Lattices in Cryptography #1

Lattice

- Discrete subgroup of \mathbb{R}^n
- Linear combinations with integer coefficients of vectors in \mathbb{R}^n :

 $L = \{ x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_m \vec{v}_n : x_1, x_2, \dots, x_m \in \mathbb{Z} \}$

- Such a set of vectors generates the lattice. If it is linearly independent, it forms a basis.
- Every lattice has infinitely many bases

Lattice problems

 Shortest vector problem (SVP):
Given a basis for a lattice L, find a shortest nonzero element in L under a given norm (usually l₂).

$$\vec{u}$$
 : $\vec{u} \in L \setminus {\{\vec{0}\}}, \forall \vec{v} \in L : ||\vec{u}|| \le ||\vec{v}||$

• Closest vector problem (CVP):

Given a basis for a lattice $L \subseteq \mathbb{R}^n$ and a target vector $\vec{t} \subseteq \mathbb{R}^n$, find the lattice vector closest to \vec{t} .

$$\vec{u} \quad : \quad \vec{u} \in L \,, \, \forall \vec{v} \in L \, : \, \|\vec{u} - \vec{t}\| \leq \|\vec{v} - \vec{t}\|$$

Complexity of SVP, CVP

Finding a vector that is at most γ times longer than the shortest vector.

- Approximating SVP for the l_p norm within factor $\gamma = 2^{1/p}$ is NP-hard (with randomized reductions or some assumptions) but is unlikely to be NP-hard for $\gamma = n^{1/2}$.
- Approximating CVP within polylogarithmic factor $\gamma = \log^c n$ is NP-hard (for any l_p norm). Finding a vector that is at most γ times farther

from the target than the closest vector.

 All known algorithms have exponential approximation ratios or run in exponential time.

The LLL lattice reduction algorithm

[Lenstra,Lenstra,Lovász 1982]

- Input: a basis for a lattice L of dimension n.
- Output: a reduced basis a set of short vectors that generate *L*.
- Runs in polynomial time.
- Proven performance: The shortest vector in the reduced basis is at most $2^{n/2}$ longer than the shortest nonzero lattice vector, under the l_2 norm.
- Experimental performance: For reasonably small *n*, and if the gap of the lattice is large, almost always finds the shortest vector.
- Many variants: speedups, tradeoffs.

Solving low-density knapsacks

- Consider the following knapsack problem: given $s,a_1,a_2,...,a_n$ find $x_1,x_2,...,x_n$ such that $\sum_i x_i a_i = s$.
- Density of the knapsack problem: d=n/m where $m=\max\{\log_2 a_i\}$.
- Random knapsacks with d<0.9408 can be efficiently reduced to SVP. [Coster, Joux et al., 1991]
- Will show: breaking random knapsacks with d < 1/n by reduction to SVP.

[Lagarias, Odlyzko 1983][Frieze

Low-density knapsacks – the lattice $w=n2^{n/2}$

Algorithm: 1. Use LLL to find the shortest vector in *L*. 2. Rejoice.

For the solution vector:

Bad vectors, case #1:

Bad vectors, case #2:

Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x} = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

Definition 1. A vector $\vec{y} \in \mathbb{Z}^n$ is <u>bad</u> for knapsack weights $\vec{a} = (a_1, \ldots, a_n)$ if:

- (1) $(0, \vec{y}) \in L_{\vec{a}}$ (2) $\|\vec{y}\| \le \sqrt{n2^n}$
- (3) $\forall k \in \mathbb{Z} : \vec{y} \neq k\vec{x}$

Goal: bound the probability that a random knapsack has <u>any</u> bad vector.

Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x} = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

Definition 1. A vector $\vec{y} \in \mathbb{Z}^n$ is <u>bad</u> for knapsack weights $\vec{a} = (a_1, \ldots, a_n)$ if:

- $(1) \quad (0,\vec{y}) \in L_{\vec{a}}$
- $(2) \|\vec{y}\| \le \sqrt{n2^n}$
- (3) $\forall k \in \mathbb{Z} : \vec{y} \neq k\vec{x}$

Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_0 \in Z$ such that (4) $|y_0| \leq 2\sqrt{n2^n}$

(5)
$$\sum_{i=1}^{n} y_i a_i = y_0 \sum_{i=1}^{n} x_i a_i$$

Proof. Let $s = \sum_{i=1}^{n} x_i a_i$ and let $y_0 = \sum_{i=1}^{n} y_i a_i / s$. By (1), $y_0 \in \mathbb{Z}$. (5) holds since both sides equal $y_0 s$. We have

$$|sy_0| = \left|\sum_{i=1}^n y_i a_i\right| \le \left|\sum_{i=1}^n \|\vec{y}\| a_i\right| = \|\vec{y}\| \sum_{i=1}^n a_i \stackrel{(*)}{\le} \|\vec{y}\| 2s$$

where (*) holds because w.l.o.g., $s \ge \frac{1}{2} \sum_{i=1}^{n} a_i$. Thus $|y_0| \le 2 \|\vec{y}\| \le \sqrt{n2^n}$.

Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x} = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

Definition 1. A vector $\vec{y} \in \mathbb{Z}^n$ is <u>bad</u> for knapsack weights $\vec{a} = (a_1, \ldots, a_n)$ if:

(1) $(0, \vec{y}) \in L_{\vec{a}}$ (2) $\|\vec{y}\| \leq \sqrt{n2^n}$ (3) $\forall k \in \mathbb{Z} : \vec{y} \neq k\vec{x}$

Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_0 \in Z$ such that (4) $|y_0| \leq 2\sqrt{n2^n}$ (5) $\sum_{i=1}^n y_i a_i = y_0 \sum_{i=1}^n x_i a_i$

Lemma 2. For any fixed $y_0 \in Z$ and $\vec{y} \in \mathbb{Z}^n$ fulfilling (3), if \vec{a} is drawn randomly from $\{0, \ldots, b\}^n$ then the probability that \vec{y} and y_0 fulfill (5) is at most 1/b. *Proof.* Let $z_i = y_i - x_i a_i$. Then (5) is equivalent to $\sum_{i=1}^n z_i a_i = 0$. By (3), there exists some nonzero z_j . $\Pr_{\vec{a}}[(5)] = \Pr_{\vec{a}} \left[z_i a_i = -\sum_{i \neq j} z_i a_i \right] \leq 1/b$ by independence. Fix a arbitrary nonzero solution vector $\vec{x} = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

Definition 1. A vector $\vec{y} \in \mathbb{Z}^n$ is <u>bad</u> for knapsack weights $\vec{a} = (a_1, \ldots, a_n)$ if:

(1) $(0, \vec{y}) \in L_{\vec{a}}$ (2) $\|\vec{y}\| \leq \sqrt{n2^n}$ (3) $\forall k \in \mathbb{Z} : \vec{y} \neq k\vec{x}$ **Corollary.** If the knapsack weights \vec{a} are drawn from $\{0, \dots, 2^{n^2}\}$ then the probability that there exists a bad vector for \vec{a} is negligible.

Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_0 \in Z$ such that (4) $|y_0| < 2\sqrt{n2^n}$

(5)
$$\sum_{i=1}^{n} y_i a_i = y_0 \sum_{i=1}^{n} x_i a_i$$

Lemma 2. For any fixed $y_0 \in Z$ and $\vec{y} \in \mathbb{Z}^n$ fulfilling (3), if \vec{a} is drawn randomly from $\{0, \ldots, b\}^n$ then the probability that \vec{y} and y_0 fulfill (5) is at most 1/b.

Lemma 3. If \vec{a} is drawn randomly from $\{0, \ldots, b\}^n$, the probability that there exists a bad \vec{y} for \vec{a} is at most $2^{(1/2+o(1))n^2}/b$.

Proof. There are $(4\sqrt{n2^n}+1)$ choices of y_0 that fulfill (4) and at most $(2\sqrt{n2^n}+1)^n$ choices of \vec{y} that fulfill (2). Thus:

$$\Pr_{\vec{a}} \left[\exists \text{bad } \vec{y} \right] \leq \Pr_{\vec{a}} \left[\exists y, \vec{y}_0 : (2)(3)(4)(5) \right]$$
$$\leq \left(2\sqrt{n2^n} + 1 \right)^n \left(4\sqrt{n2^n} + 1 \right) \underbrace{\max_{\vec{y}, y_0} \left\{ \Pr_{\vec{a}} \left[(3)(5) \right] \right\}}_{\leq 1/b \text{ by Lemma } 2}$$
$$\underbrace{16}$$

Low-density knapsacks - conclusion

- Even though the LLL algorithm provides only an exponential approximation, it can provably solve most knapsacks with density $d \le n/log_2 2^{n^2} = 1/n$.
- In practice, LLL and variants thereof perform much better than the proven bounds, and can be used to solve knapsacks with much higher density.

Factoring using lattices [Schnorr 1993]

- To factorize a composite n with high probability, find "random" x,y such that $x^2 \equiv y^2 \pmod{n}$
- The Morrison-Brillhart recipe: find smooth numbers and combine their exponent vectors. In this case:
 - Consider the *t* primes smaller than *B*.
 - 1. Find 2t+1 pairs (u_i, v_i) such that both u_i and $(u_i v_i n)$ are *B*-smooth:

$$u_i = \prod_{j=1}^{\iota} p_j^{a_{i,j}}, \quad (u_i - v_i n) = \prod_{j=1}^{\iota} p_j^{b_{i,j}}$$

2. Find a subset *S* such that

$$orall j: \sum_{i\in S} a_{i,j}\equiv 0 \ , \quad \sum_{i\in S} b_{i,j}\equiv 0 \ (ext{mod 2})$$

3. We get two squares over \mathbb{Z} . Extract their square roots:

$$\prod_{i\in S} u_i = x^2 , \quad \prod_{i\in S} (u_i - v_i n) = y^2$$

Factoring using lattices – variant

1. Find only t+1 pairs (u_i, v_i) such that both u_i and $u_i - v_i n$ are *B*-smooth:

$$u_i = \prod_{j=1}^{r} p_j^{a_{i,j}}, \quad |u_i - v_i n| = \prod_{j=1}^{r} p_j^{b_{i,j}}$$

2. Find a subset *S* such that

$$\forall j : \sum_{i \in S} (a_{i,j} + b_{i,j}) = 0 \pmod{2}$$

3. Now:
$$y = \prod_{j} p_{j}^{\sum_{i \in S} a_{i,j}} = \prod_{i \in S} u_{i}$$
$$y' = \prod_{j} p_{j}^{\sum_{i \in S} b_{i,j}} = \prod_{i \in S} (u_{i} - v_{i}n) \equiv y \pmod{n}$$
$$x = \prod_{j} p_{j}^{\sum_{i \in S} (a_{i,j} + b_{i,j})/2} \equiv \sqrt{y \cdot y'} \pmod{n}$$
$$\Rightarrow \qquad x^{2} \equiv y \cdot y' \equiv y^{2} \pmod{n}$$

19

Closest-vector problem for factoring:

e_1	×	$\log p_1$	0	0	0	•••	0	$w\log 2$
e_2		0	$\log p_2$	0	0	•••	0	$w \log 3$
e_3		0	0	$\log p_3$	0	•••	0	$w\log 5$
e_4		0	0	0	$\log p_4$	•••	0	$w\log 7$
•		•	•	•	:	•	•	• • •
e_t		0	0	0	0	•••	$\log p_t$	$w \log p_t$
	_	*	*	*	*	• • •	*	*
	\approx	0	0	0	0	• • •	0	$w \log n$

 \vec{t}

Factoring using lattices (cont.)

• How to find many pairs (u_i, v_i) such that both u_i and u_i - $v_i n$ are smooth over the first t primes?

• $|////|_1$ is small, so |u-vn| is small \Rightarrow likely to be smooth.

Factoring using lattices (cont.)

- (Verify that there are enough short vectors.)
- Using an efficient algorithm for the CVP problem in l₁ with sufficiently good approximation, we can factor integers.
- With known lattice algorithms: impractical.