Homework \#8a

Due: December 9

1. Construct numerically, by iterating initial conditions and leaving out the transients (i.e. do not plot the first N iterations for some large number N), the bifurcation diagram for:
(a) The quadratic map: $x_{n+1}=r x_{n}\left(1-x_{n}\right) \quad x_{n} \in[0,1]$ for $r \in[0,4]$
(b) The sine map: $x_{n+1}=r \sin \pi x_{n} \quad x_{n} \in[0,1]$ for $r \in[0,1]$
(c) Let r_{n} denote the nth period doubling bifurcation in the doubling bifurcation sequence. For both maps, find numerically, for as large an n as you can, the ratio: $\delta_{n}=\frac{r_{n}-r_{n-1}}{r_{n+1}-r_{n}}$. Can you see convergence to the Universal Feigenbaum constant $\delta=4.669201$..? (bonus: derive more sophisticated ways to find δ_{n}, read about it).
2. Bonus: find a paper in your field of interest in which period doubling bifurcation plays a role. Write the equations leading to the bifurcation, and describe the implications to the specific problem.
