Homework \#7

Due: December 2

1. For which values of r is the quadratic map a contraction?

$$
\begin{equation*}
x_{n+1}=r x_{n}\left(1-x_{n}\right)=F(x ; r), \quad x \in[0,1], r>0 . \tag{1}
\end{equation*}
$$

2. Let Σ_{N} consist of all sequences of natural numbers $\{0,1,2, . ., N-1\}$. Let σ denote the shift map on these sequences.
(a) Find $\operatorname{CardPer}_{k}(\sigma)$: the number of the periodic points of σ of period k.
(b) Show that σ has a dense orbit.
(c) Consider the map: $x_{n+1}=3 x_{n} \bmod 1$. Prove that the map is chaotic (hint: use the symbolic dynamics on Σ_{3}). Prove that the middle-third Cantor set Λ is invariant under the map and that the map has a dense orbit on Λ (hint: use the subset of Σ_{3} of sequences containing only the symbols $\{0,2\}$).
3. Bonus: find a paper in your field of interest in which symbolic dynamics is used and explain what you found.
