
Tutorial 2 - Perturbation Theory

April 8, 2019

Introduction
Perturbation theory is a large collection of iterative methods for obtaining approximate
solutions to problems involving a small parameter ε .

When will we use perturbation theory? When we can formulate a problem that we
don’t know how to solve as a problem we do know how to solve plus a small perturbation.
The canonical physical example is the three-body gravitational problem, which is also the
canonical example of where perturbation theory can fail.

Persistent properties
A central theme in perturbation theory is to continue equilibrium and periodic solutions
to the perturbed system, applying the Implicit Function Theorem. For example, consider
a system of differential equations

ẋ = f (x,ε), x ∈ Rn, ε ∈ R,
f : Rn+1→R. Equilibria are given by the equation f (x,ε) = 0. Assume x0 ∈Rn such that
f (x0,0) = 0, and that Dx f (x0,0) has maximal rank. Then the Implicit Function Theorem
guarantees the existence of a mapping ε 7→ x(ε) in the neighborhood of x0 with x(0) = x0
such that

f (x(ε),ε) = 0.

This expresses persistence of equilibria given some conditions on the dynamical system.
A similar argument can be given for periodic orbits: Let the system with ε = 0 have a

periodic orbit γ0. Let Σ be a local transversal section of γ0 and P0 : Σ→ Σ the correspond-
ing Poincare map. Then P0 has a fixed point x0 ∈ γ0 ∩Σ. For small ε , a local Poincare
map Pε : Σ→ Σ is well defined. Its fixed points xε correspond to periodic orbits γε . The
equation Pε(x(ε)) = x(ε) with x(0) = x0 can be also solved via the Implicit Function
Theorem.

So the implicit function theorem guarantees persistence of equilibrium and periodic
solutions under some conditions; these can generally be approximated using series ex-
pansions in the small parameter ε . Note that when the critical elements are not persistent,
bifurcations occur.

Useful definition: Asymptotic order relation
Define f (x) = O(g(x)) for x→ x0 if

| f (x)/g(x)|< M
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for x∼ x0. For example, xsin(x) = O(x) because xsin(x)/x < 1.

Regular perturbation theory
Let’s start with an example:

Example 1 ( (BO) 7.1, example 1): Find the approximate roots of

x3−4.001x+0.002 = 0.

To solve perturbatively, introduce a small parameter ε and consider the 1-parameter fam-
ily of polynomial equations

x3− (4+ ε)x+2ε = 0.

It turns out that it is easier to compute approximate roots because by considering roots as
functions of ε , we may assume

x(ε) =
∞

∑
n=0

anε
n.

Note that here we make an implicit assumption that x is analytic in ε - this may not always
be satisfied by the actual solution.

Insert x(ε) into the equation and collect orders of ε:

(
∞

∑
n=0

anε
n)3− (4+ ε)

∞

∑
n=0

anε
n +2ε = 0 =

∞

∑
n=0

bnε
n :

It is because ε is a variable that we can conclude bn = 0 for all n. Thus, the equation can
be solved iteratively:

b0 = a3
0−4a0 = 0⇒ a0 =−2,0,2.

→ b1 = 3a2
0a1−4a1−a0 +2 = 0→ a1 =

a0−2
3a2

0−4

and so on... Thus, for a0 =−2, we obtain

x =−2− 1
2

ε +
1
8

ε
2 +O(ε3).

Setting ε = 0.001 we can obtain the solution of the original polynomial up to 10−9 accu-
racy.

The remaining question is, does the obtained series series converge to the solution of
the original equation? For which values of ε?

Leaving for now the convergence question on the side, this example illustrates the 3 steps
of perturbative analysis:

1. Convert the original problem into a perturbation problem by introducing a small
parameter ε .

* Introduce ε such that the 0th-order solution is obtainable as a closed-form analytic
expression (unless ε is already given...)
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2. Assume an expression for the answer in the form of a perturbation series and com-
pute coefficients of that series.

* Generally, the existence of a closed-form 0th-order solution ensures that higher-
order terms may be determined in closed-form analytical expressions.

3. Recover answer to the original problem by summing the perturbation series for the
appropriate value of ε .

* If the perturbation series converges, its sum is the desired solution. If it converges
at a fast rate, first terms are enough. However, the series may diverge:

Example 2 (Tabor, 3.1(c)): Consider the equation

ẋ = x+ εx2.

Use the expansion
x(t) = x0(t)+ εx1(t)+ ε

2x2(t)+ ...,

plug into the equation and collect orders:

O(ε0) : ẋ0 = x0⇒ x0 = Aet .

O(ε1) : ẋ1 = x1 + x2
0⇒ x1 = A2et(et−1)

O(ε2) : ẋ2 = x2 +2x1x0⇒ x2 = A3et(et−1)2

and in fact this procedure can be continued to obtain the series:

x(t) = Aet
∞

∑
n=0

(εA(et−1))n,

as you will check in your homework. The radius of convergence of this series is εA(et −
1) < 1, and this produces a critical time after which the perturbed solution is no longer
valid,

tc = log
(

1+ εA
εA

)
.

Note: this equation is a particular example of Bernoulli equations ẋ = x+ εxα , a family
of non-linear differential equations that can be solved exactly in analytical form.

Comments:
* Regular perturbation theory is a perturbation problem whose perturbation series is a

power series in ε with a non-vanishing radius of convergence.
* A basic feature of regular perturbation theory is that the exact solution for a small

but non-zero ε smoothly approaches the unperturbed/zero-order solution as ε → 0.
* It is most useful when the first few steps reveal the important features of the solution,

and the remaining steps give small corrections - related to rate of convergence.
* Sundman’s theorem - A solution to the 3-body problem as a convergent series in

t1/3. However, this series converges incredible slowly - for astronomical observations,
108000000 terms of the series are required - and fail to improve our understanding of the
problem. Check out https://sites.math.washington.edu/∼morrow/336 13/papers/peter.pdf
for a summary of this solution.
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Singular perturbation theory
Comments:

* Singular perturbation theory is a perturbation problem whose perturbation series ei-
ther is not analytic in ε , or, if it does have a power series in ε then the power series has a
vanishing radius of convergence.

* A basic feature of singular perturbation theory is that the exact solution for ε = 0 is
fundamentally different in character from the neighboring solutions obtained in the limit
ε → 0.

Let’s start with an example:

Example 3 (Tabor): Consider the polynomial:

εx2 + x−1 = 0.

In the limit ε → 0 the zero-order system has only one root, whereas the perturbed prob-
lem has 2. Therefore, this is singular perturbation theory. The solution to the apparent
”paradox” is that the extra root goes to ∞ as ε → 0.

Solving the unperturbed equation, we obtain x = 1. This root seems to behave regu-
larly as ε → 0, so we can expand around it:

x1 = 1+
∞

∑
n=1

anε
n.

Plugging this into the polynomial, obtain:

x1 = 1− ε +2ε
2 +O(ε3).

Indeed, around 1, the term εx2 is indeed small - as small as ε , generally.
The second root goes to ∞ as ε → 0 - this suggests a rescaling of the equation by

substitution x = y/εn.
In order to determine the correct rescaling of the equation, we present the method of

dominant balance:

Method of dominant balance:
We assume that x can be consistently rescaled by 1/εn around the roots of the equation.

Thus, an order-of-magnitude calculation of the equation is:

ε · ε−2n + ε
−n−1 = 0.

When ε → 0, at least two of these terms must be of the same, largest, order of magnitude
in order for the equation to have a solution. There are 3 options:

• Suppose ε1−2n ∼ 1. Then n = 1/2 and x =O(ε−1/2). If this is true, then the middle
term scales like ε−1/2, and tends to ∞ when ε → 0. This is inconsistent with the
assumption that the dominant balance is between the first and last terms.

• Suppose ε−n ∼ 1. Then n = 0 and x = O(1). If this is true, then the first term
scales like ε1 and is negligible with respect to the other terms. This is a consistent
assumption, and recovers the solution that is close to the unperturbed solution.

• Suppose ε1−2n ∼ ε−n. Then n = 1 and x = O(1/ε). This is consistent as it renders
1 negligible when ε → 0.
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Thus, the magnitude of the missing root is O(1/ε) when ε → 0. This suggests a scale
transformation: x = y/ε . Substituting this into the equation, we obtain:

y2 + y− ε = 0.

This is now a regular perturbation problem for y, and no roots disappear in the limit ε = 0.
One may find, solving perturbatively, that:

y1 = ε− ε
2 +2ε

3 +O(ε4),

y2 =−1− ε + ε
2−2ε

3 +O(ε4),

and transforming back to the original variable x, we find that the two roots are:

x1 = 1− ε +2ε
2 +O(ε3),

x2 =−
1
ε
−1+ ε−2ε

2 +O(ε3),

Note that the series for x2 is a Laurent series in ε , and indeed tends to ∞ as ε → 0.

Example 4 - Boundary layer:

εy′′− y′ = 0,y(0) = 0,y(1) = 1

Assume there is some region in which y′′ is small, there we approximate y′ = 0 so y =C.
However, this cannot satisfy the boundary conditions, so it’s not a perturbative solution.
Therefore, there must be a region in which εy′′ is not negligible, therefore y′′→ ∞ when
ε→ 0. Since y′′ and y′ have the same sign, there can only be one such region, and it must
be close to one of the boundaries. We assume that the solution is approximately 0 for
most of the regime t ∈ [0,1] and begin growing towards t→ 1 in a sharp transition area in
which y′′ is large.

In order to track the behavior of the function in the transition area, we can rescale the
time parameter t = ξ/εn. This is a type of ”zoom in” into the region of interest. Dominant
balance shows that n = 1. Plugging this rescaling into the equation we obtain:

d2y
dξ 2 −

dy
dξ

= 0.

In fact, the perturbation seems to have disappeared.
Checking our guess: In this case, the equation can be solved. The exact solution to

the equation is

y(t) =
et/ε −1
e1/ε −1

.

Indeed, by plotting this function for small values of ε we obtain that y is almost constant
except for a narrow interval around t = 1 of width of order ε , which is called the boundary
layer.

Note: Boundary layers appear naturally in fluid flows, where a fluid can behave dif-
ferently around a boundary than in the bulk.
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