
Tutorial 4 - Contraction Principle

May 1, 2019

Introduction
In today’s tutorial we’ll prove the contraction map theorem, that gives sufficient condi-
tions for existence of a unique fixed point in a mapping of a metric space to itself. For
more details, see (M) chapter 3, up to 3.3.

Definitions
Metric space A metric set is a set M equipped with a metric d on M, i.e. a function

d : M×M→ R

such that for every x,y,z ∈M the following holds:

1. d(x,y) = 0 ⇐⇒ x = y

2. d(x,y) = d(y,x)

3. d(x,y)≤ d(x,z)+d(z,y) (triangle inequality)

Examples:

• M = Rn, d(x,y) =
√

∑(xi− yi)2

• M = R+, d(x,y) = | log(y/x)|

• Any vector space V with a norm || · ||, with the metric defined as d(x,y) = ||x− y||.

For example, M = { f : [a,b]→R :
´ b

a | f (x)|
2dx<∞}, d( f ,g) =

´ b
a | f (x)−g(x)|2dx

Cauchy sequence (in a metric space) Given a metric space (M,d), a sequence {xn}∞
n=1⊂

M is Cauchy if, for any ε > 0 there exists an integer N ∈ N such that for all positive inte-
gers n,m > N,

d(xn,xm)< ε.

Property: Every convergent sequence is a Cauchy sequence.

Complete metric space A complete metric space is a metric space (M,d) in which all
Cauchy sequences converge to limits in M.

Examples: R, [0,1] with d(x,y) = |x− y|.
Counter-examples: Q, (0,1] with d(x,y) = |x− y|.
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Contraction mapping Let (X ,d) be a metric space. Then a map T : X → X is called a
contraction map on X if there exists c ∈ [0,1) such that

d(T (x),T (y))≤ cd(x,y)

for all x,y ∈ X .
Examples:

• X = R, d(x,y) = |x− y|, T (x) = x/2. Who is c?

• The logistic map for r < 1: xn+1 = rxn(1− xn).

Obvious property: A contraction map is Lipschitz continuous, i.e. f : X → X with
d( f (x), f (y))≤ Kd(x,y) for K ≥ 0.

Contraction Map Theorem
AKA Banach-Caccioppoli fixed-point theorem.

Contraction Map Theorem Let (X ,d) be a non-empty complete metric space with a
contraction mapping T : X → X . Then T admits a unique fixed point x∗ = T (x∗) ∈ X .

Proof: Choose some x0 ∈ X and define the following sequence:

{xn}∞
n=1 : xn = T (xn−1).

Then, for all n ∈ N, from the contraction mapping

d(xn,xn−1)≤ qd(xn−1,xn−2)≤ q2d(xn−2,xn−3)≤ ...≤ qnd(x1,x0).

with 0≤ q < 1.

This sequence is a Cauchy sequence: For m,n ∈ N with m > n,

d(xm,xn)≤ d(xm,xm−1)+ ...+d(xn+1,xn)

≤ (qm−1 +qm−2 + ...+qn)d(x1,x0)

≤ qnd(x1,x0)
m−n−1

∑
k=0

qk

≤ qnd(x1,x0)
∞

∑
k=0

qk = qnd(x1,x0)
1

1−q

Given ε > 0, since q ∈ [0,1) there exists N ∈ N large enough such that

qN <
ε(1−q)
d(x1,x0)

.

Thus, for n,m > N,

d(xm,xn)≤ qnd(x1,x0)
1

1−q
<

ε(1−q)
d(x1,x0)

d(x1,x0)
1

1−q
= ε.

Thus this sequence is a Cauchy sequence, and by completeness of (X ,d) the sequence has
a limit x∗ ∈ X .
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This limit is a fixed point of T :

x∗ = lim
n→∞

xn = lim
n→∞

T (xn−1) = T ( lim
n→∞

xn−1) = T (x∗),

where the third equality results from the continuity of T .
Another way to prove this: Suppose N is large enough such that d(xn,x∗) < ε for all

n > N, then:

d(T (x∗),x∗)≤ d(T (x∗),xn+1)+d(xn+1,x∗)≤ d(T (x∗),T (xn))+d(xn+1,x∗)≤ (q+1)ε.

Since this is true for any ε > 0, the distance is 0 and T (x∗) = x∗.

The limit is unique: Assume two fixed points p1 = T (p1) and p2 = T (p2). From
the contraction property of T ,

d(T (p1),T (p2))≤ q ·d(p1, p2) = q ·d(T (p1),T (p2)).

Since q < 1, this means that d(p1, p2) = 0 and from the definition of a metric space this
means p1 = p2.

Examples:

• M = [a,b], d(x,y) = |x− y|. This example can be analyzed graphically:

Consider a mapping T : [0,1]→ [0,1] satisfying the contraction condition. This
means that its slope is never above 1, and therefore it must cross the y = x line once
and only once:

0 1

1

T(x) 

x=y 

x 

y 

x* 

Figure 1: A general 1D contraction map.

• Importance of completeness of the metric space: Consider M = (0,1], d(x,y) =
|x− y|, T (x) = x/2. Then all of the conditions for the contraction map theorem
hold except for completeness of the metric space, and indeed the map does not have
a fixed point in M.

• M =C0(S1) is the space of continuous functions on the unit circle that are periodic
with period 1: f (x) = f (x+ 1). The distance between two functions is defined by
the sup norm: d( f ,g) = supx | f (x)−g(x)|.

3



Consider the mapping operator

T ( f )(x) =
1
2

f (2x).

Then T ( f ) ∈C0(S1), and d(T ( f ),T (g)) = 1
2d( f ,g). Therefore T is a contraction

map and hence it has a fixed point, which in this case is a function f ∗(x) : [0,1]→R
that satisfies T ( f ∗)(x) = 1

2 f ∗(2x) for all values of x.

What is f ∗? According to the theorem, any initial function will converge to f ∗, so it
suffices to check one. For example, take f0(x) = sin2πx. Then f1(x) = T ( f0)(x) =
1
2 sin4πx, and fn(x) = 1

2n sin2n+1πx. In the sup norm, this sequence converges to 0:

sup
x
{ fn(x)−0}= sup

x
{ fn(x)}=

1
2n sup

x
{sin2n+1

πx}= 1
2n −→n→∞

0.

• A more interesting example: Consider the same M and d as the previous example,
with the following mapping:

T ( f )(x) = cos2πx+
1
2

f (2x).

This is still a contraction mapping (check!), so the theorem holds and the map has
a single fixed point f ∗(x). Again, to find the fixed point let’s consider the initial
function f0 = sin(2πx). Then

f1(x) = cos2πx+
1
2

sin(4πx),

f2(x) = cos2πx+
1
2

cos4πx+
1
4

sin(8πx)),

f j(x) =
j−1

∑
n=1

cos(2n+1πx)
2n +

1
2 j sin(2 j+1

πx)

The last term goes to zero in the sup-norm, and by the contraction-mapping theorem,
the result is guaranteed to be unique and continuous. The fixed point is not an elementary
function; it is an example of a Weierstrass function (continuous everywhere, differentiable
nowhere), see Fig. 2.

Figure 2: The Weierstrass function (from (M) chapter 3).
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Uses:

• Proof of the theorem about persistence of period-m maps given small perturbations.

• Proof of existence and uniqueness of solutions to ODEs:

Theorem - Picard-Lindelof Existence and Uniqueness Consider the initial
value problem

ẋ = f (x),x(t0) = x0

for x : R→ Rn, f : Rn→ Rn.

Suppose that for x0 ∈ Rn, there is a b such that f : Bb(x0)→ Rn is Lipschitz with
constant K. Then the initial value problem has a unique solution x(t) for θ ∈ J =
[t0−a, t0 +a], provided that a = b/M where M = maxx∈Bb(x0) | f (x)|.
Proof idea:

Look at the integrated problem x(t) = x0 +
´ t

t0
f (x(τ))dτ , and define the map:

T (u)(t) = x0 +

ˆ t

t0
f (u(τ))dτ.

Then x∗(t) is a solution to the initial value problem iff it is a fixed point of T . One
can show that T is a contraction for short enough times and therefore a solution
x∗(t) exists and is unique. The full proof appears in (M), chapter 3.
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