Tutorial 4 - Contraction Principle

May 1, 2019

Introduction

In today's tutorial we'll prove the contraction map theorem, that gives sufficient conditions for existence of a unique fixed point in a mapping of a metric space to itself. For more details, see (M) chapter 3, up to 3.3.

Definitions

Metric space A metric set is a set M equipped with a metric d on M, i.e. a function

$$
d: M \times M \rightarrow \mathbb{R}
$$

such that for every $x, y, z \in M$ the following holds:

1. $d(x, y)=0 \Longleftrightarrow x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality)

Examples:

- $M=\mathbb{R}^{n}, d(x, y)=\sqrt{\sum\left(x_{i}-y_{i}\right)^{2}}$
- $M=\mathbb{R}^{+}, d(x, y)=|\log (y / x)|$
- Any vector space V with a norm $\|\cdot\|$, with the metric defined as $d(x, y)=\|x-y\|$.

For example, $M=\left\{f:[a, b] \rightarrow \mathbb{R}: \int_{a}^{b}|f(x)|^{2} d x<\infty\right\}, d(f, g)=\int_{a}^{b}|f(x)-g(x)|^{2} d x$
Cauchy sequence (in a metric space) Given a metric space (M, d), a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset$ M is Cauchy if, for any $\varepsilon>0$ there exists an integer $N \in \mathbb{N}$ such that for all positive integers $n, m>N$,

$$
d\left(x_{n}, x_{m}\right)<\varepsilon .
$$

Property: Every convergent sequence is a Cauchy sequence.
Complete metric space A complete metric space is a metric space (M, d) in which all Cauchy sequences converge to limits in M.

Examples: $\mathbb{R},[0,1]$ with $d(x, y)=|x-y|$.
Counter-examples: $\mathbb{Q},(0,1]$ with $d(x, y)=|x-y|$.

Contraction mapping Let (X, d) be a metric space. Then a map $T: X \rightarrow X$ is called a contraction map on X if there exists $c \in[0,1)$ such that

$$
d(T(x), T(y)) \leq c d(x, y)
$$

for all $x, y \in X$.
Examples:

- $X=\mathbb{R}, d(x, y)=|x-y|, T(x)=x / 2$. Who is c ?
- The logistic map for $r<1$: $x_{n+1}=r x_{n}\left(1-x_{n}\right)$.

Obvious property: A contraction map is Lipschitz continuous, i.e. $f: X \rightarrow X$ with $d(f(x), f(y)) \leq K d(x, y)$ for $K \geq 0$.

Contraction Map Theorem

AKA Banach-Caccioppoli fixed-point theorem.

Contraction Map Theorem Let (X, d) be a non-empty complete metric space with a contraction mapping $T: X \rightarrow X$. Then T admits a unique fixed point $x^{*}=T\left(x^{*}\right) \in X$.

Proof: Choose some $x_{0} \in X$ and define the following sequence:

$$
\left\{x_{n}\right\}_{n=1}^{\infty}: x_{n}=T\left(x_{n-1}\right) .
$$

Then, for all $n \in \mathbb{N}$, from the contraction mapping

$$
d\left(x_{n}, x_{n-1}\right) \leq q d\left(x_{n-1}, x_{n-2}\right) \leq q^{2} d\left(x_{n-2}, x_{n-3}\right) \leq \ldots \leq q^{n} d\left(x_{1}, x_{0}\right) .
$$

with $0 \leq q<1$.

This sequence is a Cauchy sequence: For $m, n \in \mathbb{N}$ with $m>n$,

$$
\begin{aligned}
& d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{m-1}\right)+\ldots+d\left(x_{n+1}, x_{n}\right) \\
& \leq\left(q^{m-1}+q^{m-2}+\ldots+q^{n}\right) d\left(x_{1}, x_{0}\right) \\
& \quad \leq q^{n} d\left(x_{1}, x_{0}\right) \sum_{k=0}^{m-n-1} q^{k} \\
& \leq q^{n} d\left(x_{1}, x_{0}\right) \sum_{k=0}^{\infty} q^{k}=q^{n} d\left(x_{1}, x_{0}\right) \frac{1}{1-q}
\end{aligned}
$$

Given $\varepsilon>0$, since $q \in[0,1)$ there exists $N \in \mathbb{N}$ large enough such that

$$
q^{N}<\frac{\varepsilon(1-q)}{d\left(x_{1}, x_{0}\right)}
$$

Thus, for $n, m>N$,

$$
d\left(x_{m}, x_{n}\right) \leq q^{n} d\left(x_{1}, x_{0}\right) \frac{1}{1-q}<\frac{\varepsilon(1-q)}{d\left(x_{1}, x_{0}\right)} d\left(x_{1}, x_{0}\right) \frac{1}{1-q}=\varepsilon .
$$

Thus this sequence is a Cauchy sequence, and by completeness of (X, d) the sequence has a limit $x^{*} \in X$.

This limit is a fixed point of T :

$$
x^{*}=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T\left(x_{n-1}\right)=T\left(\lim _{n \rightarrow \infty} x_{n-1}\right)=T\left(x^{*}\right),
$$

where the third equality results from the continuity of T.
Another way to prove this: Suppose N is large enough such that $d\left(x_{n}, x^{*}\right)<\varepsilon$ for all $n>N$, then:
$d\left(T\left(x^{*}\right), x^{*}\right) \leq d\left(T\left(x^{*}\right), x_{n+1}\right)+d\left(x_{n+1}, x^{*}\right) \leq d\left(T\left(x^{*}\right), T\left(x_{n}\right)\right)+d\left(x_{n+1}, x^{*}\right) \leq(q+1) \varepsilon$.
Since this is true for any $\varepsilon>0$, the distance is 0 and $T\left(x^{*}\right)=x^{*}$.

The limit is unique: Assume two fixed points $p_{1}=T\left(p_{1}\right)$ and $p_{2}=T\left(p_{2}\right)$. From the contraction property of T,

$$
d\left(T\left(p_{1}\right), T\left(p_{2}\right)\right) \leq q \cdot d\left(p_{1}, p_{2}\right)=q \cdot d\left(T\left(p_{1}\right), T\left(p_{2}\right)\right)
$$

Since $q<1$, this means that $d\left(p_{1}, p_{2}\right)=0$ and from the definition of a metric space this means $p_{1}=p_{2}$.

Examples:

- $M=[a, b], d(x, y)=|x-y|$. This example can be analyzed graphically:

Consider a mapping $T:[0,1] \rightarrow[0,1]$ satisfying the contraction condition. This means that its slope is never above 1 , and therefore it must cross the $y=x$ line once and only once:

Figure 1: A general 1D contraction map.

- Importance of completeness of the metric space: Consider $M=(0,1], d(x, y)=$ $|x-y|, T(x)=x / 2$. Then all of the conditions for the contraction map theorem hold except for completeness of the metric space, and indeed the map does not have a fixed point in M.
- $M=C^{0}\left(\mathbb{S}^{1}\right)$ is the space of continuous functions on the unit circle that are periodic with period 1: $f(x)=f(x+1)$. The distance between two functions is defined by the sup norm: $d(f, g)=\sup _{x}|f(x)-g(x)|$.

Consider the mapping operator

$$
T(f)(x)=\frac{1}{2} f(2 x) .
$$

Then $T(f) \in C^{0}\left(\mathbb{S}^{1}\right)$, and $d(T(f), T(g))=\frac{1}{2} d(f, g)$. Therefore T is a contraction map and hence it has a fixed point, which in this case is a function $f^{*}(x):[0,1] \rightarrow \mathbb{R}$ that satisfies $T\left(f^{*}\right)(x)=\frac{1}{2} f^{*}(2 x)$ for all values of x.
What is f^{*} ? According to the theorem, any initial function will converge to f^{*}, so it suffices to check one. For example, take $f_{0}(x)=\sin 2 \pi x$. Then $f_{1}(x)=T\left(f_{0}\right)(x)=$ $\frac{1}{2} \sin 4 \pi x$, and $f_{n}(x)=\frac{1}{2^{n}} \sin 2^{n+1} \pi x$. In the sup norm, this sequence converges to 0 :

$$
\sup _{x}\left\{f_{n}(x)-0\right\}=\sup _{x}\left\{f_{n}(x)\right\}=\frac{1}{2^{n}} \sup _{x}\left\{\sin 2^{n+1} \pi x\right\}=\frac{1}{2^{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

- A more interesting example: Consider the same M and d as the previous example, with the following mapping:

$$
T(f)(x)=\cos 2 \pi x+\frac{1}{2} f(2 x) .
$$

This is still a contraction mapping (check!), so the theorem holds and the map has a single fixed point $f^{*}(x)$. Again, to find the fixed point let's consider the initial function $f_{0}=\sin (2 \pi x)$. Then

$$
\begin{aligned}
f_{1}(x) & =\cos 2 \pi x+\frac{1}{2} \sin (4 \pi x), \\
f_{2}(x) & \left.=\cos 2 \pi x+\frac{1}{2} \cos 4 \pi x+\frac{1}{4} \sin (8 \pi x)\right), \\
f_{j}(x) & =\sum_{n=1}^{j-1} \frac{\cos \left(2^{n+1} \pi x\right)}{2^{n}}+\frac{1}{2^{j}} \sin \left(2^{j+1} \pi x\right)
\end{aligned}
$$

The last term goes to zero in the sup-norm, and by the contraction-mapping theorem, the result is guaranteed to be unique and continuous. The fixed point is not an elementary function; it is an example of a Weierstrass function (continuous everywhere, differentiable nowhere), see Fig. 2.

Figure 2: The Weierstrass function (from (M) chapter 3).

Uses:

- Proof of the theorem about persistence of period-m maps given small perturbations.
- Proof of existence and uniqueness of solutions to ODEs:

Theorem - Picard-Lindelof Existence and Uniqueness Consider the initial value problem

$$
\dot{x}=f(x), x\left(t_{0}\right)=x_{0}
$$

for $x: \mathbb{R} \rightarrow \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Suppose that for $x_{0} \in \mathbb{R}^{n}$, there is a b such that $f: B_{b}\left(x_{0}\right) \rightarrow \mathbb{R}^{n}$ is Lipschitz with constant K. Then the initial value problem has a unique solution $x(t)$ for $\theta \in J=$ $\left[t_{0}-a, t_{0}+a\right]$, provided that $a=b / M$ where $M=\max _{x \in B_{b}\left(x_{0}\right)}|f(x)|$.
Proof idea:
Look at the integrated problem $x(t)=x_{0}+\int_{t_{0}}^{t} f(x(\tau)) d \tau$, and define the map:

$$
T(u)(t)=x_{0}+\int_{t_{0}}^{t} f(u(\tau)) d \tau
$$

Then $x^{*}(t)$ is a solution to the initial value problem iff it is a fixed point of T. One can show that T is a contraction for short enough times and therefore a solution $x^{*}(t)$ exists and is unique. The full proof appears in (M), chapter 3.

