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Introduction
In this tutorial we will prove the asymptotic stability theorem. This theorem shows the re-
lation between the dynamics of the linear approximation of a system around an attracting
fixed point to the dynamics of the full system: if the linearized system is asymptotically
stable, this implies that the full, non-linear system is also asymptotically stable.

Recap of relevant information
Lyapunov stability An equilibrium x∗ is Lyapunov stable is for every neighborhood N
of x∗ there exists a smaller neighborhood M ⊂ N such that x ∈M implies x(t) ∈ N for all
t ≥ 0.

Asymptotic stabillity An equilibrium x∗ is asymptotically stable if it is Lyapunov stable
and there exists a neighborhood N of x∗ such that every point x ∈ N approaches x∗ as
t→ ∞.

* Examples for the difference between these definitions: if time permits, at the end.

A simple criterion for linear systems (Theorem 2.10 (M) - Asymptotic linear stabil-
ity): In a linear system described by ẋ = Ax, all the eigenvalues of A have a negative
real part iff x∗ = 0 is asymptotically stable.

The theorem and its proof - 4.6 in (M)
Consider a dynamical system ẋ = f (x), with x ∈ Rn. Then the following theorem holds:

Theorem: Asymptotic linear stability implies asymptotic stability. Let f : E→Rn

be C1 and have an equilibrium x∗ such that all the eigenvalues of D f (x∗) have real parts
less than zero. Then x∗ is asymptotically stable.

Proof. Without loss of generality, assume x∗ = 0. (If not, we can define y = x− x∗ and
the same proof holds with the required modifications).

Define A = D f (x∗), g(x) = f (x)−Ax, and rewrite the differential equation as

ẋ = Ax+g(x). (1)
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Define η(t) = e−tAx(t), then the differential equation obtains the form η̇ = e−tAg(x(t)).
This equation can be integrated by time from 0 to t to obtain η(t)−η(0) = e−tAx(t)−
x(0) =

´ t
0 ds e−sAg(s(t)), and returning to x we obtain

x(t) = etAx(0)+
ˆ t

0
dse(t−s)Ag(s(t)) (2)

Now we shall estimate the two terms on the right:
By our assumption, there is an α > 0 such that every eigenvalue of A, denoted λ ,

satisfies Re(λ ) < −α < 0. Therefore, we can use the following estimate (2.): for any
vector v there is a K ≥ 1 such that

|etAv| ≤ Ke−αt |v|. (3)

(and in fact this is true for K = 1.)
Since f is C1, then close enough to its fixed point, the linear approximation is good

and the remainder is small, i.e. for any ε > 0 there is a δ > 0 such that, if x ≤ δ , then
|g(x)| ≤ ε|x|.

Together, these provide an estimate for (2):

|x(t)| ≤ Ke−αt |x(0)|+ ε

ˆ t

0
ds |e(t−s)Ax| ≤ Ke−αt

δ +Kε

ˆ t

0
ds e(t−s)α |x| (4)

Let ξ (t) = eαt |x(t)|:

ξ (t)≤ Kδ +Kε

ˆ t

0
ds ξ (s). (5)

Use Gronwall’s lemma (2.) to obtain:

ξ (t)≤ KδeKεt ⇒ |y(t)| ≤ Kδe(Kε−α)t . (6)

Then, provided ε is chosen small enough so that Kε < α , then |y(t)| → 0 and is bounded
by Kδ for all t ≥ 0.

Left to prove:

1. Estimate 2.44 in chapter 2.7 (M): for any vector v there is a K ≥ 1 such that |etAv| ≤
Ke−αt |v|.
Proof for the case A is diagonal: Ai j = λiδi j. Then

|etAv|=
√

n

∑
j=1

(etλ jv j)2 ≤
n

∑
j=1
|etλ jv j| ≤

n

∑
j=1
|et(a j+ib j)v j| ≤ e−tα

n

∑
j=1
|v j| ≤ Ke−tα |v|,

where in the last inequality we use (a+ b)2 ≤ 2a2 + 2b2. For the general case in
which A is not diagonalizable, see chapter 2.7, estimate 2.44.

In fact, it can be shown that K = 1.

2. Gronwall’s lemma: Suppose g,k : [0,a → R are continuous, k(t) ≥ 0, and g(t)
satisfies

g(t)≤C+

ˆ t

0
k(s)g(s)ds≡ G(t) (7)

for all t ∈ [0,a]. Then

Ġ(t) = k(t)g(t)≤ k(t)G(t)⇒ Ġ− kG≤ 0. (8)
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Multiply by e−
´ t

0 k(s)ds:

e−
´ t

0 k(s)dsĠ− e−
´ t

0 k(s)dskG =
d
dt
(G(t)e−

´ t
0 k(s)ds)≤ 0. (9)

Integrate by time from 0 to t to obtain G(t)e−
´ t

0 k(s)ds ≤ G(0) =C, therefore

G(t)≤Ce−
´ t

0 k(s)ds. (10)

Example (M): Consider the system:

ẋ =−x− y− r2

ẏ = x− y+ r2

where r is the polar radius, r =
√

x2 + y2. The origin is obviously a fixed point, and linear
stability analysis shows that it is a stable focus:

D f (0,0) =
(
−1 −1
1 −1

)
has eigenvalues λ± = −1± i. We want to show that indeed at a neighborhood of the
origin, the full system is bounded and asymptotically reaches the origin. It is easier to
study the differential equation for r, using the fact that 2rṙ = 2xẋ+2yẏ:

ṙ = r(−1+ y+ x).

Since by definition of r,−r≤ x,y≤ r, if r < 1/2 then−1+y+x< 0 and ṙ < 0 for r < 1/2.
Thus, r is monotonically decreasing and this implies that the origin is asymptotically
stable.

Example 4.16 (M): All IC end up at the stable fp, but the system is not Lyapunov
stable: Consider the system

ṙ = r(1− r)

θ̇ = sin2(θ/2)

where r,θ are polar coordinates in the plane. The system has two fixed points: (0,0)
(unstable) and (1,0) (stable). The two equations are uncoupled and easy to analyze as
separate 1D systems. For r, easy to see that every r > 0 is asymptotic to r = 1. For θ ,
sin2(θ/2) ≥ 0 so θ is semi-stable. However since θ is a periodic angle coordinate, even
in the unstable direction θ = δ > 0 it reaches the same point. Therefore, every IC is
attracted to (1,0). However, this point is not Lyapunov stable - for any ε < 2 there are
nearby points, f.e. (1,δ ), that leave the ball of radius ε about the equilibrium.
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