1 Symmetries

A flow is said to have a symmetry if there is a diffeomorphism, $S : M \to M$, that conjugates the flow to itself:

$$\varphi_t(S(z)) = S(\varphi_t(z)), \quad t \in \mathbb{R}.$$ \hfill (6.24)

Since we assume that S is smooth, we can take the time derivative of this relation to obtain an equivalent requirement on the vector field associated with φ:

$$f(S(z)) = DS(z)f(z).$$ \hfill (6.25)
1.1 Continuous and discrete symmetries

\[\dot{r} = rh(r), \dot{\theta} = 1 \quad (6.20) \]

Some symmetries, like a rotation symmetry, depend continuously upon a parameter and are thus called continuous symmetries. For example, the system (6.20) is obviously symmetric under the rotation

\[S_\psi(r, \theta) = (r, \theta + \psi) \quad (6.26) \]

for any angle ψ. For this case DS is the identity matrix, so (6.25) becomes $f(r, \theta + \psi) = f(r, \theta)$, which is satisfied for all ψ when f is a function of r only.

The collection of symmetries of a flow forms a group. This follows because the identity map is always a symmetry, and if S_1 and S_2 are symmetries of φ, then so is their composition $S_3 = S_1 \circ S_2$. Similarly, the inverse of a symmetry also satisfies (6.24) and therefore is also a symmetry. For example, the rotation symmetry (6.26) is a representation of the abstract rotation group, $O(2)$.

Discrete symmetries can also occur. For example, the system (6.11) is symmetric under the transformation $S(x, y) = (-x, -y)$, a rotation by π. To see this, note that for this case $DS = -I$, so (6.25) becomes $f(-x, -y) = -f(x, y)$, which is obviously satisfied by (6.11). The symmetry group in this case has two elements, the identity and S, and is called \mathbb{Z}^2. Much more about the implications of the existence of a nontrivial symmetry group can be found in (Field and Golubitsky 1995; Golubitsky and Stewart 2002).

\[\dot{x} = y^2x - x^2y, \dot{y} = x^3 + y^3 \quad (6.11) \]
1.2 Reversors

Another type of symmetry that commonly occurs is a time reversal or reversing symmetry—when the motion backward in time is equivalent to that forward in time. Thus, a system is said to have reversing symmetry if there is a diffeomorphism, S (the reversor), that conjugates the flow to its inverse so that $\varphi_-(S(z)) = S(\varphi_+(z))$. Again, this is equivalent to a requirement on the vector field

$$-f(S(z)) = DS(z)f(z). \quad (6.27)$$

This implies that in the new coordinate system, $\zeta = S(z)$, the differential equation $\dot{\zeta} = f(z)$ becomes

$$\dot{\zeta} = DS(z)\dot{z} = DS(z)f(z) = -f(S(z)) = -f(\zeta),$$

which is the same differential equation going backward in time.

In many cases the reversor S is an involution, i.e., $S^2 = S \circ S = \text{id}$. For example, for mechanical Hamiltonian systems (recall §1.4) of the form

$$H(x, y) = \frac{1}{2}y^2 + V(x),$$

the involution $S(x, y) = (x, -y)$ reverses the momentum, y, and is equivalent to reversing time. Note also that in this case S is orientation reversing, $\det(DS) = -1 < 0$.

The fixed set of a reversor S is

$$\text{Fix}(S) = \{z : z = S(z)\}.$$

An orbit that intersects $\text{Fix}(S)$ is a symmetric orbit. In particular, a symmetric equilibrium is a point $z^* \in \text{Fix}(S) \cap \{f(z) = 0\}$. Not every orbit is symmetric; however, every orbit has a symmetric partner (see Exercise 5).

It can be shown that the fixed set of any orientation-reversing involution in \mathbb{R}^2 is a curve, $C = \text{Fix}(S)$ (MacKay). If this is the case, then whenever z^* is a symmetric, linear center, it must be a true center of the nonlinear system.

Lemma 1. Suppose $\dot{z} = f(z)$ is reversible with reversor S and $\text{Fix}(S)$ is a curve that contains an equilibrium z^* that is a linear center. Then z^* is a topological center.

Recall, for a linear center at the origin:

\triangleright **Topological center:** there is a $\delta > 0$ such that every trajectory in $B_\delta(0) \setminus \{0\}$ is a closed loop enclosing the origin.
Proof idea: Close to the linear center, in polar coordinates, the angle \(\theta \) must increase monotonically (see Meiss). Hence, for a point \(z(0) \in \text{Fix}(S) \) in this neighborhood the orbit must return to \(\text{Fix}(S) \) (roughly after an increase by \(\pi \)). Denote the time at which this first return happens \(\tau \). Then the reflection \(\zeta(t) = S(z(t)) \) of this orbit segment touches \(\text{Fix}(S) \) at \(z(0) \) and \(z(\tau) \). However \(\zeta(t) \) is a solution beginning at \(z(0) \) and going backwards in time, and so the curve \(\gamma = \{ \phi_r(z(0)) : \theta \leq t \leq \tau \} \) is a closed loop and by uniqueness must be a periodic orbit with period \(2\tau \).

Example: The system

\[
\begin{align*}
\dot{x} &= -y + \alpha x^2 y, \\
\dot{y} &= x + \beta y^2 x^2
\end{align*}
\]

has the reversor \(S(x, y) = (x, -y) \) since

\[
DSf(x, y) = (-y + \alpha x^2 y, -x - \beta y^2 x^2) = -(\alpha x^2 y, x - \beta y^2 x^2) = -f(S(x, y)).
\]

Note that the fixed curve for \(S \) is the \(x \)-axis, and since the origin is a symmetric fixed point, Lemma 6.4 implies it is a center. A phase portrait is shown in Figure 6.11. When \(\alpha > 0 \), this system also has a pair of saddle equilibria.

1.3 Meiss Ex 6.5

A flow \(\phi \) has a reversor \(S \) and an orbit \(\Gamma = \{ \phi_r(x) : t \in \mathbb{R} \} \).

(a) Show that \(\tilde{\Gamma} = \{ S \circ \phi_{-r}(x) : t \in \mathbb{R} \} \) is also an orbit of \(\phi \).

Since \(S \) is a reversor we know that:

\[
\phi_{-r}(S(z)) = S(\phi_r(z))
\]

Hence:

\[
S \circ \phi_{-r}(x) = S(\phi_{-r}(x)) = \phi_{-(-r)}(S(x)) = \phi_r(S(x))
\]

Denote \(y = S(x) \), then \(\tilde{\Gamma} \) is of the form:

\[
\tilde{\Gamma} = \{ \phi_r(y) : t \in \mathbb{R} \}
\]

i.e. \(\tilde{\Gamma} \) is also an orbit of \(\phi \).

(c) Suppose \(\Gamma \cap \text{Fix}(S) \neq \emptyset \). Show that \(\Gamma \) and \(\tilde{\Gamma} \) coincide.
Fix(S) = \{z \mid S(z) = z\} \tag{4}

Consider $z^* \in \Gamma \cap \text{Fix}(S)$. As $z^* \in \Gamma$ we can write:

\[\Gamma = \{\varphi_t(z^*) \mid t \in \mathbb{R}\} \tag{5} \]

We saw in (a) that $\bar{\Gamma} = \{\varphi_t(S(x)) \mid t \in \mathbb{R}\}$. Since $\varphi_{-t}(x) = \varphi_{-t}(z^*) \mid t \in \mathbb{R}$ we can reach in the same way the result that:

\[\bar{\Gamma} = \{\varphi_t(S(z^*)) \mid t \in \mathbb{R}\} \tag{6} \]

Since $z^* \in \text{Fix}(S)$ we have:

\[\bar{\Gamma} = \{\varphi_t(z^*) \mid t \in \mathbb{R}\} = \Gamma \tag{7} \]

i.e. the orbits coincide.

1.4 Meiss Ex 6.6

(a) Show that if x^* is a symmetric equilibrium of a reversible system, then whenever λ is an eigenvalue of the linearization at x^*, so is $-\lambda$.

Denote the system $\dot{x} = f(x)$ and the reversor of the system as S. Since the system is reversible, we know:

\[-f(S(z)) = DS(z)f(z) \tag{8} \]

Differentiating:

\[-Df(S(z)) \cdot DS(z) = D^2S(z)f(z) + DS(z) \cdot Df(z) \tag{9} \]

The linearization at x^* is:

\[\dot{x} = Df(x^*)x \tag{10} \]

Since x^* is symmetric, we know $S(x^*) = x^*$. Substituting $z = x^* = S(z)$ in the previous equation, we have:

\[-Df(x^*) \cdot DS(x^*) = D^2S(x^*)f(x^*) + DS(x^*) \cdot Df(x^*) \tag{11} \]
Since \(x^* \) is an equilibrium, \(f(x^*) = 0 \). Since \(S \), being a symmetry, is a diffeomorphism, we know that \(DS(z) \) is invertible and hence there exists \((DS(x^*))^{-1} \). Multiplying the above equation from the left by \((DS(x^*))^{-1} \), we see that:

\[
Df(x^*) = (DS(x^*))^{-1}(-Df(x^*))DS(x^*)
\]

Hence:

\[
(12)
\]

And so \(Df(x^*) \) is similar to \(-Df(x^*)\) and they have the same eigenvalues. However, the eigenvalues of \(-Df(x^*)\) are simply minus the eigenvalues of \(Df(x^*) \), and so if \(\lambda \) is an eigenvalue of \(Df(x^*) \) then \(-\lambda\) is an eigenvalue of \(-Df(x^*)\), and hence of \(Df(x^*) \) as well.

It is highly recommended that you solve the rest of exercises 6.5 and 6.6 at home for further practice on the subject of symmetries.

Bibliography