Homework \#4

Due: April 29

1. Show that the map:

$$
\begin{equation*}
F_{\mu}: x_{n+1}=x_{n}+\mu-x_{n}^{2} \quad x_{n} \in R \tag{1}
\end{equation*}
$$

undergoes a saddle-node bifurcation at $(x, \mu)=(0,0)$; show that for $\mu<0$ it has no fixed points whereas for $\mu>0$ it has two fixed points, one stable and one unstable. Draw the bifurcation diagram for F_{μ}.
2. Consider a general one dimensional family of maps $F_{\mu}(x): R \rightarrow R$. Find conditions under which $F_{\mu}(x)$ undergoes a saddle-node bifurcation at some value $(x, \mu)=\left(x^{*}, \mu^{*}\right)$: define $G(x, \mu)=F_{\mu}(x)-x$, and using the implicit function theorem find conditions under which $G(x, \mu)=0$ has a unique parabola like solution $G(x, \mu(x))$ for $\mu>\mu^{*}$ (and $\left|\mu-\mu^{*}\right|$ and $\left|x-x^{*}\right|$ small). Verify that (1) indeed satisfies these conditions.
3. Consider the logistic map:

$$
\begin{equation*}
x_{n+1}=r x_{n}\left(1-x_{n}\right)=F(x ; r) \tag{2}
\end{equation*}
$$

In class, we have shown that the map has two fixed points, $x^{*}=0$ and $x^{*}=1-\frac{1}{r}$, both of which unstable for $r>3$.
(a) Show that the map undergoes a period doubling bifurcation at $r=3$, by finding the fixed points of the second-iterate map F^{2}.
(b) For which values of r is the 2-cycle stable?
(c) Bonus: what happens when the 2-cycle becomes unstable?
4. Bonus: find a paper in your field of interest in which local bifurcations play a role. Write the equations of the bifurcation and show the bifurcation diagram.

