Sieve-based factoring algorithms From bicycle chains to number fields

Eran Tromer

tromer@wisdom.weizmann.ac.il

Weizmann Institute of Science

Factoring by square root extraction

Factoring a composite n can be reduced to computing square roots modulo n. Given a black box $\sqrt{}$:

Pick $x \in \mathbb{Z}_n$ randomly and compute $x^2 \to \checkmark \to y$. With probability at least 1/2,

$$x^2\equiv y^2,\ x
ot\equiv \pm y\pmod{n}$$

and then $\gcd(x-y,n)$ is a non-trivial factor of n.

Fermat's method

Special case: $n = x^2 - y^2$ (difference of squares)

- Find $x > \sqrt{n}$ such that $x^2 n$ is a square.
- Equivalently (by $x=a+\left|\sqrt{n}
 ight|$):

$$f(a) = \left(a - \left\lceil \sqrt{n}
ight
ceil
ight)^2 - n$$

 $g(a) = \left(a - \left\lceil \sqrt{n}
ight
ceil
ight)^2 \qquad \leftarrow ext{ always a square}$

Try a = 0, 1, 2, ... until you find a such that f(a) is also a square over \mathbb{Z} .

• Compute $x=\sqrt{g(a)},\;y=\sqrt{f(a)}\;$ over $\mathbb{Z}.$

Idea #1: exploit regularity

 $egin{array}{c} f(a) ext{ is a} \ ext{square over } Z \end{array} =$

for any prime pf(a) is 0 or a quadratic residue modulo p: $\left(rac{f(a)}{p}
ight) \in \{0,1\}$

- $f(a) \pmod{p}$ has period p.
- About half the values in this period are "good" (quadratic residues or 0).
- We can easily compute these periods.

Lehmer's bicycle chain sieve [1928] (implementation of Fermat's method)

Lehmer's movie film sieve [1932] (implementation of Fermat's method)

Choose many small primes and precompute the corresponding periods of $\left(\frac{f(a)}{p}\right)$.

Scan a = 1, 2, 3, ...sequentially while keeping track of the index in each period.

When all periods are at a "good" value, stop and (hopefully) compute $\sqrt{f(a)}$.

Complexity of Fermat's method

The efficient sieving hardware is nice, but doesn't change the asymptotic performance.

There are only \sqrt{n} squares smaller than n, so for a general n we expect to sieve for about \sqrt{n} steps. This is worse than trial division!

Idea #2: Combine relations [Morrison,Brillhart 1975]

Let $f'(a) = a^2 \mod n$, $g'(a) = a^2$. It's too hard to directly find $a > \sqrt{n}$ such that f'(a) is a square, so instead find a nonempty set $S \subset \mathbb{Z}$ such that $\prod_{a \in S} f'(a)$ is a square. Then compute x, y such that

$$\prod_{a\in S} f'(a) = y^2 \hspace{0.2cm}, \hspace{0.2cm} \prod_{a\in S} g'(a) = x^2$$

Because $orall a: f'(a) \equiv g'(a) \pmod{n}$, we get $x^2 \equiv y^2 \pmod{n}$

and $\gcd(x-y,n)$ may be a non-trivial factor of n.

Idea #2: Combine relations (example)

f'(629) = 102	
$f'(792) \ = \ 33$	
$f'(120) \ = \ 1495$	
f'(105) = 84	
f'(52) = 616	
f'(403) = 145	
f'(201) = 42	

Idea #2: Combine relations (example)

f'(629)	=	102	=	2	3		17			
f'(792)	=	33	=		3			11		
f'(120)	=	1495	=			5			13	23
f'(105)	=	84	=	2^2	3		7			
f'(52)	=	616	=	2^3			7	11		
f'(403)	=	145	=			5				29
f'(201)	=	42	=	2	3		7			

Idea #2: Combine relations (example)

	f'(629)	=	102	=	2	3				17
\rightarrow	f'(792)	=	33	=		3			11	
	f'(120)	=	1495	=			5		13	23
	f'(105)	=	84	=	2^2	3		7		
\rightarrow	f'(52)	=	616	=	2^3			7	11	
	f'(403)	=	145	=			5			29
\rightarrow	f'(201)	=	42	=	2	3		7		
	$\prod_{a\in \{792,52,$		f'(a)	=	2 ⁴	3 ²	5 ⁰	7^2	A square exponents	because are even. all

Dixon's algorithm [1981]

How to find S such that $\prod_{a \in S} f'(a)$ is a square? Consider only the $\pi(B)$ primes smaller than a bound B, and search for f'(a) values that are B-smooth (i.e., factor into primes smaller than B).

• Pick random $a \in \{1, \ldots, n\}$ and check if f'(a) is **B-smooth.** If so, represent it as a vector of exponents: $f'(a) = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \mapsto (e_1, e_2, e_3, \dots, e_k)$ • Find a subset S of these vectors whose sum has even entries: place the vectors as the rows of a matrix A and find v such that $vA \equiv \vec{0} \pmod{2}$.

 $\prod_{a\in S} f'(a) = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}$ where e_i are all even, so it's a square.

Complexity of Dixon's algorithm

- Let $ho(\gamma, B)$ be the probability that a random number around γ is *B*-smooth. Since f'(a) is distributed randomly in $\{0, \ldots, n-1\}$, each trial finds a relation with probability $\sim
 ho(n, B)$.
- We need $\pi(B)+1$ relations. Thus, we need roughly $\pi(B)/
 ho(n,B)$ trials.
- In each trial we check divisibility by $\pi(B)$ primes.
- Tradeoff:
 - Decrease $B \rightarrow$ relations are rarer (smaller ρ).
 - Increase $B \to$ more relations are needed and they are harder to identify. Also, computing S is harder since the matrix is larger.

Complexity of Dixon's algorithm (cont.)

- Time complexity for optimal choice of B: $e^{(c+o(1))\cdot(\log n)^{1/2}\cdot(\log\log n)^{1/2}}$
- Simple implementation: c = 2 (trial division, Guassian elimination)
- Improved implementation: $c = \sqrt{2}$ (ECM factorization, Lancos/Wiedemann kernel)
- The approach of combining relations works very well, but we can do better.

The Quadratic Sieve [Pomerance]

Dixon's method looks at the values f'(a), g'(a) for random a. $f'(a) = a^2 \mod n \quad \sim n$

 $g'(a)=\!a^2$

Instead look at f(a), g(a) for a = 0, 1, 2, ... as in Fermat's method:

$$egin{aligned} f(a) &= \left(a - \left\lceil \sqrt{n}
ight
ceil
ight)^2 - n &\sim 2a\sqrt{n} \ g(a) &= \left(a - \left\lceil \sqrt{n}
ight
ceil
ight)^2 \end{aligned}$$

Smaller number are more likely to be smooth! $ho(\sqrt{n},B)\gg
ho(n,B).$

The Quadratic <u>Sieve</u> – remember Lehmer

- Task: find many a for which f(a) is B-smooth.
- We look for a such that p|f(a) for many large p:

$$\sum_{p \in f(a)} \log p > T pprox \log f(a)$$

• Each prime p "hits" at arithmetic progressions:

p

 $egin{aligned} \{a:p|f(a)\}&=\{a:f(a)\equiv 0\ (ext{mod} p)\}\ &=igcup_i\{r_i+kp:k\in\mathbb{Z}\} \end{aligned}$

where r_i are the roots modulo p of the polynomial f (there are either 0 or 2; one on average).

The Quadratic Sieve (cont.)

sieve locations (*a* values)

Sieve-based factoring – p.15/25

Sieve-based factoring - p.16/2

PC-based sieving

memory

sieve locations (a values)

Sieve-based factoring – p.17/25

Complexity of the Quadatic Sieve

• Conjectured time for optimal choice of B:

 $e^{(c+o(1))\cdot (\log n)^{1/2} \cdot (\log \log n)^{1/2}}$

with c=1, compared to $c=\sqrt{2}$ for Dixon's algorithm

 \Rightarrow can factor integers that are twice longer.

- Variants self initializing multiple polynomial quadratic sieve.
- Subexponential time, subexponential space but can practically factor integers up to ~ 400 bits.
- Can we decrease the $(\log n)^{1/2}$ term in the exponent?

Can we?

Key observation: the $e^{\cdots(\log n)^{1/2}\cdots}$ is there essentially because we sieve over numbers of size $\sim n^{1/2}$, which aren't very likely to be smooth. Find a way to sieve over smaller numbers! But we don't know how to do that with quadratic polynomials...

The Number Field Sieve

[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,...1988–]

As before we have two polynomials f, g that are related modulo n, but now the relation is more subtle: f and g both have a known root m modulo n. $f(m) \equiv g(m) \equiv 0 \pmod{n}$

Also, suppose f and g are monic and irreducible. Let α be a complex root of f. Consider the ring $\mathbb{Z}[\alpha]$ (equivalently, $\mathbb{Z}[x]/(f(x))$). The members of this ring are of the form

 $q(lpha)=q_0+q_1lpha+q_2lpha^2+\cdots q+q_dlpha^{\deg f-1}.$ Operations in this ring are done modulo f(lpha), simply because f(lpha)=0.

Similarly define $\mathbb{Z}[\beta]$, where β is a complex root of g.

The Number Field Sieve (cont.)

Consider the ring homomorphism $\phi : \mathbb{Z}[\alpha] \to \mathbb{Z}_n$ defined by $\phi : \alpha \mapsto m$ (i.e., replacing all occurances of α with m). Likewise, $\psi : \mathbb{Z}[\beta] \to \mathbb{Z}, \psi : \beta \mapsto m$. Suppose we found a set of integer pairs $S \subset \mathbb{Z} \times \mathbb{Z}$ and also $q(\alpha) \in \mathbb{Z}[\alpha]$ and $t(\beta) \in \mathbb{Z}[\beta]$ such that $q(\alpha)^2 = \prod_{(a,b) \in S} (a - b\alpha) \text{ over } \mathbb{Z}[\alpha]$

 $t(eta)^2 = \prod_{(a,b)\in S} (a-beta)$ over $\mathbb{Z}[eta]$ Then $\mathrm{mod} n...$

 $egin{aligned} &\phi(q(lpha))^2 \equiv \phi\Big(\prod_{(a,b)\in S}(a-blpha)\Big) \ \psi(t(eta))^2 \equiv \psi\Big(\prod_{(a,b)\in S}(a-beta)\Big) \end{aligned} \Big\} \equiv \prod_{(a,b)\in S}(a-bm) \end{aligned}$

The Number Field Sieve

 $\prod_{(a,b)\in S}(a-blpha)=q(lpha)^2$ over $\mathbb{Z}[lpha]$

The Number Field Sieve

Let
$$F(a,b)=b^{\mathrm{deg}f}f(a/b).$$
 It turns out that $\prod_{(a,b)\in S}(a-blpha)$ is a square in $\mathbb{Z}[lpha]$

$$\Rightarrow \prod_{(a,b)\in S} F(a,b)$$
 is a square in $\mathbb Z$

Moreover, the converse "almost" holds.

Therefore, we can work as before: find (a, b) pairs such that F(a, b) is B-smooth, compute their exponent vectors and find dependencies. To find pairs, we fix values of b and sieve over a.

We do the same for g and $\mathbb{Z}[\beta]$, and find S that satisfies both conditions.

Complexity of the Number Field Sieve

- The point: wisely choose f,g so that their values near 0 are small and therefore likely to be smooth.
- Specifically, we choose f, g of degree $d \approx (\log n / \log \log n)^{1/3}$ and the F(a, b) and G(a, b) values we test for smoothness have size roughly $n^{2/d}$ (vs. $n^{1/2}$ for the QS).
- Conjectured time for optimal parameter choice: $e^{(c+o(1))\cdot (\log n)^{1/3} \cdot (\log \log n)^{2/3}}$ with c pprox 2.
- Successfully factored 512-bit and 524-bit composites, at considerable effort.
- Appears scalable to 1024-bit composites using custom-built hardware.

Sieve-based factoring – p.24/25

Probability of smoothness

Let $\rho(\gamma, \beta)$ be the probability that a random number around γ is β -smooth. Asymptotically:

 $egin{aligned} &\gamma=e^{c_1(\log n)^{d_1}\cdot(\log\log n)^{1-d_1}}\ &egin{aligned} &\Rightarrow \ &eta=e^{c_2(\log n)^{d_2}\cdot(\log\log n)^{1-d_2}} \end{aligned} egin{aligned} &
ightarrow \end{array}$

 $ho(\gamma,\beta) =$

 $e^{(-c_1(d_1-d_2)/c_2+o(1))\cdot(\log n)^{d_1-d_2}\cdot(\log\log n)^{1-(d_1-d_2)}}$