Tutorial 4 - Contraction Principle

May 1, 2019

Introduction

In today’s tutorial we’ll prove the contraction map theorem, that gives sufficient condi-
tions for existence of a unique fixed point in a mapping of a metric space to itself. For
more details, see (M) chapter 3, up to 3.3.

Definitions

Metric space A metric set is a set M equipped with a metric d on M, i.e. a function
d:MxM—R
such that for every x,y,z € M the following holds:
l. dx,y) =0 <= x=y
2. d(x,y) = d(y,x)
3. d(x,y) <d(x,z)+d(z,y) (triangle inequality)
Examples:
o M=R"d(x,y) =/ L(xi—y)?
o M=R",d(x,y) = |log(y/x)|

(x,9) = [lx=yl].
Forexample,M:{f:[a,b]—)]R:fab\f( )|?dx < o}, d(f,g) f |f(x) — g(x)|2dx

Cauchy sequence (in a metric space) Given a metric space (M,d), a sequence {x,},_; C
M is Cauchy if, for any € > 0O there exists an integer N € N such that for all positive inte-
gers n,m > N,

d(Xp,xm) < €.

Property: Every convergent sequence is a Cauchy sequence.

Complete metric space A complete metric space is a metric space (M,d) in which all
Cauchy sequences converge to limits in M.

Examples: R, [0,1] with d(x,y) = [x—y|.

Counter-examples: Q, (0,1] with d(x,y) = [x—y|.



Contraction mapping Let (X,d) be a metric space. Then amap 7 : X — X is called a
contraction map on X if there exists ¢ € [0, 1) such that

d(T(x),T(y)) < cd(x,y)

for all x,y € X.
Examples:

e X=R,d(x,y)=|x—y

, T(x) =x/2. Who is ¢?
e The logistic map for r < 1: x, 11 = rx, (1 —x,).

Obvious property: A contraction map is Lipschitz continuous, i.e. f: X — X with
d(f(x),f(y)) < Kd(x,y) for K > 0.

Contraction Map Theorem

AKA Banach-Caccioppoli fixed-point theorem.

Contraction Map Theorem Let (X,d) be a non-empty complete metric space with a
contraction mapping 7 : X — X. Then T admits a unique fixed point x* = T'(x*) € X.

Proof: Choose some xo € X and define the following sequence:
{xntnzy 10 =T (Xp—1)-
Then, for all n € N, from the contraction mapping
d(Xn,%n—1) < qd(Xn—1,%n-2) < ¢°d(Xn—2,Xp—3) < ... < g"d(x1,%0)-

with) <g < 1.

This sequence is a Cauchy sequence: For m,n € N withm > n,

d(xm7xn) < d(xmaxm—l) + ... +d(xn+laxn)
<(@" "+ q")d (x1,x0)

m—n—1

Sqnd(XI,X()) Z qk
k=0

. I
< q'd(x1,%) Y, 4" = q"d(x1,%0) ;
k=0

Given € > 0, since ¢ € [0, 1) there exists N € N large enough such that

v _ €(1—q)
< d(x1,x0)

Thus, for n,m > N,

1 e(1-g) 1
< d — =E€.
l—q d(x1,x0) (xl’xo)l—q €

d(xmaxi’l) < qnd(xl ,X())

Thus this sequence is a Cauchy sequence, and by completeness of (X, d) the sequence has
a limit x* € X.



This limit is a fixed point of 7:

Xt = lim x, = ,}EEOT(X”_” = T(,}glgoxn_l) =T(x"),

where the third equality results from the continuity of 7.
Another way to prove this: Suppose N is large enough such that d(x,,x*) < € for all
n > N, then:

d(T (x*),x*) <d(T(x*),xp41) +d(xps1,x") <d(T(x"),T(x,)) +d(xp11,x) < (g +1)e.

Since this is true for any € > 0, the distance is 0 and 7 (x*) = x™.

The limit is unique: Assume two fixed points p; = T(p;) and pr = T(p>). From
the contraction property of 7',

d(T(p1),T(p2)) < q-d(p1,p2) =q-d(T(p1),T(p2)).

Since ¢ < 1, this means that d(py, p2) = 0 and from the definition of a metric space this
means p; = pp. [l

Examples:

e M = |a,b], d(x,y) = |x—y|. This example can be analyzed graphically:

Consider a mapping T : [0,1] — [0, 1] satisfying the contraction condition. This
means that its slope is never above 1, and therefore it must cross the y = x line once
and only once:
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Figure 1: A general 1D contraction map.

e Importance of completeness of the metric space: Consider M = (0,1], d(x,y) =
|x —y|, T(x) = x/2. Then all of the conditions for the contraction map theorem
hold except for completeness of the metric space, and indeed the map does not have
a fixed point in M.

o M =C%S") is the space of continuous functions on the unit circle that are periodic
with period 1: f(x) = f(x+ 1). The distance between two functions is defined by

the sup norm: d(f,g) = sup, | f(x) —g(x)].
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Consider the mapping operator
1
T(f) @) = 5 £(2%).

Then T(f) € C°(S'), and d(T(f),T(g)) = 3d(f,g). Therefore T is a contraction
map and hence it has a fixed point, which in this case is a function f*(x) : [0,1] = R
that satisfies T (f*)(x) = 5 £*(2x) for all values of x.

Whatis f*? According to the theorem, any initial function will converge to f*, so it
suffices to check one. For example, take fo(x) = sin2mx. Then f(x) = T(fp)(x) =
% sind7mx, and f,(x) = 2%, sin 2"+ 7x. In the sup norm, this sequence converges to 0:

sup{f(x) 0} = sup{fu(x)} = 5 sup{sin2"* 7z} = 21— 0.

n—soo

e A more interesting example: Consider the same M and d as the previous example,
with the following mapping:

T(f)(x) =cos2mx+ %f(Zx).

This is still a contraction mapping (check!), so the theorem holds and the map has
a single fixed point f*(x). Again, to find the fixed point let’s consider the initial
function fy = sin(27x). Then

1
1(x) =cos2mx+ —sin(47mx),
2
1 1
f2(x) =cos2mx+ 5 cos4mx + 1 sin(87x)),
I cos(2mmx) 1 -
() — 2 oin (it
filx) = nz::l 7 + 57 sin (27" 7x)

The last term goes to zero in the sup-norm, and by the contraction-mapping theorem,
the result is guaranteed to be unique and continuous. The fixed point is not an elementary
function; it is an example of a Weierstrass function (continuous everywhere, differentiable
nowhere), see Fig. 2.
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Figure 2: The Weierstrass function (from (M) chapter 3).



Uses:

Proof of the theorem about persistence of period-m maps given small perturbations.

Proof of existence and uniqueness of solutions to ODEs:

Theorem - Picard-Lindelof Existence and Uniqueness Consider the initial
value problem

x= f(x),x(to) = xo
forx: R —R”", f:R" - R".
Suppose that for xy € R”, there is a b such that f : B,(xg) — R” is Lipschitz with

constant K. Then the initial value problem has a unique solution x(z) for 6 € J =
[to — a,to + a], provided that a = b/M where M = maX,cp, (x,) |f (*)|-

Proof idea:
Look at the integrated problem x(z) = xo + ft; f(x(7))d, and define the map:

T (u)(t) :x0+/ttf(u(r))dr.

Then x*(¢) is a solution to the initial value problem iff it is a fixed point of 7. One
can show that 7 is a contraction for short enough times and therefore a solution
x*(t) exists and is unique. The full proof appears in (M), chapter 3.



