Lattices in Cryptography #2

The NTRU encryption scheme

[Hoffstein, Pipher, Silverman 1998]

- Fast
- Has small keys
- Different
- Secure?

NTRU: preliminaries

- Fix n=167, q=128, p=3 (important: $q \gg p$, gcd(p,q)=1).
- We will work in the ring Z[x]/(xⁿ − 1) whose elements are polynomials of degree<n (which we will often write as *n*-vectors).
- Additional is component-wise.
- Multiplication of polynomials is done modulo x^{n-1} :

$$c = a * b \leftrightarrow c_i = \sum_{j=0}^{n-1} a_j b_{i-j \pmod{n}}$$

i.e., normal polynomial multiplication followed by "folding" the coefficients vector modulo n and summing its entries.

n_1

 Sometimes will work modulo p or modulo q – this means taking all coefficient values modulo p or q.

 α

C

NTRU: the keys

- Private key:
 - *f* a polynomial with coefficients in {-1,0,1} (61 1's, 60 -1's and 46 0's)
 - g a polynomial with coefficients in {-1,0,1} (20 1's, 20 -1's and 127 0's)
 - f_p^{-1} , f_q^{-1} polynomials fulfilling $f_p^{-1} * f \equiv 1 \pmod{p}$ $f_q^{-1} * f \equiv 1 \pmod{p}$ f,g chosen randomly subject to the above.
- Public key: $h \leftarrow f_q^{-1} * g \pmod{q}$

NTRU: encryption

- Encryption:
 - Message is given as a polynomial *m* with with coefficients in {-1,0,1}.
 - Choose r, a random polynomial with 18 1's, 18 -1's and 131 0's.
 - Ciphertext: $c \leftarrow p \cdot r * h + m \pmod{q}$

$$\begin{array}{l} \mathsf{NTRU: decryption} \\ a \leftarrow c * f \\ \equiv f * (p \cdot r * h + m) \\ \equiv p \cdot r * g * f_q^{-1} * f + m * f \\ \equiv p \cdot r * g + m * f \end{array} \right\}$$

$$f_p^{-1} * f \equiv 1 \pmod{p}$$

$$f_q^{-1} * f \equiv 1 \pmod{q}$$

$$h \equiv f_p^{-1} * g \pmod{q}$$

$$c \equiv p \cdot r * h + m \pmod{q}$$

$$(\mod q)$$

The polynomials r,g,m,f all have tiny coefficients, and p is small. So if we take the coefficients of a in $\{-q/2+1,...,q/2\}$ it is likely that $a = p \cdot r * g + m * f \pmod{2}$ $\Rightarrow a \equiv p \cdot r * g + m * f \pmod{p}$ and then: $a * f_n^{-1} \equiv (p \cdot *r * g + m * f) * f_n^{-1}$

$$= m * f * f_p^{-1}$$

$$= m$$
(mod p)

Lattice attack on NTRU

[Coppersmith, Shamir 1997]

$$h \equiv f_q^{-1} * g \pmod{q}$$

 $\Rightarrow f * h \equiv g \pmod{q}$

where h is known and f,g have tiny coefficients.

Lattice attack on NTRU (cont.)

row vectors generating the lattice

Improvement: "zero-run lattice"

[May, 1999]

Forcing several coordinates to zero: tradeoff between LLL performance and probability of good guess. **Improvement: "zero-forced lattice"** $f * h = g \pmod{q}$ [Silverman, 1999]

$$\sum_{j=0}^{n-1} f_j h_{i-j \pmod{n}} = g_i \pmod{q}$$

Suppose we guess that the $g_0, \dots, g_{r-1} = 0$. We get r linear equations:

$$\sum_{j=0}^{n-1} f_j h_{i-j \pmod{n}} = 0 \pmod{q} \quad (0 \le i < r)$$

So we can express $f_0, ..., f_{r-1}$ in terms of $f_r, ..., f_{n-1}$. By substitution, we get coefficients $a_{i,j}$ ($r \le i, j < n-1$) such that:

$$\sum_{j=r}^{n-1} f_j a_{i,j} = g_i \pmod{q} \quad (r \le i < n-1)$$

Lattice attacks on NTRU: conclusions

- NTRU was proposed with several parameter sets (n,p,q) etc.). The smallest set (n=107) was broken using the zero-run lattice attacks.
- We have seen key-recovery attacks. Similar techniques can be used for plaintext-recovery.
- The techniques we saw are the best known passive attacks against NTRU.
- The parameter sets recommended for NTRU are pessimized for these attacks (i.e., chosen so that the gap of the lattices is very small).

Example: choice of q. By the Guassian heuristic, the shortest vector is of length $\approx \sqrt{1/2\pi e} \cdot \sqrt{2n} (\det L)^{1/2n} = \sqrt{1/\pi e} \cdot \sqrt{nq}$ But decreasing q increases the likelyhood of decryption errors.

Imperfect Decryption Attacks on NTRU [Proos 2003]

- * Decryption failures
- *****Exploiting them:
 - 1. Find bad (m,r)
 - 2. Find "barely bad" (m^*,r)
 - 3. Find the private key

NTRU (cont.)

(other) Lattice-based cryptosystems

GGH Cryptosystem

[Goldreich, Goldwasser, Halevi 1997]

- Based directly on the Closest Vector Problem.
- Private key:
 n nearly orthogonal vectors. *
- Public key: A random basis $\vec{b}_1, \ldots, \vec{b}_n$ of the lattice spanned by the private key.
- Encryption: the encryption of message $m_1, \dots, m_n \in \mathbb{Z}^m$ is $\sum_{i=1}^n m_i \vec{b}_i + \vec{r}, r \in_R \{-\delta, \delta\}^n$
- Decryption: project on private key and round. *
- Breaking: solve a CVP problem. *

GGH Cryptosystem: attack

[Nguyen99]

Ajtai-Dwork Cryptosystem

- Like GGH, based directly on a lattice problem.
- As in GGH, key generation creates a random lattice with certain properties. The secret key is some information about the lattice, and the public key is a random basis.
- 🗶
- Marvelous property: security proof is a reduction from *worst-case* of the lattice problem to *average-case* of breaking the scheme.
- Alas, impractical due to huge key size, ciphertext size and message expansion.