Homework #4

Due: April 29

1. Show that the map:

$$F_{\mu}: x_{n+1} = x_n + \mu - x_n^2 \qquad x_n \in R$$
 (1)

undergoes a saddle-node bifurcation at $(x,\mu) = (0,0)$; show that for $\mu < 0$ it has no fixed points whereas for $\mu > 0$ it has two fixed points, one stable and one unstable. Draw the bifurcation diagram for F_{μ} .

- 2. Consider a general one dimensional family of maps $F_{\mu}(x): R \to R$. Find conditions under which $F_{\mu}(x)$ undergoes a saddle-node bifurcation at some value $(x,\mu)=(x^*,\mu^*)$: define $G(x,\mu)=F_{\mu}(x)-x$, and using the implicit function theorem find conditions under which $G(x,\mu)=0$ has a unique parabola like solution $G(x,\mu(x))$ for $\mu>\mu^*$ (and $|\mu-\mu^*|$ and $|x-x^*|$ small). Verify that (1) indeed satisfies these conditions.
- 3. Consider the logistic map:

$$x_{n+1} = rx_n(1 - x_n) = F(x; r)$$
(2)

In class, we have shown that the map has two fixed points, $x^* = 0$ and $x^* = 1 - \frac{1}{r}$, both of which unstable for r > 3.

- (a) Show that the map undergoes a period doubling bifurcation at r = 3, by finding the fixed points of the second-iterate map F^2 .
- (b) For which values of *r* is the 2-cycle stable?
- (c) Bonus: what happens when the 2-cycle becomes unstable?
- 4. Bonus: find a paper in your field of interest in which local bifurcations play a role. Write the equations of the bifurcation and show the bifurcation diagram.