
diameter of T . To see this, note that the diameter of each of the connected
subtrees of T \ F is at most diam(T), and in addition, the path uses at most
f recovery edges of weight at most WH each. Next, we bound the length of
the subpath used for checking the pair of intervals I and I ′ = [a, b] once we
are already in I. It’s enough to bound the maximum length assuming no new
faulty edge was encountered during the way. We know the interval I, and in
particular we know its first and last nodes and thus can easily find the id’s of
the O(log n) search trees that need to be examined. We now bound the length
of one of these search trees T1. The id of the tree T1 contains the root node
of the tree T1 and each intermediate node contains the id’s of its left and right
children and the ranges they represent. Moreover, we assume that the interval
is connected, so every two nodes in the interval are reachable using only the
edges of T . We start with the root of T1 and search for the edge e of minimum
`(Out(e, S)) that is equal to or greater than a, where the set S is the set of
nodes P (r(T1)) where r(T1) is the root of T1. Checking the ranges of children of
the root, we know if we need to move left or right, and we continue in this way
until reaching the relevant leaf. Note that a child and a parent in the tree T1

are not necessarily adjacent in T , but their distance is at most diam(T). The
depth of T1 is at most log n, and for each step we might need to travel a distance

11

at most diam(T). Therefore the total length for reaching the relevant leaf for
a single search tree is at most log n · diam(T). Summing over all search trees,
the total length is O(log2 n · diam(T)). Note that once reaching a leaf in one
of the search trees, this leaf might represent a faulty edge, therefore we might
need to check the next leaf and so on, until either reaching a leaf that is not
in I ′ or finding a non-faulty edge in I ′. Notice that this can happen at most f
times for all search trees (since the sets of edges of the search trees are disjoint),
and in addition, moving from one leaf to the next can be done along a path of
length at most diam(T). All in all, the total length of the path traversed on T
is O(f2(f · diam(T) + f ·WH + log2 n · diam(T))).

The label of a node v is just the index `(v) and thus of size O(log n) bits. In
addition, v participated in O(log n) search trees, and for each such search tree,
O(log n · degH(v)) bits are stored in the routing table Av(T) of v. We get that
the routing table Av(T) is of size O(log2 n · degH(v)) bits.

Together with Lemmas 3.2 and 3.3, Lemma 3.1 follows.

4. Analysis for the entire Routing Scheme

In this section we analyze our routing scheme. Let p be a shortest path
connecting s and t in G \ F , and let i be the index such that 2i−1 ≤ dist(P) =
dist(s, t, G \ F) ≤ 2i.

The following lemmas prove Theorem 1.1.

Lemma 4.1. The nodes s and t are connected in Gi|Ti(t) \ F .

Proof: First note that all edges in p are of weight at most 2i and thus exist in
Gi, and moreover as p is a path in G\F , all these edges are non-faulty and thus
occur also in Gi \ F . Moreover, Ti(t) contains all nodes at distance at most 2i

from t. We get that all nodes in p are in Ti(t). The lemma follows.

Lemma 4.2. The path obtained by our routing scheme is of length at most
O(f2 · k · dist(s, t, G \ F)(f + log2 n)).

Proof: By Lemma 4.1, our routing scheme performs at most i iterations. By
Lemma 3.3, the path traversed in each iteration j is of length at most O(f2(f ·
4(2k−1)2j+f ·WTj(t)+log2 n·4(2k−1)2j)) = O(f2(f ·k·2j+f ·2j+log2 n·k·2j)).
Summing over all iterations, the lemma follows.

Lemma 4.3. The size of the routing table of a node v is at most dlog (nW)e ·
k · n1/k · deg(v) · log2 n bits.

Proof: There are dlog (nW)e iterations. For each iteration i, v belongs to at
most k ·n1/k trees in TCi. For each such tree T the node v stores in its routing
table Av(T). By Lemma 3.1, Av(T) is of size O(log2 n · degG(v)) bits. The
lemma follows.

12

Lemma 4.4. The labels are of size dlog (nW)e · log n bits.

Proof: Consider a node t ∈ V . The label of t is the concatenation of the labels
given to t by our routing scheme for trees with failures for each tree Ti(t) for
every 1 ≤ i ≤ dlog (nW)e. By Lemma 3.1, the size of each such label is O(log n)
bits, and thus the label of t is of size dlog (nW)e · log n bits.

Lemma 4.5. The message forwarded during the routing process is of size O(|F |2·
log n) bits.

Proof: It’s not hard to see that O(log n) bits are stored in the message for each
pair of intervals .

In fact, the message size can be reduced to O(|F | · log n) bits. To see this,
note that in order to decide connectivity in Gi|Ti(t), there is no need to store
information on all pairs of intervals; rather, it’s enough to store at most |F |
recovery edges and an indication on which pairs of intervals have already been
examined. This can be done using O(|F |·log n) bits as follows. Store four lists of
intervals: ReachOldList, ReachNewList, NonReachList and InCheckList. The
first two lists contain intervals that are already known to be reachable from s, the
first list represents “old” intervals and the second “new” discovered intervals.
The list NonReachList represents intervals that are not reachable from s or
from any interval in the list ReachOldList. The list InCheckList represents
intervals whose reachability has not yet been checked. In the beginning all lists
but ReachOldList are empty and the list ReachOldList contains the interval
representing the entire tree. In each iteration the first interval I in the list
InCheckList is checked against the intervals of the list ReachOldList (one by
one) until either finding a recovery edge and deciding that I is reachable from s
or deciding that it is not reachable from any interval in the list ReachOldList.
In the first case, I is added to the list ReachNewList, and in the second case it
is added to the list NonReachList. If during the routing process a faulty edge
is encountered on one of the reachable intervals I, then the interval I splits
into two or three intervals, I1, I2, I3. One or two of these intervals are now
not reachable from s, so we add these intervals back to the list InCheckList.
In addition, substitute the interval I by the intervals from the set {I1, I2, I3}
that are reachable from s. When the list InCheckList becomes empty, move
all intervals from the list NonReachList to the list InCheckList and set the list
ReachOldList to be the list ReachNewList.

We note that if we care only for the total size of the routing tables at all the
nodes, then it’s possible to reduce the stretch bound by a logarithmic factor.
This can be achieved as follows. Recall that the algorithm stores for each internal
node v in M a balanced search tree T (v) in a distributed manner. Let I be the
interval of nodes corresponds to the internal node v. Instead of storing the tree
T (v) distributively on all nodes in I, the algorithm can just pick an arbitrary
node x in I and store the entire tree T (v) in x. It’s not hard to see that this
will reduce the stretch by a logarithmic factor.

13

Acknowledgement: I would like to thank my advisor, David Peleg, for very
helpful ideas, comments and observations. I also thank Michael Langberg and
Liam Roditty for useful discussions.

References

[1] I. Abraham, S. Chechik, C. Gavoille and D. Peleg. Forbidden-set distance labels
for graphs of bounded doubling dimension. In PODC, pages 192–200, 2010.

[2] S. Alstrup, G. S. Brodal and T. Rauhe. New Data Structures for Orthogonal
Range Searching. Proc. 41st IEEE Symp. on Foundations of Computer Science
(FOCS), 198–207, 2001.

[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved routing strategies
with succinct tables. J. Algorithms, 307–341, 1990.

[4] B. Awerbuch, S. Kutten, and D. Peleg. On buffer-economical store-and-forward
deadlock prevention. In Proc. INFOCOM, pages 410–414, 1991.

[5] B. Awerbuch and D. Peleg. Sparse partitions. 31st FOCS, 503–513, 1990.

[6] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. f -sensitivity distance oracles
and routing schemes. 18th ESA,84–96, 2010.

[7] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.
In Proc. IEEE Symp. on Foundations of Computer Science, pages 648–658, 1993.

[8] B. Courcelle and A. Twigg. Compact forbidden-set routing. STACS, 37–48, 2007.

[9] L.J. Cowen. Compact routing with minimum stretch. J. Alg., 38:170–183, 2001.

[10] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars. Computational Ge-
ometry: Algorithms and Applications. Springer, 2008.

[11] R. Duan and S. Pettie. Connectivity oracles for failure prone graphs. In Proc.
ACM STOC, 2010.

[12] T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch
factor. J. Algorithms, 46:97–114, 2003.

[13] P. Fraigniaud and C. Gavoille. Memory requirement for universal routing schemes.
14th PODC, 223–230, 1995.

[14] C. Gavoille and M. Gengler. Space-efficiency for routing schemes of stretch factor
three. J. Parallel Distrib. Comput., 61:679–687, 2001.

[15] C. Gavoille and D. Peleg. Compact and localized distributed data structures.
Distributed Computing, 16:111–120, 2003.

[16] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, Philadel-
phia, PA, 2000.

[17] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables.
J. ACM, 36(3):510–530, 1989.

14

[18] N. Santoro and R. Khatib. Labelling and implicit routing in networks. The
Computer Journal, 28(1):58, 1985.

[19] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th ACM Symp.
on Parallel algorithms and architectures (SPAA), 1–10, 2001.

[20] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52, 1–24, 2005.

[21] D. A. Twigg. Forbidden-set Routing. PhD thesis, University of Cambridge (King’s
College), 2006.

[22] J. van Leeuwen and R. Tan. Computer networks with compact routing tables.
G. Rozemberg and A. Salomaa, editors, The book of L, 259-273, 1986.

15

1 2 3 4 5 6 7 9 11 12 13 14 15 16 1710

1 3 5 8 10 12 14 16

7 8 18

2 6 11 15

4 13

9

17

1

2

3

4

5 6

7

8

9

11

13

14

12

15 18

16 17

10

v

(10,5)

(13,1)(10,1) (10,6) (13,12)

(13,12)

(10,5)

(12,14)(10,6)(10,1)

(13,1)

(a)

(c)

(b)

Figure 2: (a) The tree T and L(T). Black solid edges are the tree edges and the red
dashed edges are the remaining edges in the induced graph. (b) The main balanced
binary tree M. (c) The balanced binary tree of the inner node v in M, represent-
ing the interval 10 − 13. Note that the set of edges Eout(P (v)) satisfies Eout(P (v)) =
{(10, 1), (13, 1), (10, 5), (10, 6), (13, 12), (12, 14)}, where the edges are sorted by Out(e, P (v)).

16

