Sieve-based factoring algorithms

From bicycle chains to number fields

Eran Tromer

tromer@wisdom.weizmann.ac.il

Weizmann Institute of Science

Factoring by square root extraction

Factoring a composite n can be reduced to computing square roots modulo n. Given a black box $\sqrt{}$:

Pick $x \in \mathbb{Z}_n$ randomly and compute $x^2 \to \sqrt{} \to y$. With probability at least 1/2,

$$x^2 \equiv y^2, \ x \not\equiv \pm y \pmod{n}$$

and then $\gcd(x-y,n)$ is a non-trivial factor of n.

Fermat's method

Special case: $n=x^2-y^2$ (difference of squares)

- Find $x > \sqrt{n}$ such that $x^2 n$ is a square.
- Equivalently (by $x=a+\left \lfloor \sqrt{n} \right
 floor$):

$$f(a) = \left(a - \left\lceil\sqrt{n}
ight
ceil^2 - n
ight.$$
 $g(a) = \left(a - \left\lceil\sqrt{n}
ight
ceil^2
ight)^2 \ \leftarrow ext{ always a square}$

Try $a=0,1,2,\ldots$ until you find a such that f(a) is also a square over $\mathbb{Z}.$

• Compute $x=\sqrt{g(a)},\;y=\sqrt{f(a)}\;$ over $\mathbb{Z}.$

Idea #1: exploit regularity

for any prime $oldsymbol{p}$

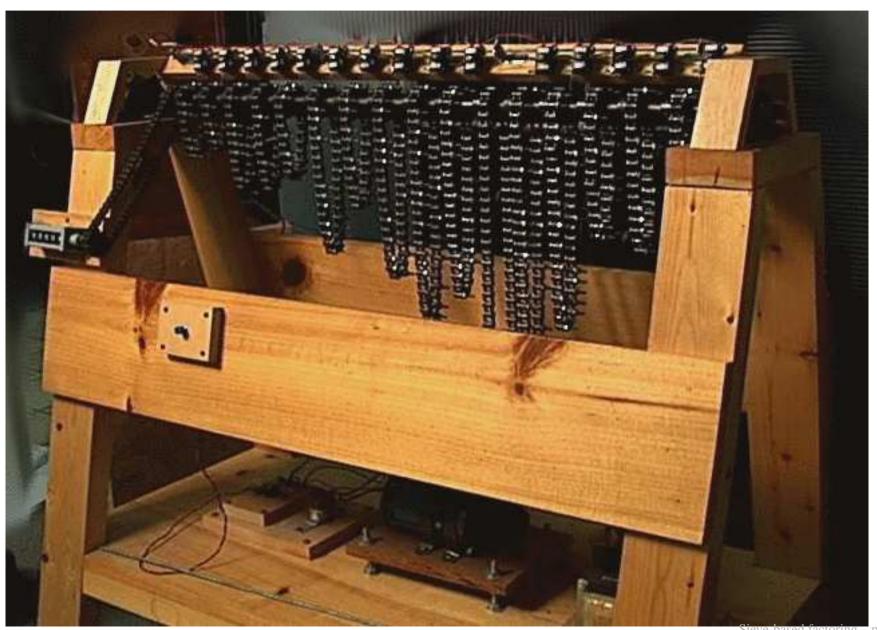
 $egin{array}{c} f(a) ext{ is a} \ ext{square over } Z \end{array}$

f(a) is 0 or a quadratic residue modulo p:

$$\left(rac{f(a)}{p}
ight)\in\{0,1\}$$

- $f(a) \pmod{p}$ has period p.
- About half the values in this period are "good" (quadratic residues or 0).
- We can easily compute these periods.

Lehmer's bicycle chain sieve [1928] (implementation of Fermat's method)



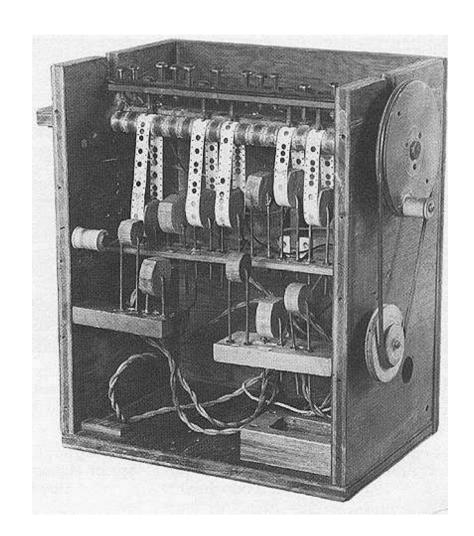
Lehmer's movie film sieve [1932] (implementation of Fermat's method)

Choose many small primes and precompute the corresponding periods of $\left(\frac{f(a)}{p}\right)$.

Scan a=1,2,3,... sequentially while keeping track of the index in each period.

When all periods are at a "good" value, stop and (hopefully) compute

$$\sqrt{f(a)}$$
 .



Complexity of Fermat's method

The efficient sieving hardware is nice, but doesn't change the asymptotic performance.

There are only \sqrt{n} squares smaller than n, so for a general n we expect to sieve for about \sqrt{n} steps.

This is worse than trial division!

Idea #2: Combine relations

[Morrison,Brillhart 1975]

Let $f'(a)=a^2 \mod n$, $g'(a)=a^2$. It's too hard to directly find $a>\sqrt{n}$ such that f'(a) is a square, so instead find a nonempty set $S\subset \mathbb{Z}$ such that $\prod_{a\in S} f'(a)$ is a square. Then compute x,y such that

$$\prod_{a \in S} f'(a) = y^2 \;\;, \;\;\; \prod_{a \in S} g'(a) = x^2$$

Because $orall a: f'(a) \equiv g'(a) \pmod n$, we get $x^2 \equiv y^2 \pmod n$

 $x = y \pmod{n}$

and gcd(x-y,n) may be a non-trivial factor of n.

Idea #2: Combine relations (example)

Dixon's algorithm [1981]

How to find S such that $\prod_{a \in S} f'(a)$ is a square? Consider only the $\pi(B)$ primes smaller than a bound B, and search for f'(a) values that are B-smooth (i.e., factor into primes smaller than B).

• Pick random $a \in \{1, \ldots, n\}$ and check if f'(a) is B-smooth. If so, represent it as a vector of exponents:

$$f'(a) = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \mapsto (e_1, e_2, e_3, \dots, e_k)$$

• Find a subset S of these vectors whose sum has even entries: place the vectors as the rows of a matrix A and find v such that $vA \equiv \vec{0} \pmod{2}$.

 $\prod_{a \in S} f'(a) = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}$ where e_i are all even, so it's a square.

Complexity of Dixon's algorithm

- Let $ho(\gamma,B)$ be the probability that a random number around γ is B-smooth. Since f'(a) is distributed randomly in $\{0,\ldots,n-1\}$, each trial finds a relation with probability $\sim
 ho(n,B)$.
- We need $\pi(B)+1$ relations. Thus, we need roughly $\pi(B)/\rho(n,B)$ trials.
- In each trial we check divisibility by $\pi(B)$ primes.
- Tradeoff:
 - Decrease $B \to \text{relations}$ are rarer (smaller ρ).
 - Increase $B \to {\sf more}$ relations are needed and they are harder to identify. Also, computing S is harder since the matrix is larger.

Complexity of Dixon's algorithm (cont.)

- Time complexity for optimal choice of B: $c(c+o(1))\cdot (\log n)^{1/2}\cdot (\log \log n)^{1/2}$
- Simple implementation: c=2 (trial division, Guassian elimination)

- Improved implementation: $c=\sqrt{2}$ (ECM factorization, Lancos/Wiedemann kernel)
- The approach of combining relations works very well, but we can do better.

The Quadratic Sieve [Pomerance]

Dixon's method looks at the values f'(a), g'(a) for random a. $f'(a) = a^2 \mod n \sim n$

$$g'(a) = a^2$$

Instead look at f(a), g(a) for a = 0, 1, 2, ... as in Fermat's method:

$$f(a) = \left(a - \left\lceil \sqrt{n} \right\rceil\right)^2 - n \quad \sim 2a\sqrt{n}$$
 $g(a) = \left(a - \left\lceil \sqrt{n} \right\rceil\right)^2$

Smaller number are more likely to be smooth!

$$\rho(\sqrt{n}, B) \gg \rho(n, B)$$
.

The Quadratic Sieve – remember Lehmer

- Task: find many a for which f(a) is B-smooth.
- We look for a such that p|f(a) for many large p:

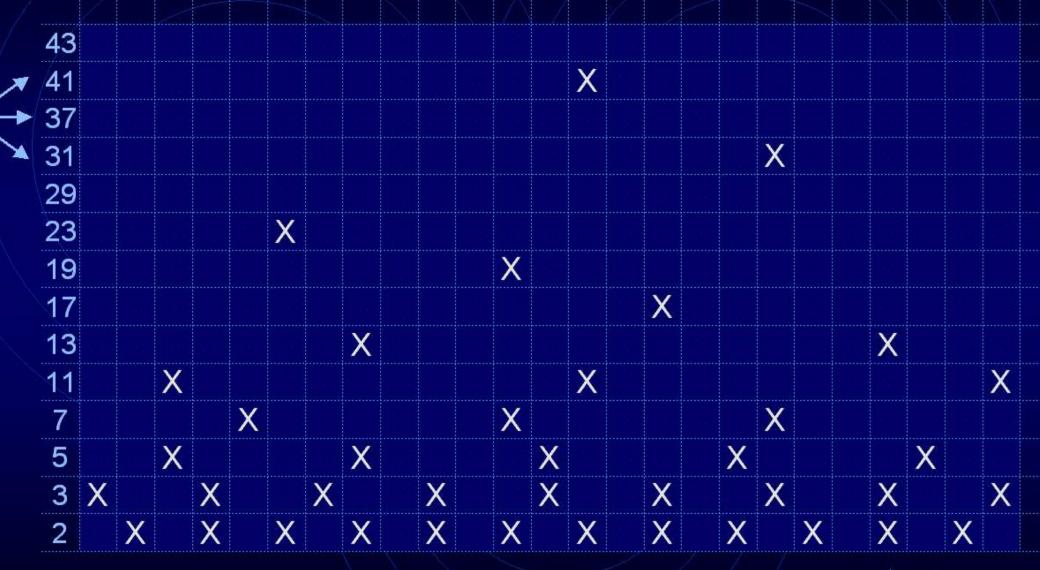
$$\sum_{p \,:\, p \mid f(a)} \log p > T \approx \log f(a)$$

• Each prime p "hits" at arithmetic progressions:

$$egin{aligned} \{a:p|f(a)\} &= \{a:f(a)\equiv 0 \; (\mathrm{mod}\,p)\} \ &= \bigcup_i \{r_i+kp:k\in\mathbb{Z}\} \end{aligned}$$

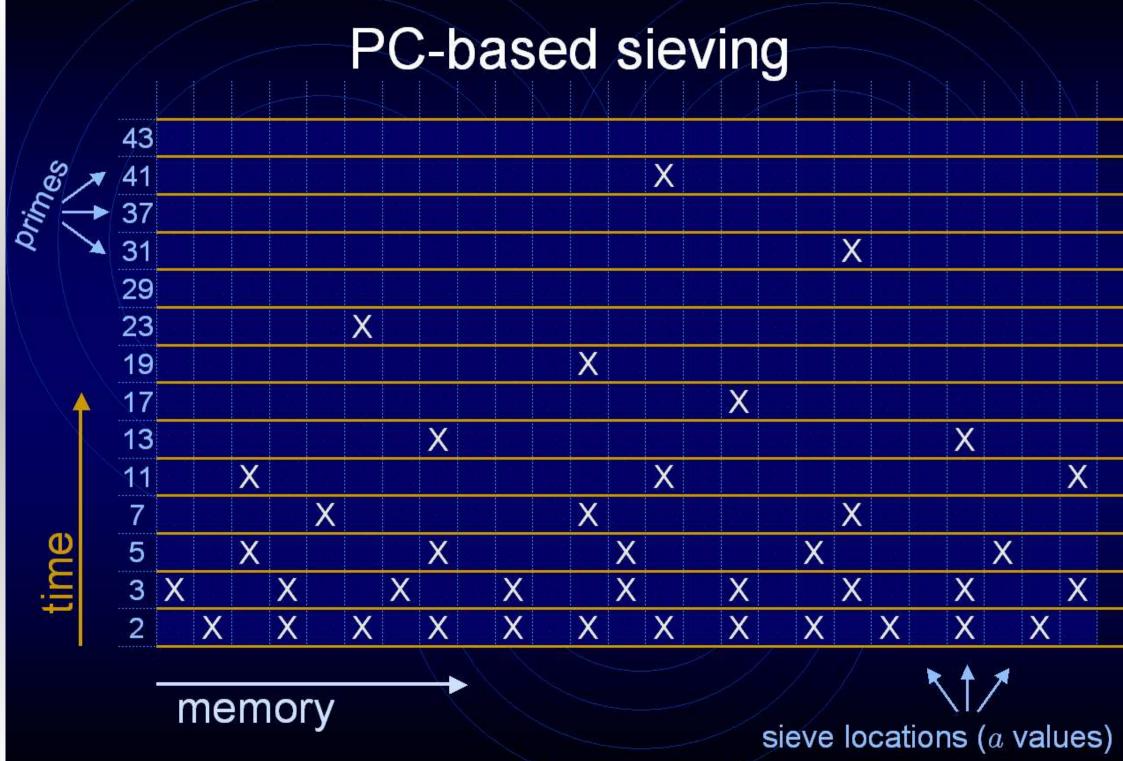
where r_i are the roots modulo p of the polynomial f (there are either 0 or 2; one on average).

The Quadratic Sieve (cont.)





Sieve-based factoring – p.16/23



Sieve-based factoring – p.17/23

Complexity of the Quadatic Sieve

Conjectured time for optimal choice of B:

$$e^{(c+o(1))\cdot(\log n)^{1/2}\cdot(\log\log n)^{1/2}}$$

with c=1, compared to $c=\sqrt{2}$ for Dixon's algorithm

 \Rightarrow can factor integers that are twice longer.

- Variants self initializing multiple polynomial quadratic sieve.
- Subexponential time, subexponential space but can practically factor integers up to ~ 400 bits.
- Can we decrease the $(\log n)^{1/2}$ term in the exponent?

Can we?

Key observation: the $e^{\cdots(\log n)^{1/2}\cdots}$ is there essentially because we sieve over numbers of size $\sim n^{1/2}$, which aren't very likely to be smooth.

Find a way to sieve over smaller numbers!

But we don't know how to do that with quadratic polynomials...

The Number Field Sieve

[Pollard, Lenstra, Lenstra, Manasse, Adleman, Montgomery, ... 1988–]

As before we have two polynomials f, g that are related modulo n, but now the relation is more subtle: f and g both have a known root m modulo n.

$$f(m) \equiv g(m) \equiv 0 \pmod{n}$$

Also, suppose f and g are monic and irreducible. Let α be a complex root of f. Consider the ring $\mathbb{Z}[\alpha]$ (equivalently, $\mathbb{Z}[x]/(f(x))$). The members of this ring are of the form

$$q(lpha)=q_0+q_1lpha+q_2lpha^2+\cdots q+q_dlpha^{\deg f-1}$$
. Operations in this ring are done modulo $f(lpha)$, simply because $f(lpha)=0$.

Similarly define $\mathbb{Z}[\beta]$, where β is a complex root of g.

The Number Field Sieve (cont.)

Consider the ring homomorphism $\phi: \mathbb{Z}[\alpha] \to \mathbb{Z}_n$ defined by $\phi: \alpha \mapsto m$ (i.e., replacing all occurances of α with m). Likewise, $\psi: \mathbb{Z}[\beta] \to \mathbb{Z}, \psi: \beta \mapsto m$.

Suppose we found a set of integer pairs $S \subset \mathbb{Z} \times \mathbb{Z}$ and also $q(\alpha) \in \mathbb{Z}[\alpha]$ and $t(\beta) \in \mathbb{Z}[\beta]$ such that

$$egin{aligned} q(lpha)^2&=\prod_{(a,b)\in S}(a-blpha) & ext{over }\mathbb{Z}[lpha]\ &t(eta)^2&=\prod_{(a,b)\in S}(a-beta) & ext{over }\mathbb{Z}[eta] \end{aligned}$$
 Then $\mathrm{mod} n...$

$$egin{aligned} \phi(oldsymbol{q}(lpha))^2 &\equiv \phi\Big(\prod_{(a,b)\in S}(oldsymbol{a}-oldsymbol{b}lpha)\Big) \ \psi(t(eta))^2 &\equiv \psi\Big(\prod_{(a,b)\in S}(oldsymbol{a}-oldsymbol{b}eta)\Big) \end{aligned} igg\} \equiv \prod_{(a,b)\in S}(oldsymbol{a}-oldsymbol{b}oldsymbol{m})$$

The Number Field Sieve

Let
$$F(a,b) = b^{{
m deg}f} f(a/b)$$
. It turns out that

$$\prod_{(a,b)\in S}(a-blpha)$$
 is a square in $\mathbb{Z}[lpha]$

$$\Longrightarrow \prod_{(a,b)\in S} F(a,b)$$
 is a square in $\mathbb Z$

Moreover, the converse "almost" holds.

Therefore, we can work as before: find (a,b) pairs such that F(a,b) is B-smooth, compute their exponent vectors and find dependencies. To find pairs, we fix values of b and sieve over a.

We do the same for g and $\mathbb{Z}[\beta]$, and find S that satisfies both conditions.

Complexity of the Number Field Sieve

- The point: wisely choose f,g so that their values near 0 are small and therefore likely to be smooth.
- Specifically, we choose f,g of degree $d pprox (\log n/\log\log n)^{1/3}$ and the F(a,b) and G(a,b) values we test for smoothness have size roughly $n^{2/d}$ (vs. $n^{1/2}$ for the QS).
- Conjectured time for optimal parameter choice: $e^{(c+o(1))\cdot(\log n)^{1/3}\cdot(\log\log n)^{2/3}}$ with cpprox 2.
- Successfully factored 512-bit and 524-bit composites, at considerable effort.
- Appears scalable to 1024-bit composites using custom-built hardware.