Homework #8a

Due: December 9

- 1. Construct numerically, by iterating initial conditions and leaving out the transients (i.e. do not plot the first N iterations for some large number N), the bifurcation diagram for:
 - (a) The quadratic map: $x_{n+1} = rx_n(1-x_n)$ $x_n \in [0,1]$ for $r \in [0,4]$
 - (b) The sine map: $x_{n+1} = r \sin \pi x_n$ $x_n \in [0, 1]$ for $r \in [0, 1]$
 - (c) Let r_n denote the *n*th period doubling bifurcation in the doubling bifurcation sequence. For both maps, find numerically, for as large an *n* as you can, the ratio: $\delta_n = \frac{r_n r_{n-1}}{r_{n+1} r_n}$. Can you see convergence to the Universal Feigenbaum constant $\delta = 4.669201...$? (bonus: derive more sophisticated ways to find δ_n , read about it).
- 2. Bonus: find a paper in your field of interest in which period doubling bifurcation plays a role. Write the equations leading to the bifurcation, and describe the implications to the specific problem.