Lattices in Cryptography \#1

Lattice

- Discrete subgroup of \mathbb{R}^{n}
- Linear combinations with integer coefficients of vectors in \mathbb{R}^{n} :
$L=\left\{x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{n}: x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{Z}\right\}$
- Such a set of vectors generates the lattice. If it is linearly independent, it forms a basis.
- Every lattice has infinitely many bases (except...)

Lattice problems

- Shortest vector problem (SVP):

Given a basis for a
lattice L, find a shortest nonzero element in L under a given norm (usually l_{2}).
$\vec{u}: \vec{u} \in L \backslash\{\overrightarrow{0}\}, \forall \vec{v} \in L:\|\vec{u}\| \leq\|\vec{v}\|$

- Closest vector problem (CVP):

Given a basis for a lattice $L \subseteq \mathbb{R}^{n}$ and a target vector $\vec{t} \subseteq \mathbb{R}^{n}$, find the lattice vector closest to \vec{t}.

$$
\vec{u}: \quad \vec{u} \in L, \forall \vec{v} \in L:\|\vec{u}-\vec{t}\| \leq\|\vec{v}-\vec{t}\|
$$

Complexity of SVP, CVP

Finding a vector that is at most γ times longer than the shortest vector.

- Approximating SVP for the l_{p} norm within factor $\gamma=2^{1 / p}$ is NP-hard
(with randomized reductions or some assumptioms) but is unlikely to be NP-hard for $\gamma=n^{1 / 2}$.
- Approximating CVP within polylogarithmic factor $\gamma=\log ^{c} n$ is NP-hard (for any l_{p} norm). from the target than the closest vector.
- All known algorithms have exponential approximation ratios or run in exponential time.

The LLL lattice reduction algorithm

 [Lenstra,Lenstra,Lovász 1982]- Input: a basis for a lattice L of dimension n.
- Output: a reduced basis a set of short vectors that generate L.
- Runs in polynomial time.
- Proven performance:

The shortest vector in the reduced basis is at most $2^{n / 2}$ longer than the shortest nonzero lattice vector, under the l_{2} norm.

- Experimental performance:

For reasonably small n, and if the gap of the lattice is large, almost always finds the shortest vector.

- Many variants: speedups, tradeoffs.

Solving low-density knapsacks

- Consider the following knapsack problem: given $s, a_{1}, a_{2}, \ldots, a_{n}$ find $x_{1}, x_{2}, \ldots, x_{n}$ such that $\sum_{i} x_{i} a_{i}=s$.
- Density of the knapsack problem: $d=n / m$ where $m=\max \left\{\log _{2} a_{i}\right\}$.
- Random knapsacks with d<0.9408 can be efficiently reduced to SVP. [Coster, Joux et al., 1991]
- Will show: breaking random knapsacks with $d<1 / n$ by reduction to SVP.
[Lagarias, Odlyzko 1983][Frieze
19876]

Low-density knapsacks - the lattice

$$
w=n 2^{n / 2}
$$

ws	0	0	0	...	0	
$-w a_{1}$	1	0	0	\ldots	0	
$-w a_{2}$	0	1	0	\ldots	0	
$-w a_{3}$	0	0	1	\ldots	0	
\vdots	:	!	\vdots		0	
$-w a_{n}$	0	0	0	\ldots	1	

Algorithm: 1. Use LLL to find the shortest vector in L.
2. Rejoice.

For the solution vector:

Bad vectors, case \#1:

Bad vectors, case \#2:

Bad vectors, case \#2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.
Definition 1. A vector $\vec{y} \in \mathbb{Z}^{n}$ is bad for knapsack weights $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ if:
(1) $(0, \vec{y}) \in L_{\vec{a}}$
(2) $\|\vec{y}\| \leq \sqrt{n 2^{n}}$
(3) $\forall k \in \mathbb{Z}: \vec{y} \neq k \vec{x}$

Goal: bound the probability that a random knapsack has any bad vector.

Bad vectors, case \#2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.
Definition 1. A vector $\vec{y} \in \mathbb{Z}^{n}$ is bad for knapsack weights $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ if:
(1) $(0, \vec{y}) \in L_{\vec{a}}$
(2) $\|\vec{y}\| \leq \sqrt{n 2^{n}}$
(3) $\forall k \in \mathbb{Z}: \vec{y} \neq k \vec{x}$

Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_{0} \in Z$ such that
(4) $\left|y_{0}\right| \leq 2 \sqrt{n 2^{n}}$
(5) $\sum_{i=1}^{n} y_{i} a_{i}=y_{0} \sum_{i=1}^{n} x_{i} a_{i}$

Proof. Let $s=\sum_{i=1}^{n} x_{i} a_{i}$ and let $y_{0}=\sum_{i=1}^{n} y_{i} a_{i} / s$. By (1), $y_{0} \in \mathbb{Z}$. (5) holds since both sides equal $y_{0} s$. We have

$$
\left|s y_{0}\right|=\left|\sum_{i=1}^{n} y_{i} a_{i}\right| \leq\left|\sum_{i=1}^{n}\|\vec{y}\| a_{i}\right|=\|\vec{y}\| \sum_{i=1}^{n} a_{i} \stackrel{(*)}{\leq}\|\vec{y}\| 2 s
$$

where $(*)$ holds because w.l.o.g., $s \geq \frac{1}{2} \sum_{i=1}^{n} a_{i}$. Thus $\left|y_{0}\right| \leq 2\|\vec{y}\| \stackrel{(2)}{\leq} \sqrt{n 2^{n}}$.

Bad vectors, case \#2 (cont.)

Fix a arbitrary nonzero solution vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.
Definition 1. A vector $\vec{y} \in \mathbb{Z}^{n}$ is bad for knapsack weights $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ if:
(1) $(0, \vec{y}) \in L_{\vec{a}}$
(2) $\|\vec{y}\| \leq \sqrt{n 2^{n}}$
(3) $\forall k \in \mathbb{Z}: \vec{y} \neq k \vec{x}$

Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_{0} \in Z$ such that
(4) $\left|y_{0}\right| \leq 2 \sqrt{n 2^{n}}$
(5) $\sum_{i=1}^{n} y_{i} a_{i}=y_{0} \sum_{i=1}^{n} x_{i} a_{i}$

Lemma 2. For any fixed $y_{0} \in Z$ and $\vec{y} \in \mathbb{Z}^{n}$ fulfilling (3), if \vec{a} is drawn randomly from $\{0, \ldots, b\}^{n}$ then the probability that \vec{y} and y_{0} fulfill (5) is at most $1 / b$.
Proof. Let $z_{i}=y_{i}-x_{i} a_{i}$. Then (5) is equivalent to $\sum_{i=1}^{n} z_{i} a_{i}=0$. By (3), there exists some nonzero z_{j}. $\operatorname{Pr}_{\vec{a}}[(5)]=\operatorname{Pr}_{\vec{a}}\left[z_{i} a_{i}=-\sum_{i \neq j} z_{i} a_{i}\right] \leq 1 / \mathrm{b}$ by independence.
: Fix a arbitrary nonzero solution vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$.
Definition 1. A vector $\vec{y} \in \mathbb{Z}^{n}$ is bad for knapsack weights $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ if:
(1) $(0, \vec{y}) \in L_{\vec{a}}$
(2) $\|\vec{y}\| \leq \sqrt{n 2^{n}}$
(3) $\forall k \in \mathbb{Z}: \vec{y} \neq k \vec{x}$

Corollary. If the knapsack weights \vec{a} are drawn from $\left\{0, \ldots, 2^{n^{2}}\right\}$ then the probability that there exists a bad vector for \vec{a} is negligible.
Lemma 1. If \vec{y} is bad for knapsack weights \vec{a} then there exists $y_{0} \in Z$ such that
(4) $\left|y_{0}\right| \leq 2 \sqrt{n 2^{n}}$
(5) $\sum_{i=1}^{n} y_{i} a_{i}=y_{0} \sum_{i=1}^{n} x_{i} a_{i}$

Lemma 2. For any fixed $y_{0} \in Z$ and $\vec{y} \in \mathbb{Z}^{n}$ fulfilling (3), if \vec{a} is drawn randomly from $\{0, \ldots, b\}^{n}$ then the probability that \vec{y} and y_{0} fulfill (5) is at most $1 / b$.

Lemma 3. If \vec{a} is drawn randomly from $\{0, \ldots, b\}^{n}$, the probability that there exists a bad \vec{y} for \vec{a} is at most $2^{(1 / 2+o(1)) n^{2}} / b$.
Proof. There are $\left(4 \sqrt{n 2^{n}}+1\right)$ choices of y_{0} that fulfill (4) and at most $\left(2 \sqrt{n 2^{n}}+1\right)^{n}$ choices of \vec{y} that fulfill (2). Thus:

$$
\begin{aligned}
\operatorname{Pr}_{\vec{a}}[\exists \mathrm{bad} \vec{y}] & \leq \operatorname{Pr}_{\vec{a}}\left[\exists y, \vec{y}_{0}:(2)(3)(4)(5)\right] \\
& \leq\left(2 \sqrt{n 2^{n}}+1\right)^{n}\left(4 \sqrt{n 2^{n}}+1\right) \underbrace{\max _{\vec{y}, y_{0}}\left\{\operatorname{Pr}_{\vec{a}}[(3)(5)]\right\}}_{\leq 1 / b \text { by Lemma } 2}
\end{aligned}
$$

Low-density knapsacks conclusion

- Even though the LLL algorithm provides only an exponential approximation, it can provably solve most knapsacks with density $d \leq n / \log _{2} 2^{n^{2}}=1 / n$.
- In practice, LLL and variants thereof perform much better than the proven bounds, and can be used to solve knapsacks with much higher density.

Factoring using lattices

- To factorize a composite n with high probability, find "random" x, y such that $x^{2} \equiv y^{2}(\bmod n)$
- The Morrison-Brillhart recipe: find smooth numbers and combine their exponent vectors. In this case:
- Consider the t primes smaller than B.

1. Find $2 t+1$ pairs $\left(u_{i}, v_{i}\right)$ such that both u_{i} and $\left(u_{i}{ }_{t} v_{i} n\right)$ are B-smooth:

$$
u_{i}=\prod_{j=1}^{t} p_{j}^{a_{i, j}}, \quad\left(u_{i}-v_{i} n\right)=\prod_{j=1}^{t} p_{j}^{b_{i, j}}
$$

2. Find a subset S such that

$$
\forall j: \sum_{i \in S} a_{i, j} \equiv 0, \quad \sum_{i \in S} b_{i, j} \equiv 0 \quad(\bmod 2)
$$

3. We get two squares over \mathbb{Z}. Extract their square roots:

$$
\prod_{i \in S} u_{i}=x^{2}, \quad \prod_{i \in S}\left(u_{i}-v_{i} n\right)=y^{2}
$$

Factoring using lattices - variant

1. Find only $t+1$ pairs $\left(u_{i}, v_{i}\right)$ such that both u_{i} and $u_{i}-v_{i} n$ are B-smooth:

$$
u_{i}=\prod_{j=1}^{t} p_{j}^{a_{i, j}}, \quad\left|u_{i}-v_{i} n\right|=\prod_{j=1}^{t} p_{j}^{b_{i, j}}
$$

2. Find a subset S such that
3. Now:

$$
\forall j: \sum_{i \in S}\left(a_{i, j}+b_{i, j}\right)=0 \quad(\bmod 2)
$$

$$
\begin{aligned}
y=\prod_{j} p_{j}^{\sum_{i \in S} a_{i, j}}=\prod_{i \in S} u_{i} \\
\begin{aligned}
& y^{\prime}=\prod_{j} p_{j}^{\sum_{i \in S} b_{i, j}}=\prod_{i \in S}\left(u_{i}-v_{i} n\right) \equiv y \quad(\bmod n) \\
& x=\prod_{j} p_{j}^{\sum_{i \in S}\left(a_{i, j}+b_{i, j}\right) / 2} \equiv \sqrt{y \cdot y^{\prime}} \quad(\bmod n) \\
& \Rightarrow \quad x^{2} \equiv y \cdot y^{\prime} \equiv y^{2} \quad(\bmod n)
\end{aligned}
\end{aligned}
$$

Closest-vector problem for factoring:

$*$	$*$	$*$	$*$	\cdots	$*$	$*$
0	0	0	0	\cdots	0	$w \log n$

Factoring using lattices (cont.)

- How to find many pairs $\left(u_{i}, v_{i}\right)$ such that both u_{i} and $u_{i}-v_{i} n$ are smooth over the first t primes?
- Find very good CVP solutions in l_{1} norm, that is:
$\mid / / / / \Lambda_{1}$ close to $0, / / / / / /$ close to to $w \log n$.
- Set $u=\prod_{e_{j}>0} p_{j}^{e_{j}}, v=\prod_{e_{j}<0} p_{j}^{-e_{j}}$
- $\varepsilon>|/ / / / /-w \log n|$

$$
\begin{gathered}
\left.\Longrightarrow \varepsilon / w>\left|\sum_{i=1}^{t} e_{i} \log p_{i}-\log n\right| \approx \begin{array}{|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & \cdots \\
\hline
\end{array} \right\rvert\, \\
\quad=|\log (u / v N)|=\left|\log \left(1+\frac{u-v n}{v n}\right)\right| \approx\left|\frac{u-v n}{v n}\right|
\end{gathered}
$$

$$
\Longrightarrow|u-v n|<v n \varepsilon / w
$$

- $\mid / / / / \Lambda_{1}$ is small, so $|u-v n|$ is small \Rightarrow likely to be smooth.

Factoring using lattices (cont.)

- (Verify that there are enough short vectors.)
- Using an efficient algorithm for the CVP problem in l_{1} with sufficiently good approximation, we can factor integers.
- With known lattice algorithms: impractical.

