Homework \#9

Due: December 16

1. Classify the dynamics of the following ODEs $\dot{x}=A x$ for the following matrices A. Sketch the phase portrait (qualitatively, not numerically).
(a) $A=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$, (b) $A=\left(\begin{array}{ll}-3 & 2 \\ -2 & 1\end{array}\right)$, (c) $A=\left(\begin{array}{ll}1 & -2 \\ 4 & -3\end{array}\right)$,
(d) $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right)$, (e) $A=\left(\begin{array}{cc}0 & 1 \\ -2 & -2\end{array}\right)$, (f) $A=\left(\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right)$
2. (Meiss 2.14)

Solve the initial value problem $\frac{d x}{d t}=A x, \quad x(0)=x_{o}$ with

$$
A=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 2 & -4 \\
1 & 4 & 2
\end{array}\right)
$$

and $x_{o}=(1,1,0)^{T}$.
3. In each of the problems below determine whether the fixed point in the origin is stable, asymptotically stable or unstable by constructing a suitable Lyapunov function of the form $a x^{2}+c y^{2}$ where a and c are to be determined

$$
\begin{aligned}
& \dot{x}=-x^{3}+x y^{2}, \quad \dot{y}=-2 x^{2} y-y^{3} \\
& \dot{x}=-\frac{1}{2} x^{3}+2 x y^{2}, \quad \dot{y}=-y^{3} \\
& \dot{x}=-x^{3}+2 y^{3}, \quad \dot{y}=-2 x y^{2} \\
& \dot{x}=x^{3}-y^{3}, \quad \dot{y}=2 x y^{2}+4 x^{2} y+2 y^{3} .
\end{aligned}
$$

4. Consider the system of equations

$$
\dot{x}=y-x f(x, y), \quad \dot{y}=-x-y f(x, y),
$$

where f is continuous and has continuous first partial derivatives. Show that if $f(x, y)>0$ in some neighborhood of the origin, then the origin is an asymptotically stable fixed point, and if $f(x, y)<0$ in some neighborhood of the origin, then the origin is an unstable fixed point.

