
1

Lattices in Cryptography #1

2

Lattice

• Discrete subgroup of R �

• Linear combinations with integer
coefficients of vectors in R �

:

• Such a set of vectors generates the
lattice. If it is linearly independent, it
forms a basis.

• Every lattice has infinitely many bases
(except...)

3

E
xa

m
pl

e

=
=

4

Lattice problems
• Shortest vector problem (SVP):

Given a
lattice L, find the shortest
element in L

basis for a
nonzero

under a given norm (usually l2).
a

• Closest vector problem (CVP):
Given a basis for a
lattice L⊆R �

and a target vector ⊆R �

,
find the lattice vector closest to .

5

a solution to SVP

the solution to CVP with this target

6

Complexity of SVP, CVP

• Approximating SVP for the l � norm within
factor γ=21/ �

is NP-hard
(with randomized reductions or some assumptioms)
but is unlikely to be NP-hard for γ= n1/2.

• Approximating CVP within polylogarithmic
factor γ= log �n is NP-hard
(for any l � norm).

• All known algorithms have exponential
approximation ratios or run in exponential
time.

Finding a vector that is at most � times
longer than the shortest vector.

Finding a vector that is at most � times farther
from the target than the closest vector.

7

The LLL lattice reduction algorithm
[Lenstra,Lenstra,Lovász 1982]

• Input: a basis for a lattice L of dimension n.
• Output: a reduced basis –

a set of short vectors that generate L.
• Runs in polynomial time.
• Proven performance:

The shortest vector in the reduced basis is at
most 2n/2 longer than the shortest nonzero
lattice vector, under the l2 norm.

• Experimental performance:
For reasonably small n, and if the gap of the
lattice is large, almost always finds the
shortest vector.

• Many variants: speedups, tradeoffs.

8

Solving low-density knapsacks

• Consider the following knapsack problem:
given s,a �,a �,…,a � find x �,x �,…,x � such that
∑ � x �a �=s .

• Density of the knapsack problem:
d=n/m where m=m a x {l o g �a �}.

• Random knapsacks with d<0.9408 can be
efficiently reduced to SVP. [Coster, Joux et al., 1991]

• Will show: breaking random knapsacks with
d<1/n by reduction to SVP.

[Lagarias, Odlyzko 1983][Frieze
19876]

9

Low-density knapsacks – the lattice

L

O

L

L

L

L

0MMMM

1000-wa �

0100-wa �

0010-wa �

0001-wa �

0000ws

vectors generating
the lattice �

Algorithm: 1. Use LLL to find the shortest vector in L.

2. Rejoice.

w=n2 �/

�

10

For the solution vector:

L

O

L

L

L

L

0MMMM

1000-wa �

0100-wa �

0010-wa �

0001-wa �

0000ws

×

x �

M

x �

x �

x �

1
T

x �Lx �x �x �w0=

11

Bad vectors, case #1:

L

O

L

L

L

L

0MMMM

1000-wa �

0100-wa �

0010-wa �

0001-wa �

0000ws

×

y �

M

y �

y �

y �

y �

T

y �Ly �y �y �w(L)=

≠0

LLL finds a vector that
is at most 2

�
/

�

times
longer than the

shortest lattice vector,
whose length here is

at most n1/2. Thus, LLL
will never return this
type of bad vectors.

12

Bad vectors, case #2:

L

O

L

L

L

L

0MMMM

1000-wa �

0100-wa �

0010-wa �

0001-wa �

0000ws

×

y �

M

y �

y �

y �

y �

T

y �Ly �y �y �0=

x �Lx �x �x �0

A multiple of (x �,...,x �) is
OK.

However, we may get a
short vector with

coefficients outside {0,1}
that does not correspond

to a solution to the
knapsack.

13

Bad vectors, case #2 (cont.)

Goal: bound the probability that a random
knapsack has any bad vector.

14

Bad vectors, case #2 (cont.)

15

Bad vectors, case #2 (cont.)

16

M

`

17

Low-density knapsacks -
conclusion
• Even though the LLL algorithm provides

only an exponential approximation, it
can provably solve most knapsacks with
density .

• In practice, LLL and variants thereof
perform much better than the proven
bounds, and can be used to solve
knapsacks with much higher density.

18

Factoring using lattices [Schnorr 1993]

• To factorize a composite n with high probability, find
“random” x,y such that

• The Morrison-Brillhart recipe: find smooth numbers and
combine their exponent vectors. In this case:

• Consider the

�

primes smaller than

�

.

1. Find

� �

+

�

pairs (��� , ��) such that both ��� and (��� - �� �) are

�

-smooth:

2. Find a subset

	

such that

3. We get two squares over

. Extract their square roots:

19

Factoring using lattices – variant
1. Find only

�

+

�

pairs (��� , ��) such that both � � and � � - �� � are

�

-smooth:

2. Find a subset

�

such that

3. Now:

20

Closest-vector problem for factoring:

logp �

M

0
0
0
0

L

O

L

L

L

L

MMMMM

w logp �0000

w log7log p �000

w log50log p �00

w log300log p �0
w log2000log p �

×

T

≈

L**

w logn0L0000

e �

M

e �

e �

e �

e 	

=

21

Factoring using lattices (cont.)
• How to find many pairs (u �,v �) such that both u � and

u �- v �n are smooth over the first t primes?
��� � ���

�
	

	
	

	

�

�����

� �� � � �				

� �� � �� � ���			

� �� � �	�� � ���		

� �� � �		�� � ���	

� �� � �			�� � ���

�

T

�
�**

� �!" #$�$$$$

%'&
(

%*)
+-,

+/.
+*0

1

• Find very good CVP solutions in

2

1

norm, that is:
|/////|1 close to 0, ///// close to to 3log 4.

• Set

• 5 > |///// 6 7log 8|

• |/////|1 is small, so | 9- : 8| is small ; likely to be smooth.

22

Factoring using lattices (cont.)

• (Verify that there are enough short
vectors.)

• Using an efficient algorithm for the CVP
problem in l1 with sufficiently good
approximation, we can factor integers.

• With known lattice algorithms:
impractical.

