Tutorial 2 - Perturbation Theory

April 8, 2019

Introduction

Perturbation theory is a large collection of iterative methods for obtaining approximate solutions to problems involving a small parameter ε.

When will we use perturbation theory? When we can formulate a problem that we don't know how to solve as a problem we do know how to solve plus a small perturbation. The canonical physical example is the three-body gravitational problem, which is also the canonical example of where perturbation theory can fail.

Persistent properties

A central theme in perturbation theory is to continue equilibrium and periodic solutions to the perturbed system, applying the Implicit Function Theorem. For example, consider a system of differential equations

$$
\dot{x}=f(x, \varepsilon), x \in \mathbb{R}^{n}, \varepsilon \in \mathbb{R}
$$

$f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Equilibria are given by the equation $f(x, \varepsilon)=0$. Assume $x_{0} \in \mathbb{R}^{n}$ such that $f\left(x_{0}, 0\right)=0$, and that $D_{x} f\left(x_{0}, 0\right)$ has maximal rank. Then the Implicit Function Theorem guarantees the existence of a mapping $\varepsilon \mapsto x(\varepsilon)$ in the neighborhood of x_{0} with $x(0)=x_{0}$ such that

$$
f(x(\varepsilon), \varepsilon)=0 .
$$

This expresses persistence of equilibria given some conditions on the dynamical system.
A similar argument can be given for periodic orbits: Let the system with $\varepsilon=0$ have a periodic orbit γ_{0}. Let Σ be a local transversal section of γ_{0} and $P_{0}: \Sigma \rightarrow \Sigma$ the corresponding Poincare map. Then P_{0} has a fixed point $x_{0} \in \gamma_{0} \cap \Sigma$. For small ε, a local Poincare $\operatorname{map} P_{\varepsilon}: \Sigma \rightarrow \Sigma$ is well defined. Its fixed points x_{ε} correspond to periodic orbits γ_{ε}. The equation $P_{\varepsilon}(x(\varepsilon))=x(\varepsilon)$ with $x(0)=x_{0}$ can be also solved via the Implicit Function Theorem.

So the implicit function theorem guarantees persistence of equilibrium and periodic solutions under some conditions; these can generally be approximated using series expansions in the small parameter ε. Note that when the critical elements are not persistent, bifurcations occur.

Useful definition: Asymptotic order relation

Define $f(x)=\mathscr{O}(g(x))$ for $x \rightarrow x_{0}$ if

$$
|f(x) / g(x)|<M
$$

for $x \sim x_{0}$. For example, $x \sin (x)=\mathscr{O}(x)$ because $x \sin (x) / x<1$.

Regular perturbation theory

Let's start with an example:

Example 1 ((BO) 7.1, example 1): Find the approximate roots of

$$
x^{3}-4.001 x+0.002=0 .
$$

To solve perturbatively, introduce a small parameter ε and consider the 1-parameter family of polynomial equations

$$
x^{3}-(4+\varepsilon) x+2 \varepsilon=0 .
$$

It turns out that it is easier to compute approximate roots because by considering roots as functions of ε, we may assume

$$
x(\varepsilon)=\sum_{n=0}^{\infty} a_{n} \varepsilon^{n} .
$$

Note that here we make an implicit assumption that x is analytic in ε - this may not always be satisfied by the actual solution.

Insert $x(\varepsilon)$ into the equation and collect orders of ε :

$$
\left(\sum_{n=0}^{\infty} a_{n} \varepsilon^{n}\right)^{3}-(4+\varepsilon) \sum_{n=0}^{\infty} a_{n} \varepsilon^{n}+2 \varepsilon=0=\sum_{n=0}^{\infty} b_{n} \varepsilon^{n}:
$$

It is because ε is a variable that we can conclude $b_{n}=0$ for all n. Thus, the equation can be solved iteratively:

$$
\begin{gathered}
b_{0}=a_{0}^{3}-4 a_{0}=0 \Rightarrow a_{0}=-2,0,2 \\
\rightarrow b_{1}=3 a_{0}^{2} a_{1}-4 a_{1}-a_{0}+2=0 \rightarrow a_{1}=\frac{a_{0}-2}{3 a_{0}^{2}-4}
\end{gathered}
$$

and so on... Thus, for $a_{0}=-2$, we obtain

$$
x=-2-\frac{1}{2} \varepsilon+\frac{1}{8} \varepsilon^{2}+\mathscr{O}\left(\varepsilon^{3}\right) .
$$

Setting $\varepsilon=0.001$ we can obtain the solution of the original polynomial up to 10^{-9} accuracy.

The remaining question is, does the obtained series series converge to the solution of the original equation? For which values of ε ?

Leaving for now the convergence question on the side, this example illustrates the 3 steps of perturbative analysis:

1. Convert the original problem into a perturbation problem by introducing a small parameter ε.

* Introduce ε such that the 0th-order solution is obtainable as a closed-form analytic expression (unless ε is already given...)

2. Assume an expression for the answer in the form of a perturbation series and compute coefficients of that series.

* Generally, the existence of a closed-form 0th-order solution ensures that higherorder terms may be determined in closed-form analytical expressions.

3. Recover answer to the original problem by summing the perturbation series for the appropriate value of ε.

* If the perturbation series converges, its sum is the desired solution. If it converges at a fast rate, first terms are enough. However, the series may diverge:

Example 2 (Tabor, 3.1(c)): Consider the equation

$$
\dot{x}=x+\varepsilon x^{2} .
$$

Use the expansion

$$
x(t)=x_{0}(t)+\varepsilon x_{1}(t)+\varepsilon^{2} x_{2}(t)+\ldots,
$$

plug into the equation and collect orders:

$$
\begin{gathered}
\mathscr{O}\left(\varepsilon^{0}\right): \dot{x}_{0}=x_{0} \Rightarrow x_{0}=A e^{t} . \\
\mathscr{O}\left(\varepsilon^{1}\right): \dot{x}_{1}=x_{1}+x_{0}^{2} \Rightarrow x_{1}=A^{2} e^{t}\left(e^{t}-1\right) \\
\mathscr{O}\left(\varepsilon^{2}\right): \dot{x}_{2}=x_{2}+2 x_{1} x_{0} \Rightarrow x_{2}=A^{3} e^{t}\left(e^{t}-1\right)^{2}
\end{gathered}
$$

and in fact this procedure can be continued to obtain the series:

$$
x(t)=A e^{t} \sum_{n=0}^{\infty}\left(\varepsilon A\left(e^{t}-1\right)\right)^{n},
$$

as you will check in your homework. The radius of convergence of this series is $\varepsilon A\left(e^{t}-\right.$ $1)<1$, and this produces a critical time after which the perturbed solution is no longer valid,

$$
t_{c}=\log \left(\frac{1+\varepsilon A}{\varepsilon A}\right)
$$

Note: this equation is a particular example of Bernoulli equations $\dot{x}=x+\varepsilon x^{\alpha}$, a family of non-linear differential equations that can be solved exactly in analytical form.

Comments:

* Regular perturbation theory is a perturbation problem whose perturbation series is a power series in ε with a non-vanishing radius of convergence.
* A basic feature of regular perturbation theory is that the exact solution for a small but non-zero ε smoothly approaches the unperturbed/zero-order solution as $\varepsilon \rightarrow 0$.
* It is most useful when the first few steps reveal the important features of the solution, and the remaining steps give small corrections - related to rate of convergence.
* Sundman's theorem - A solution to the 3-body problem as a convergent series in $t^{1 / 3}$. However, this series converges incredible slowly - for astronomical observations, $10^{8000000}$ terms of the series are required - and fail to improve our understanding of the problem. Check out https://sites.math.washington.edu/ ~ morrow/336_13/papers/peter.pdf for a summary of this solution.

Singular perturbation theory

Comments:

* Singular perturbation theory is a perturbation problem whose perturbation series either is not analytic in ε, or, if it does have a power series in ε then the power series has a vanishing radius of convergence.
* A basic feature of singular perturbation theory is that the exact solution for $\varepsilon=0$ is fundamentally different in character from the neighboring solutions obtained in the limit $\varepsilon \rightarrow 0$.

Let's start with an example:
Example 3 (Tabor): Consider the polynomial:

$$
\varepsilon x^{2}+x-1=0 .
$$

In the limit $\varepsilon \rightarrow 0$ the zero-order system has only one root, whereas the perturbed problem has 2 . Therefore, this is singular perturbation theory. The solution to the apparent "paradox" is that the extra root goes to ∞ as $\varepsilon \rightarrow 0$.

Solving the unperturbed equation, we obtain $x=1$. This root seems to behave regularly as $\varepsilon \rightarrow 0$, so we can expand around it:

$$
x_{1}=1+\sum_{n=1}^{\infty} a_{n} \varepsilon^{n}
$$

Plugging this into the polynomial, obtain:

$$
x_{1}=1-\varepsilon+2 \varepsilon^{2}+\mathscr{O}\left(\varepsilon^{3}\right)
$$

Indeed, around 1 , the term εx^{2} is indeed small - as small as ε, generally.
The second root goes to ∞ as $\varepsilon \rightarrow 0$ - this suggests a rescaling of the equation by substitution $x=y / \varepsilon^{n}$.

In order to determine the correct rescaling of the equation, we present the method of dominant balance:

Method of dominant balance:

We assume that x can be consistently rescaled by $1 / \varepsilon^{n}$ around the roots of the equation. Thus, an order-of-magnitude calculation of the equation is:

$$
\varepsilon \cdot \varepsilon^{-2 n}+\varepsilon^{-n}-1=0
$$

When $\varepsilon \rightarrow 0$, at least two of these terms must be of the same, largest, order of magnitude in order for the equation to have a solution. There are 3 options:

- Suppose $\varepsilon^{1-2 n} \sim 1$. Then $n=1 / 2$ and $x=\mathscr{O}\left(\varepsilon^{-1 / 2}\right)$. If this is true, then the middle term scales like $\varepsilon^{-1 / 2}$, and tends to ∞ when $\varepsilon \rightarrow 0$. This is inconsistent with the assumption that the dominant balance is between the first and last terms.
- Suppose $\varepsilon^{-n} \sim 1$. Then $n=0$ and $x=\mathscr{O}(1)$. If this is true, then the first term scales like ε^{1} and is negligible with respect to the other terms. This is a consistent assumption, and recovers the solution that is close to the unperturbed solution.
- Suppose $\varepsilon^{1-2 n} \sim \varepsilon^{-n}$. Then $n=1$ and $x=\mathscr{O}(1 / \varepsilon)$. This is consistent as it renders 1 negligible when $\varepsilon \rightarrow 0$.

Thus, the magnitude of the missing root is $\mathscr{O}(1 / \varepsilon)$ when $\varepsilon \rightarrow 0$. This suggests a scale transformation: $x=y / \varepsilon$. Substituting this into the equation, we obtain:

$$
y^{2}+y-\varepsilon=0
$$

This is now a regular perturbation problem for y, and no roots disappear in the limit $\varepsilon=0$. One may find, solving perturbatively, that:

$$
\begin{gathered}
y_{1}=\varepsilon-\varepsilon^{2}+2 \varepsilon^{3}+\mathscr{O}\left(\varepsilon^{4}\right), \\
y_{2}=-1-\varepsilon+\varepsilon^{2}-2 \varepsilon^{3}+\mathscr{O}\left(\varepsilon^{4}\right),
\end{gathered}
$$

and transforming back to the original variable x, we find that the two roots are:

$$
\begin{gathered}
x_{1}=1-\varepsilon+2 \varepsilon^{2}+\mathscr{O}\left(\varepsilon^{3}\right), \\
x_{2}=-\frac{1}{\varepsilon}-1+\varepsilon-2 \varepsilon^{2}+\mathscr{O}\left(\varepsilon^{3}\right),
\end{gathered}
$$

Note that the series for x_{2} is a Laurent series in ε, and indeed tends to ∞ as $\varepsilon \rightarrow 0$.

Example 4 - Boundary layer:

$$
\varepsilon y^{\prime \prime}-y^{\prime}=0, y(0)=0, y(1)=1
$$

Assume there is some region in which $y^{\prime \prime}$ is small, there we approximate $y^{\prime}=0$ so $y=C$. However, this cannot satisfy the boundary conditions, so it's not a perturbative solution. Therefore, there must be a region in which $\varepsilon y^{\prime \prime}$ is not negligible, therefore $y^{\prime \prime} \rightarrow \infty$ when $\varepsilon \rightarrow 0$. Since $y^{\prime \prime}$ and y^{\prime} have the same sign, there can only be one such region, and it must be close to one of the boundaries. We assume that the solution is approximately 0 for most of the regime $t \in[0,1]$ and begin growing towards $t \rightarrow 1$ in a sharp transition area in which $y^{\prime \prime}$ is large.

In order to track the behavior of the function in the transition area, we can rescale the time parameter $t=\xi / \varepsilon^{n}$. This is a type of "zoom in" into the region of interest. Dominant balance shows that $n=1$. Plugging this rescaling into the equation we obtain:

$$
\frac{d^{2} y}{d \xi^{2}}-\frac{d y}{d \xi}=0
$$

In fact, the perturbation seems to have disappeared.
Checking our guess: In this case, the equation can be solved. The exact solution to the equation is

$$
y(t)=\frac{e^{t / \varepsilon}-1}{e^{1 / \varepsilon}-1} .
$$

Indeed, by plotting this function for small values of ε we obtain that y is almost constant except for a narrow interval around $t=1$ of width of order ε, which is called the boundary layer.

Note: Boundary layers appear naturally in fluid flows, where a fluid can behave differently around a boundary than in the bulk.

