Homework #7
Due: December 2

1. For which values of r is the quadratic map a contraction?

\[x_{n+1} = rx_n(1 - x_n) = F(x; r), \quad x \in [0, 1], \quad r > 0. \]

(1)

2. Let Σ_N consist of all sequences of natural numbers $\{0, 1, 2, \ldots, N-1\}$. Let σ denote the shift map on these sequences.

 (a) Find $\text{CardPer}_k(\sigma)$: the number of the periodic points of σ of period k.

 (b) Show that σ has a dense orbit.

 (c) Consider the map: $x_{n+1} = 3x_n \mod 1$. Prove that the map is chaotic (hint: use the symbolic dynamics on Σ_3). Prove that the middle-third Cantor set Λ is invariant under the map and that the map has a dense orbit on Λ (hint: use the subset of Σ_3 of sequences containing only the symbols $\{0, 2\}$).

3. Bonus: find a paper in your field of interest in which symbolic dynamics is used and explain what you found.