Tutorial 6 - Asymptotic Stability

May 20, 2019

Introduction

In this tutorial we will prove the asymptotic stability theorem. This theorem shows the relation between the dynamics of the linear approximation of a system around an attracting fixed point to the dynamics of the full system: if the linearized system is asymptotically stable, this implies that the full, non-linear system is also asymptotically stable.

Recap of relevant information

Lyapunov stability An equilibrium x^* is Lyapunov stable is for every neighborhood N of x^* there exists a smaller neighborhood $M \subset N$ such that $x \in M$ implies $x(t) \in N$ for all $t \ge 0$.

Asymptotic stability An equilibrium x^* is asymptotically stable if it is Lyapunov stable and there exists a neighborhood N of x^* such that every point $x \in N$ approaches x^* as $t \to \infty$.

* Examples for the difference between these definitions: if time permits, at the end.

A simple criterion for linear systems (Theorem 2.10 (M) - Asymptotic linear stability): In a linear system described by $\dot{x} = Ax$, all the eigenvalues of A have a negative real part iff $x^* = 0$ is asymptotically stable.

The theorem and its proof - 4.6 in (M)

Consider a dynamical system $\dot{x} = f(x)$, with $x \in \mathbb{R}^n$. Then the following theorem holds:

Theorem: Asymptotic linear stability implies asymptotic stability. Let $f : E \to \mathbb{R}^n$ be C^1 and have an equilibrium x^* such that all the eigenvalues of $Df(x^*)$ have real parts less than zero. Then x^* is asymptotically stable.

Proof. Without loss of generality, assume $x^* = 0$. (If not, we can define $y = x - x^*$ and the same proof holds with the required modifications).

Define $A = Df(x^*)$, g(x) = f(x) - Ax, and rewrite the differential equation as

$$\dot{x} = Ax + g(x). \tag{1}$$

Define $\eta(t) = e^{-tA}x(t)$, then the differential equation obtains the form $\dot{\eta} = e^{-tA}g(x(t))$. This equation can be integrated by time from 0 to *t* to obtain $\eta(t) - \eta(0) = e^{-tA}x(t) - x(0) = \int_0^t ds \ e^{-sA}g(s(t))$, and returning to *x* we obtain

$$x(t) = e^{tA}x(0) + \int_0^t ds e^{(t-s)A}g(s(t))$$
(2)

Now we shall estimate the two terms on the right:

By our assumption, there is an $\alpha > 0$ such that every eigenvalue of A, denoted λ , satisfies $Re(\lambda) < -\alpha < 0$. Therefore, we can use the following estimate (2.): for any vector v there is a $K \ge 1$ such that

$$|e^{tA}v| \le Ke^{-\alpha t}|v|. \tag{3}$$

(and in fact this is true for K = 1.)

Since *f* is C^1 , then close enough to its fixed point, the linear approximation is good and the remainder is small, i.e. for any $\varepsilon > 0$ there is a $\delta > 0$ such that, if $x \le \delta$, then $|g(x)| \le \varepsilon |x|$.

Together, these provide an estimate for (2):

$$|x(t)| \le Ke^{-\alpha t} |x(0)| + \varepsilon \int_0^t ds \ |e^{(t-s)A}x| \le Ke^{-\alpha t} \delta + K\varepsilon \int_0^t ds \ e^{(t-s)\alpha} |x| \tag{4}$$

Let $\xi(t) = e^{\alpha t} |x(t)|$:

$$\xi(t) \le K\delta + K\varepsilon \int_0^t ds \,\xi(s). \tag{5}$$

Use Gronwall's lemma (2.) to obtain:

$$\xi(t) \le K\delta e^{K\varepsilon t} \Rightarrow |y(t)| \le K\delta e^{(K\varepsilon - \alpha)t}.$$
(6)

Then, provided ε is chosen small enough so that $K\varepsilon < \alpha$, then $|y(t)| \to 0$ and is bounded by $K\delta$ for all $t \ge 0$.

Left to prove:

1. Estimate 2.44 in chapter 2.7 (M): for any vector v there is a $K \ge 1$ such that $|e^{tA}v| \le Ke^{-\alpha t}|v|$.

Proof for the case *A* is diagonal: $A_i j = \lambda_i \delta_{ij}$. Then

$$|e^{tA}v| = \sqrt{\sum_{j=1}^{n} (e^{t\lambda_j}v_j)^2} \le \sum_{j=1}^{n} |e^{t\lambda_j}v_j| \le \sum_{j=1}^{n} |e^{t(a_j + ib_j)}v_j| \le e^{-t\alpha} \sum_{j=1}^{n} |v_j| \le Ke^{-t\alpha}|v|,$$

where in the last inequality we use $(a+b)^2 \le 2a^2 + 2b^2$. For the general case in which A is not diagonalizable, see chapter 2.7, estimate 2.44.

In fact, it can be shown that K = 1.

2. *Gronwall's lemma:* Suppose $g, k : [0, a \to \mathbb{R}$ are continuous, $k(t) \ge 0$, and g(t) satisfies

$$g(t) \le C + \int_0^t k(s)g(s)ds \equiv G(t) \tag{7}$$

for all $t \in [0, a]$. Then

$$\dot{G}(t) = k(t)g(t) \le k(t)G(t) \Rightarrow \dot{G} - kG \le 0.$$
(8)

Multiply by $e^{-\int_0^t k(s)ds}$:

$$e^{-\int_0^t k(s)ds} \dot{G} - e^{-\int_0^t k(s)ds} kG = \frac{d}{dt} (G(t)e^{-\int_0^t k(s)ds}) \le 0.$$
(9)

Integrate by time from 0 to *t* to obtain $G(t)e^{-\int_0^t k(s)ds} \le G(0) = C$, therefore

$$G(t) \le Ce^{-\int_0^t k(s)ds}.$$
(10)

Example (M): Consider the system:

$$\dot{x} = -x - y - r^2$$
$$\dot{y} = x - y + r^2$$

where *r* is the polar radius, $r = \sqrt{x^2 + y^2}$. The origin is obviously a fixed point, and linear stability analysis shows that it is a stable focus:

$$Df(0,0) = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$

has eigenvalues $\lambda_{\pm} = -1 \pm i$. We want to show that indeed at a neighborhood of the origin, the full system is bounded and asymptotically reaches the origin. It is easier to study the differential equation for r, using the fact that $2r\dot{r} = 2x\dot{x} + 2y\dot{y}$:

$$\dot{r} = r(-1+y+x).$$

Since by definition of r, $-r \le x, y \le r$, if r < 1/2 then -1+y+x < 0 and $\dot{r} < 0$ for r < 1/2. Thus, r is monotonically decreasing and this implies that the origin is asymptotically stable.

Example 4.16 (M): All IC end up at the stable fp, but the system is not Lyapunov stable: Consider the system

$$\dot{r} = r(1-r)$$

 $\dot{\theta} = \sin^2(\theta/2)$

where r, θ are polar coordinates in the plane. The system has two fixed points: (0,0) (unstable) and (1,0) (stable). The two equations are uncoupled and easy to analyze as separate 1D systems. For r, easy to see that every r > 0 is asymptotic to r = 1. For θ , $\sin^2(\theta/2) \ge 0$ so θ is semi-stable. However since θ is a periodic angle coordinate, even in the unstable direction $\theta = \delta > 0$ it reaches the same point. Therefore, every IC is attracted to (1,0). However, this point is not Lyapunov stable - for any $\varepsilon < 2$ there are nearby points, f.e. $(1,\delta)$, that leave the ball of radius ε about the equilibrium.