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Lattices in Cryptography #1
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Lattice

• Discrete subgroup of R �

• Linear combinations with integer 
coefficients of vectors in R �

:

• Such a set of vectors generates the 
lattice. If it is linearly independent, it 
forms a basis.

• Every lattice has infinitely many bases
(except...)
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Lattice problems
• Shortest vector problem (SVP):

Given a 
lattice L, find the shortest 
element in L

basis for a
nonzero

under a given norm (usually l2).
a

• Closest vector problem (CVP):
Given a basis for a
lattice L⊆R �

and a target vector ⊆R �

,
find the lattice vector closest to     .
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a solution to SVP

the solution to CVP with this target
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Complexity of SVP, CVP

• Approximating SVP for the l � norm within 
factor γ=21/ �

is NP-hard
(with randomized reductions or some assumptioms)
but is unlikely to be NP-hard for γ= n1/2.

• Approximating CVP within polylogarithmic
factor γ= log �n is NP-hard
(for any l � norm).

• All known algorithms have exponential 
approximation ratios or run in exponential 
time.

Finding a vector that is at most � times 
longer than the shortest vector.

Finding a vector that is at most � times farther 
from the target than the closest vector.
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The LLL lattice reduction algorithm
[Lenstra,Lenstra,Lovász 1982]

• Input: a basis for a lattice L of dimension n.
• Output: a reduced basis –

a set of short vectors that generate L.
• Runs in polynomial time.
• Proven performance:

The shortest vector in the reduced basis is at 
most 2n/2 longer than the shortest nonzero 
lattice vector, under the l2 norm.

• Experimental performance:
For reasonably small n, and if the gap of the 
lattice is large, almost always finds the 
shortest vector.

• Many variants: speedups, tradeoffs.
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Solving low-density knapsacks

• Consider the following knapsack problem: 
given s,a �,a �,…,a � find x �,x �,…,x � such that  
∑ � x �a �=s .

• Density of the knapsack problem:
d=n/m where m=m a x {l o g �a �}.

• Random knapsacks with d<0.9408 can be 
efficiently reduced to SVP. [Coster, Joux et al., 1991]

• Will show: breaking random knapsacks with 
d<1/n by reduction to SVP.

[Lagarias, Odlyzko 1983][Frieze 
19876]
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Low-density knapsacks – the lattice
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vectors generating 
the lattice �

Algorithm: 1. Use LLL to find the shortest vector in L.

2. Rejoice.

w=n2 �/
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For the solution vector:
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Bad vectors, case #1: 
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LLL finds a vector that 
is at most 2

�
/

�

times 
longer than the 

shortest lattice vector, 
whose length here is 

at most n1/2. Thus, LLL 
will never return this 
type of bad vectors.
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Bad vectors, case #2: 
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A multiple of (x �,...,x �) is 
OK.

However, we may get a 
short vector with 

coefficients outside {0,1} 
that does not correspond 

to a solution to the 
knapsack.
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Bad vectors, case #2 (cont.)

Goal: bound the probability that a random 
knapsack has any bad vector.
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Bad vectors, case #2 (cont.)
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Bad vectors, case #2 (cont.)
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Low-density knapsacks -
conclusion
• Even though the LLL algorithm provides 

only an exponential approximation, it 
can provably solve most knapsacks with 
density           .

• In practice, LLL and variants thereof 
perform much better than the proven 
bounds, and can be used to solve 
knapsacks with much higher density.
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Factoring using lattices [Schnorr 1993]

• To factorize a composite n with high probability, find 
“random” x,y such that 

• The Morrison-Brillhart recipe: find smooth numbers and 
combine their exponent vectors. In this case:

• Consider the 

�

primes smaller than 

�

.

1. Find 

� �

+

�

pairs ( ��� , �� ) such that both ��� and ( ��� - �� �) are 

�

-smooth:

2. Find a subset 

	

such that

3. We get two squares over 




. Extract their square roots:
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Factoring using lattices – variant
1. Find only 

�

+

�

pairs ( ��� , �� ) such that both � � and � � - �� � are 

�

-smooth:

2. Find a subset 

�

such that

3. Now:
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Closest-vector problem for factoring:
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Factoring using lattices (cont.)
• How to find many pairs (u �,v �) such that both u � and 

u �- v �n are smooth over the first t primes?
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• Find very good CVP solutions in 

2

1

norm, that is:
|/////|1 close to 0, ///// close to to 3log 4.

• Set 

• 5 > |///// 6 7log 8|

• |/////|1 is small, so | 9- : 8| is small ; likely to be smooth.
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Factoring using lattices (cont.)

• (Verify that there are enough short 
vectors.)

• Using an efficient algorithm for the CVP 
problem in l1 with sufficiently good 
approximation, we can factor integers.

• With known lattice algorithms: 
impractical.


