Sieve-based factoring algorithms From bicycle chains to number fields

Eran Tromer
tromer@wisdom.weizmann.ac.il

Weizmann Institute of Science

Factoring by square root extraction

Factoring a composite n can be reduced to computing square roots modulo n. Given a black box $\sqrt{ }$:

Pick $x \in \mathbb{Z}_{n}$ randomly and compute $\boldsymbol{x}^{2} \rightarrow \sqrt{ } \rightarrow \boldsymbol{y}$. With probability at least $1 / 2$,

$$
x^{2} \equiv y^{2}, x \not \equiv \pm y \quad(\bmod n)
$$

and then $\operatorname{gcd}(x-y, n)$ is a non-trivial factor of n.

Fermat's method

Special case: $n=x^{2}-y^{2} \quad$ (difference of squares)

- Find $x>\sqrt{n}$ such that $x^{2}-n$ is a square.
- Equivalently (by $x=a+\lceil\sqrt{n}\rceil$):
$f(a)=(a-\lceil\sqrt{n}\rceil)^{2}-n$
$g(a)=(a-[\sqrt{n}\rceil)^{2} \quad \leftarrow$ always a square
Try $a=0,1,2, \ldots$ until you find a such that $f(a)$ is also a square over \mathbb{Z}.
- Compute $x=\sqrt{g(a)}, y=\sqrt{f(a)}$ over \mathbb{Z}.

Idea \#1: exploit regularity

for any prime p

$f(a)$ is a $f(a)$ is 0 or a quadratic square over $\boldsymbol{Z}$$\Longrightarrow \begin{aligned} & \text { residue modulo } p \text { : } \\ & \left(\frac{f(a)}{p}\right) \in\{0,1\}\end{aligned}$

- $f(a)(\bmod p)$ has period p.
- About half the values in this period are "good" (quadratic residues or 0).
- We can easily compute these periods.

Lehmer's bicycle chain sieve [1928] (implementation of Fermat's method)

Lehmer's movie film sieve [1932] (implementation of Fermat's method)

Choose many small primes and precompute the corresponding periods of $\left(\frac{f(a)}{p}\right)$. Scan $a=1,2,3, \ldots$ sequentially while keeping track of the index in each period.

When all periods are at a "good" value, stop and (hopefully) compute
$\sqrt{f(a)}$.

Complexity of Fermat's method

The efficient sieving hardware is nice, but doesn't change the asymptotic performance.

There are only \sqrt{n} squares smaller than n, so for a general n we expect to sieve for about \sqrt{n} steps.
This is worse than trial division!

Idea \#2: Combine relations
 [Morrison,Brillhart 1975]

Let $f^{\prime}(a)=a^{2} \bmod n, g^{\prime}(a)=a^{2}$.
It's too hard to directly find $a>\sqrt{n}$ such that $f^{\prime}(a)$ is a square, so instead find a nonempty set $S \subset \mathbb{Z}$ such that $\prod_{a \in S} f^{\prime}(a)$ is a square. Then compute x, y such that

$$
\prod_{a \in S} f^{\prime}(a)=y^{2}, \prod_{a \in S} g^{\prime}(a)=x^{2}
$$

Because $\forall a: f^{\prime}(a) \equiv g^{\prime}(a)(\bmod n)$, we get

$$
x^{2} \equiv y^{2}(\bmod n)
$$

and $\operatorname{gcd}(x-y, n)$ may be a non-trivial factor of n.

Idea \#2: Combine relations (example)

$$
\begin{aligned}
f^{\prime}(629) & =102 \\
\hline f^{\prime}(792) & =33 \\
f^{\prime}(120) & =1495 \\
f^{\prime}(105) & =84 \\
f^{\prime}(52) & =616 \\
f^{\prime}(403) & =145 \\
\hline f^{\prime}(201) & =42
\end{aligned}
$$

Idea \#2: Combine relations (example)

$f^{\prime}(629)$	$=102$	$=$	2	3			
$f^{\prime}(792)$	$=$	33	$=$	3		11	
$f^{\prime}(120)$	$=1495$	$=$		5			13
$f^{\prime}(105)$	$=$	84	$=$	2^{2}	3	7	
$f^{\prime}(52)$	$=616$	$=$	2^{3}		7	11	
$f^{\prime}(403)$	$=145$	$=$		5			
$f^{\prime}(201)$	$=42$	$=$	2	3	7		

Idea \#2: Combine relations (example)

Dixon's algorithm [1981]

How to find S such that $\prod_{a \in S} f^{\prime}(a)$ is a square? Consider only the $\boldsymbol{\pi}(\boldsymbol{B})$ primes smaller than a bound \boldsymbol{B}, and search for $f^{\prime}(\boldsymbol{a})$ values that are B-smooth (i.e., factor into primes smaller than B).

- Pick random $a \in\{1, \ldots, n\}$ and check if $f^{\prime}(a)$ is B-smooth. If so, represent it as a vector of exponents:

$$
f^{\prime}(a)=p_{1} e_{1}^{e_{1}}{p_{2}}^{e_{2}} p_{3}{ }^{e_{3}} \cdots p_{k}{ }^{e_{k}} \mapsto\left(e_{1}, e_{2}, e_{3}, \ldots, e_{k}\right)
$$

- Find a subset S of these vectors whose sum has even entries: place the vectors as the rows of a matrix \boldsymbol{A} and find v such that $v A \equiv \overrightarrow{0}(\bmod 2)$.

$$
\begin{aligned}
& \prod_{a \in S} f^{\prime}(a)=p_{1}{ }^{e_{1}} p_{2}^{e_{2}} p_{3}{ }^{e_{3}} \cdots p_{k}^{e_{k}} \text { where } e_{i} \text { are all } \\
& \text { even, so it's a square. }
\end{aligned}
$$

Complexity of Dixon's algorithm

- Let $\rho(\gamma, B)$ be the probability that a random number around γ is B-smooth. Since $f^{\prime}(\boldsymbol{a})$ is distributed randomly in $\{0, \ldots, n-1\}$, each trial finds a relation with probability $\sim \rho(n, B)$.
- We need $\pi(\boldsymbol{B})+1$ relations. Thus, we need roughly $\pi(B) / \rho(n, B)$ trials.
- In each trial we check divisibility by $\pi(B)$ primes.
- Tradeoff:
- Decrease $B \rightarrow$ relations are rarer (smaller $\boldsymbol{\rho}$).
- Increase $B \rightarrow$ more relations are needed and they are harder to identify. Also, computing S is harder since the matrix is larger.

Complexity of Dixon's algorithm (cont.)

- Time complexity for optimal choice of B :

$$
e^{(c+o(1)) \cdot(\log n)^{1 / 2} \cdot(\log \log n)^{1 / 2}}
$$

- Simple implementation: $c=2$ (trial division, Guassian elimination)
- Improved implementation: $c=\sqrt{2}$ (ECM factorization, Lancos/Wiedemann kernel)
- The approach of combining relations works very well, but we can do better.

The Quadratic Sieve [Pomerance]

Dixon's method looks at the values $f^{\prime}(a), g^{\prime}(a)$ for random \boldsymbol{a}.

$$
\begin{aligned}
& f^{\prime}(a)=a^{2} \bmod n \quad \sim n \\
& g^{\prime}(a)=a^{2}
\end{aligned}
$$

Instead look at $f(a), g(a)$ for $a=0,1,2, \ldots$ as in Fermat's method:

$$
\begin{aligned}
& f(a)=(a-\lceil\sqrt{n}\rceil)^{2}-n \quad \sim 2 a \sqrt{n} \\
& g(a)=(a-\lceil\sqrt{n}\rceil)^{2}
\end{aligned}
$$

Smaller number are more likely to be smooth! $\rho(\sqrt{n}, B) \gg \rho(n, B)$.

The Quadratic Sieve - remember Lehmer

- Task: find many \boldsymbol{a} for which $f(a)$ is B-smooth.
- We look for a such that $p \mid f(a)$ for many large p :

$$
\sum_{p: p \mid f(a)} \log p>T \approx \log f(a)
$$

- Each prime \boldsymbol{p} "hits" at arithmetic progressions:

$$
\begin{aligned}
\{a: p \mid f(a)\} & =\{a: f(a) \equiv 0(\bmod p)\} \\
& =\bigcup_{i}\left\{r_{i}+k p: k \in \mathbb{Z}\right\}
\end{aligned}
$$

where r_{i} are the roots modulo p of the polynomial f (there are either 0 or 2; one on average).

The Quadratic Sieve (cont.)

TWINKLE

time
sieve locations (a values)

PC-based sieving

Complexity of the Quadatic Sieve

- Conjectured time for optimal choice of \boldsymbol{B} :

$$
e^{(c+o(1)) \cdot(\log n)^{1 / 2} \cdot(\log \log n)^{1 / 2}}
$$

with $c=1$, compared to $c=\sqrt{2}$ for Dixon's algorithm
\Rightarrow can factor integers that are twice longer.

- Variants - self initializing multiple polynomial quadratic sieve.
- Subexponential time, subexponential space but can practically factor integers up to ~ 400 bits.
- Can we decrease the $(\log n)^{1 / 2}$ term in the exponent?

Can we?

Key observation: the $e^{\cdots(\log n)^{1 / 2} \ldots}$ is there essentially because we sieve over numbers of size $\sim n^{1 / 2}$, which aren't very likely to be smooth.

Find a way to sieve over smaller numbers!
But we don't know how to do that with quadratic polynomials...

The Number Field Sieve

[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,. . . 1988-]

As before we have two polynomials f, g that are related modulo n, but now the relation is more subtle: f and g both have a known root m modulo n.

$$
f(m) \equiv g(m) \equiv 0 \quad(\bmod n)
$$

Also, suppose f and g are monic and irreducible. Let α be a complex root of f. Consider the ring $\mathbb{Z}[\alpha]$ (equivalently, $\mathbb{Z}[x] /(f(x))$). The members of this ring are of the form
$q(\alpha)=q_{0}+q_{1} \alpha+q_{2} \alpha^{2}+\cdots q+q_{d} \alpha^{\operatorname{deg} f-1}$. Operations in this ring are done modulo $f(\alpha)$, simply because $f(\alpha)=0$.
Similarly define $\mathbb{Z}[\beta]$, where β is a complex root of g.

The Number Field Sieve (cont.)

Consider the ring homomorphism $\phi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{n}$ defined by $\phi: \alpha \mapsto m$ (i.e., replacing all occurances of α with m). Likewise, $\psi: \mathbb{Z}[\beta] \rightarrow \mathbb{Z}, \psi: \beta \mapsto m$. Suppose we found a set of integer pairs $S \subset \mathbb{Z} \times \mathbb{Z}$ and also $q(\alpha) \in \mathbb{Z}[\alpha]$ and $t(\beta) \in \mathbb{Z}[\beta]$ such that
$q(\alpha)^{2}=\prod_{(a, b) \in S}(a-b \alpha) \quad$ over $\mathbb{Z}[\alpha]$
$t(\beta)^{2}=\prod_{(a, b) \in S}(a-b \beta) \quad$ over $\mathbb{Z}[\beta] \quad$ Then $\bmod n \ldots$
$\left.\begin{array}{l}\phi(\boldsymbol{q}(\alpha))^{2} \equiv \phi\left(\prod_{(a, b) \in S}(a-b \alpha)\right) \\ \psi(t(\beta))^{2} \equiv \psi\left(\prod_{(a, b) \in S}(a-b \beta)\right)\end{array}\right\} \equiv \prod_{(a, b) \in S}(a-b m)$

The Number Field Sieve

$$
\Pi_{(a, b) \in S}(a-b \alpha)=q(\alpha)^{2} \quad \text { over } \mathbb{Z}[\alpha]
$$

The Number Field Sieve

Let $\boldsymbol{F}(a, b)=b^{\operatorname{deg} f} f(a / b)$. It turns out that
$\prod_{(a, b) \in S}(a-b \alpha)$ is a square in $\mathbb{Z}[\alpha]$

$$
\Longrightarrow \prod_{(a, b) \in S} F(a, b) \text { is a square in } \mathbb{Z}
$$

Moreover, the converse "almost" holds.
Therefore, we can work as before: find $(\boldsymbol{a}, \boldsymbol{b})$ pairs such that $F(a, b)$ is B-smooth, compute their exponent vectors and find dependencies.
To find pairs, we fix values of b and sieve over \boldsymbol{a}.
We do the same for g and $\mathbb{Z}[\beta]$, and find S that satisfies both conditions.

Complexity of the Number Field Sieve

- The point: wisely choose f, g so that their values near 0 are small and therefore likely to be smooth.
- Specifically, we choose f, g of degree $d \approx(\log n / \log \log n)^{1 / 3}$ and the $F(a, b)$ and $G(a, b)$ values we test for smoothness have size roughly $n^{2 / d}$ (vs. $n^{1 / 2}$ for the QS).
- Conjectured time for optimal parameter choice: $e^{(c+o(1)) \cdot(\log n)^{1 / 3} \cdot(\log \log n)^{2 / 3}} \quad$ with $c \approx 2$.
- Successfully factored 512-bit and 524-bit composites, at considerable effort.
- Appears scalable to 1024-bit composites using custom-built hardware.

Probability of smoothness

Let $\rho(\gamma, \beta)$ be the probability that a random number around γ is β-smooth. Asymptotically:

$$
\begin{aligned}
& \gamma=e^{c_{1}(\log n)^{d_{1}} \cdot(\log \log n)^{1-d_{1}}} \\
& \beta=e^{c_{2}(\log n)^{d_{2}} \cdot(\log \log n)^{1-d_{2}}} \\
& \rho(\gamma, \beta)= \\
& e^{\left(-c_{1}\left(d_{1}-d_{2}\right) / c_{2}+o(1)\right) \cdot(\log n)^{d_{1}-d_{2} \cdot(\log \log n)^{1-\left(d_{1}-d_{2}\right)}}, ~}
\end{aligned}
$$

