Tutorial 6 - Asymptotic Stability

May 20, 2019

Introduction

In this tutorial we will prove the asymptotic stability theorem. This theorem shows the re-
lation between the dynamics of the linear approximation of a system around an attracting
fixed point to the dynamics of the full system: if the linearized system is asymptotically
stable, this implies that the full, non-linear system is also asymptotically stable.

Recap of relevant information

Lyapunov stability An equilibrium x* is Lyapunov stable is for every neighborhood N
of x* there exists a smaller neighborhood M C N such that x € M implies x(¢) € N for all
t>0.

Asymptotic stabillity An equilibrium x* is asymptotically stable if it is Lyapunov stable
and there exists a neighborhood N of x* such that every point x € N approaches x* as
1 — oo,

* Examples for the difference between these definitions: if time permits, at the end.

A simple criterion for linear systems (Theorem 2.10 (M) - Asymptotic linear stabil-
ity): In a linear system described by x = Ax, all the eigenvalues of A have a negative
real part iff x* = 0 is asymptotically stable.

The theorem and its proof - 4.6 in (M)

Consider a dynamical system x = f(x), with x € R". Then the following theorem holds:

Theorem: Asymptotic linear stability implies asymptotic stability. Let f : E — R”
be C' and have an equilibrium x* such that all the eigenvalues of Df (x*) have real parts
less than zero. Then x* is asymptotically stable.

Proof. Without loss of generality, assume x* = 0. (If not, we can define y = x — x* and
the same proof holds with the required modifications).
Define A = Df(x*), g(x) = f(x) — Ax, and rewrite the differential equation as

x=Ax+g(x). (1)



Define 1 (t) = e "Ax(t), then the differential equation obtains the form 7 = e "g(x(¢)).
This equation can be integrated by time from O to ¢ to obtain 1(z) — n(0) = e "x(t) —

x(0) = fé ds e 4g(s(t)), and returning to x we obtain

t
)

x(t) = e x(0) + /Ot dse Mg (s(1)) (2)

Now we shall estimate the two terms on the right:

By our assumption, there is an o > 0 such that every eigenvalue of A, denoted A,
satisfies Re(A) < —a < 0. Therefore, we can use the following estimate (2.): for any
vector v there is a K > 1 such that

leAv| < Ke %|v|. 3)

(and in fact this is true for K = 1.)

Since f is C!, then close enough to its fixed point, the linear approximation is good
and the remainder is small, i.e. for any € > 0 there is a 0 > 0 such that, if x < §, then
|g(x)| < x].

Together, these provide an estimate for (2):

t t
lx(t)] < Ke™¥|x(0)] + 8/ ds || < Ke™™§ +K€/ ds 9% x| 4)
0 0

Let (1) = e |x(r)):
5(t)§K6+K£/0tdsé(s). )

Use Gronwall’s lemma (2.) to obtain:
E(r) SK8X = [y(1)] < KelKe~ ), (6)

Then, provided € is chosen small enough so that Ke < a, then |y(¢)| — 0 and is bounded
by K¢ forall # > 0.
Left to prove:

1. Estimate 2.44 in chapter 2.7 (M): for any vector v there is a K > 1 such that |e"v| <
Ke % |v|.

Proof for the case A is diagonal: A;j = A;9;;. Then

n n n n
vl = [ Y (@Piv)2 < Y [ehivy| < Y [Py < e Y || < Ke Ty,
J=1 Jj=1 Jj=1 j=1

where in the last inequality we use (a + b)? < 2a® 4 2b. For the general case in
which A is not diagonalizable, see chapter 2.7, estimate 2.44.

In fact, it can be shown that K = 1.

2. Gronwall’s lemma: Suppose g,k : [0,a — R are continuous, k(z) > 0, and g(t)
satisfies

t
gy <Ct / k(s)g(s)ds = G(r) ™
0
for all t € [0,a]. Then

G(t) =k(t)g(t) <k(t)G(t) = G— kG <0. 8)



Multiply by e~ Jok(s)ds,

e fé k(s)dsG'_ eif(; k(s)dskG _ %(G(l‘)e f(; k(s)dS) <0. 9)

Integrate by time from O to ¢ to obtain G(t)e™ Jok(s)ds < G(0) = C, therefore

G(1) < Ce~ Jok(s)ds, (10)

Example (M): Consider the system:

x:—x—y—r2

y=x—y+r

where r is the polar radius, r = y/x2 + y2. The origin is obviously a fixed point, and linear
stability analysis shows that it is a stable focus:

-1 —1
has eigenvalues AL = —1 +i. We want to show that indeed at a neighborhood of the

origin, the full system is bounded and asymptotically reaches the origin. It is easier to
study the differential equation for r, using the fact that 2ri- = 2xx + 2yy:

F=r(—14y+x).

Since by definition of r, —r <x,y <r,ifr <1/2then —1+y+x<0and 7 < O0forr<1/2.
Thus, r is monotonically decreasing and this implies that the origin is asymptotically
stable.

Example 4.16 (M): All IC end up at the stable fp, but the system is not Lyapunov
stable: Consider the system
F=r(l1—r)

6 =sin?(0/2)

where r,0 are polar coordinates in the plane. The system has two fixed points: (0,0)
(unstable) and (1,0) (stable). The two equations are uncoupled and easy to analyze as
separate 1D systems. For r, easy to see that every r > 0 is asymptotic to r = 1. For 0,
sin?(6/2) > 0 so 0 is semi-stable. However since 8 is a periodic angle coordinate, even
in the unstable direction 8 = 0 > 0 it reaches the same point. Therefore, every IC is
attracted to (1,0). However, this point is not Lyapunov stable - for any € < 2 there are
nearby points, f.e. (1,9), that leave the ball of radius € about the equilibrium.



