Homework \#5

Due: May 13

1. For which values of r is the quadratic map a contraction?

$$
\begin{equation*}
x_{n+1}=r x_{n}\left(1-x_{n}\right)=F(x ; r), \quad x \in[0,1], r>0 . \tag{1}
\end{equation*}
$$

2. Construct numerically, by iterating initial conditions and leaving out the transients (i.e. do not plot the first N iterations for some large number N), the bifurcation diagram for:
(a) The quadratic map: $x_{n+1}=r x_{n}\left(1-x_{n}\right) \quad x_{n} \in[0,1]$ for $r \in[0,4]$
(b) The sine map: $x_{n+1}=r \sin \pi x_{n} \quad x_{n} \in[0,1]$ for $r \in[0,1]$
(c) Let r_{n} denote the nth period doubling bifurcation in the doubling bifurcation sequence. For both maps, find numerically, for as large an n as you can, the ratio: $\delta_{n}=\frac{r_{n}-r_{n-1}}{r_{n+1}-r_{n}}$. Can you see convergence to the Universal Feigenbaum constant $\delta=4.669201$..? (bonus: derive more sophisticated ways to find δ_{n}, read about it).
3. Let Σ_{N} consist of all sequences of natural numbers $\{0,1,2, . ., N-1\}$. Let σ denote the shift map on these sequences.
(a) Find $\operatorname{CardPer}_{k}(\sigma)$: the number of the periodic points of σ of period k.
(b) Show that σ has a dense orbit.
(c) Consider the map: $x_{n+1}=3 x_{n} \bmod 1$. Prove that the map is chaotic (hint: use the symbolic dynamics on Σ_{3}). Prove that the middle-third Cantor set Λ is invariant under the map and that the map has a dense orbit on Λ (hint: use the subset of Σ_{3} of sequences containing only the symbols $\{0,2\}$).
4. Bonus: find a paper in your field of interest in which period doubling bifurcation plays a role. Write the equations leading to the bifurcation, and describe the implications to the specific problem.
