Public Key Cryptography (Spring 2003)
 Instructor: Adi Shamir
 Teaching assistant: Eran Tromer

Note: Solving polynomial equations modulo prime powers

We have seen Berlekamp's algorithm for finding square roots modulo a prime. However, this algorithm cannot be used directly for finding roots modulo a prime power $p^{e}(e>1)$ because $a^{\frac{p^{e}-1}{2}}=1$ only holds for a small fraction of $a \in \mathbb{Z}_{p^{e}}$. We thus proceed as follows.

Finding square roots modulo p^{2}

Given a prime p and $a \in \mathbb{Z}_{p^{2}}$ we wish to find the solutions of

$$
\begin{equation*}
x^{2} \equiv a \quad\left(\bmod p^{2}\right) \tag{1}
\end{equation*}
$$

We begin by solving the following (e.g., using Berlekamp's algorithm):

$$
\begin{equation*}
y^{2} \equiv a \quad(\bmod p) \tag{2}
\end{equation*}
$$

Each solution x of (1) is congruent modulo p to a solution y of (2). It thus suffices to find, for each y, the values $x=y+i p$ that fulfill (1). This is done as follows.

$$
\begin{equation*}
a \equiv(y+i p)^{2} \equiv y^{2}+2 y i p+i^{2} p^{2} \equiv y^{2}+2 y i p \quad\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

so we wish to say:

$$
\begin{equation*}
i \equiv \frac{a-y^{2}}{2 y p} \quad\left(\bmod p^{2}\right) \tag{4}
\end{equation*}
$$

In general we cannot divide by a multiple of p, because it does not have an inverse modulo p^{2}. However, by (2) we have $a-y^{2} \equiv 0(\bmod p)$, so the p factors cancel out: $a-y^{2} \equiv t p\left(\bmod p^{2}\right)$ for some t, so we can compute i :

$$
i=t / 2 y \quad\left(\bmod p^{2}\right)
$$

This fails if $2 y$ does not have an inverse modulo p^{2}, or equivalently, when $\operatorname{gcd}\left(2 y, p^{2}\right)>1$. This happens when either $p=2$ (which is an easy special case) or y is a multiple of p. In the latter case, if there exists a corresponding solution $x=y+i p$ then $a \equiv x^{2} \equiv 0\left(\bmod p^{2}\right)$, so we merely need to consider the trivial case $a=0$ separately.
To conclude, we saw that each root modulo p can be "lifted" into a root modulo p^{2} by simple computation. This is a special case of "Hensel lifting".

Finding square roots modulo p^{e} for $e>2$

To find roots modulo p^{4}, we first find roots modulo p and "lift" them into roots modulo p^{2} as above. Then, we then "lift" the roots modulo p^{2} to into roots modulo p^{4}. This can be similarly to the above, except we replace p by p^{2}, and p^{2} by p^{4}. The handling of non-invertible denominators can be generalized.

By such repeated squaring, we can compute roots modulo p^{e} for any e which is a power of 2 . To compute roots modulo p^{e} for other e, simply compute the roots modulo $p^{e^{\prime}}$ where $e^{\prime} \geq e$ is a power of 2 , and reduce them modulo p^{e}.

Finding roots of polynomials modulo p^{e}

The above generalizes from the special case of solving $x^{2}=a$ (i.e., extracting square roots) to finding roots of arbitrary polynomials. The essential points are that in (3) $f(y+i p) \bmod p_{i}$ is linear for any polynomial f, and that the cancellation of p in (4) always occurs.

Finding roots modulo arbitrary integers

To compute roots modulo an arbitrary natural number n whose prime factorization is known to be $n=p_{1}^{e_{1}} p_{2}^{e} \cdots p_{l}^{e_{l}}$, first compute the roots modulo each of the $p_{i}^{e_{i}}(i=1, \ldots, l)$ and them combine them using the Chinese remainder theorem.

