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Islands are divided according to their phase space structure—resonant islands and tangle islands are
considered. It is proved that in the near-integrable limit these correspond to two distinct sets, hence
that in general their definitions are not trivially equivalent. It is demonstrated and proved that
accelerator modes of the standard map and of the web map are necessarily of the tangle island
category. These islands have an important role in determining transport—indeed it has been
demonstrated in various works that stickiness to these accelerator modes may cause anomalous
transport even for initial conditions starting in the ergodic component1999 American Institute

of Physics[S1054-150009)02203-X

Typical Hamiltonian dynamics of low-dimensional sys- mations of scattering billiar@s In particular, it is unknown
tems is not ergodic and the domain of chaotic motion whether a patclia connected set of positive Lebesgue mea-
contains an infinite number of islands embedded into the sure of initial conditions can be contained in the chaotic
area of chaos. The islands strongly influence transport of  component. Nonetheless, it follows that one may separate

particles and this feature is important for applications.  petween the ordered and chaotic components up to a certain
One type of islands is related to resonances. Another type esolution.

of |hslz?]nds appﬁaésb'n”_th? chaotic ?rea an 'Z ass?cuated In these chaotic systems, tracking a single solution is
with the so-called ballistic or accelerated modes of par- quite meaningless, and one is usually interested in either

ticle motion. These may have a distinct influence on qualitative description of significant phase space structure or
transport. . . "
information about some averaged quantities, the observables.
Examples of observables are correlation functions, moments
|. INTRODUCTION (and in particular pair separation rate-i.e., diffugioresi-
H ) £ ati iodi di ional Hami dence time distribution from some specific regions, Poincare
_'he action o a time periodic tWOT Imensional Hamil- recurrences, line stretching rates etc. Such quantities are in-
tonian flow or equivalently of a two-dimensional area and : ) . L
fluenced by the presence of islands; even if the contribution

orientation preserving maps on a set of initial conditions is

rather complicated. In real systems it is highly sensitive tofrom the major islands is subtracted, the stickiness to their

the initial location of this set. Typically such flows have a bpundanes and the |nclu5|_o_n of tiny islands of high period
mixed dynamics—they have both chaotic and ordered rePiases the averaged quantities. o

gions. A stable periodic orbit of a two-dimensional area pre- Here we propose to start classifying the stability islands
serving map is typically surrounded by invariant tori which Which appear in two dimensional chaotic flofvs® Classifi-
define an area of stability around'iThese areas of stability cation to the various possible dynamical behaviors of the
are called islands, and correspond to practically ordered mdslands will then serve as a first step in understanding their
tion. Practically—since even in these islands, near any subinfluence on the space-averaged observables, or the kinetics
resonance, tiny chaotic regions appe&rescribing the cha- of particles(see Ref. 4 and references thejein particular,

otic region is more problematic since it is still an opensince chaotic trajectories may stick around islands for very
question whether, in real systems, there can be a chaotlong times, the time averages on the chaotic component de-
component with a positive measure. In fact even in seempend on the islands behavior as well. Sticking around oscil-
ingly highly chaotic phase space regions islands may appegtory resonant islands could cause subdiffusive behavior
(e.g., the standard map with larg€*° or smooth approxi-  (though this has not been numerically obsejyeshereas
sticking around accelerator mode islands or ballistic islands
dElectronic mail: vered@wisdom.weizmann.ac.il causes superdiffusion. As both types of islands may co-exist,
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switching between subdiffusive and superdiffusive behavior  Let p{™™ denote a periodic orbit of typem,n: p{™"
may appear. =p™M+(m,0). Then,p™" is a rotational periodic orbit
We consider nonlinear area-preserving maps. Furthertor class 0 periodic orbitif the orbit of p{™™ is monotone.
more, the two examples for which we demonstrate and suliNamely, the SetM(m,n):{{(Xi(m,n)ﬂ,yi(m,n)}pz—ol};n:—ol is
stantiate our claims, the standard map and the web map apgonotone. For an area preserving twist map, for any co-
also twist maps. For such maps, a beautiful theory developegrime (m,n there exist a pair of monotonen,n periodic
by Aubry? Mather® and MacKay and Meis$ (see the orbits (modulo translations, i.e.,r2such orbits, one which
review'? and references therginasserts that there exist an minimizes the action and the other is a minim@xore than
action functional(sum over the generating function evalu- two may exist, for simplicity of presentation we will assume
ated along the orbjitfrom which many properties of the or- that precisely two, modulo translations, exisMoreover
bits may be exerted. The beauty of the theory is that nghese orbits are well ordered with respect to each dther.
assumption on closeness to integrable system is needed. WWhally, it follows that the minimizing orbifin the nonde-
will see that one type of islands—the resonance islands—argenerate cagés a saddle and that the minimax orbit is either
identified with the usual islands which were investigated inglliptic or hyperbolic with reflectiot* Hence the stable and
the above works and in Ref. 13 using the generating functioginstable manifolds of the minimizing orbit may be used to
formulation, whereas the second type of islands, the tanglgefine the resonance zone associated Wwith, even when
islands, were not described there. The appearance of tangl§e minimax periodic orbit is unstabl?.
islands follows from Newhouse workSelf similarity prop- To define the oscillatory resonance islands, consider the
erties of the tangle islands were predicted by MelnikWe  notion around thém,n minimax periodic orbit. Transform
will give a geometrical characterization of these islands andn g gction angle coordinates near this orbit. Since the map
prove that there are indeed different from the resonance isg nonlinear, it is expected that in most regions it will be a
lands in the near integrable limit. It is possible that thesegyyist map, hence, the above theory applies, and minimizing
have also some variational characterizatiore prove that 5nq minimax periodic orbits of type(;,n,) exist, defining
they cannot be characterized as minimizirgve leave this  {he “class 17 island chain. Clearly this procedure may be
question to future studies. _ ~carried on, defining “classl” subislands as th&th level of
The paper is ordered as follows: in Sec. Il we definey,e jsjland around island chain. If there exist an elliptic fixed
resonance and tangle islands and prove that these deflmtm%mt of T (a stable(0, 1) minimax orbiy, the class 1 subis-

are not equivalent, in Sec. Il we demonstrate that tangl¢yngs apout this fixed point, and all of their higher level

islands may give rise to ballistic modes and in Sec. IV Weg hisjands correspond to motion which never traverses the

prove and demonstrate that accelerator modes of the stand&{@hinger. These are the oscillatory resonance islands. Oscil-
map and web map are tangle islands. Section V is devoted {4y motion about arim,n periodic orbit withm#0 cor-

discussion. responds to oscillation about a rotational motion, and thus,
we will refer to it as an oscillating rotational motion.
II. RESONANCE VS TANGLE ISLANDS To summarize, resonance island chains are defined by a
. . . . . air of relatively ordered monotone periodic orbits, the mini-
CAonS|der an area preserving, orientation preserving maFE]um and minimax of an action functional. The stable and
ping T defined on the cylinder. The resonance islandd of \nstable manifolds of the minimizing orbit are used to define
are the large islands seen in typical phase portraits of tWene resonance region, and the minimax orbit is called the
dimensional near integrable area preserving maps. For negenter of the island. The coordinate system and dynamics
integrable flows, these correspond to the resonant respongged in the definition of the action functional may be one of
of the neighborhood of the unperturbed periodic motion oo kinds: The rotational coordinate system—this corre-
the perturbation frequency. These islands can be of a rotasongs to the original coordinate system defined on the cyl-
tional type, namely corresponding to periodic motion WhiChinder, and the action is defined by the original nfajpenote
monotonically traverses the cylinder, or to an oscillatorype projection to the first coordinate in this system Iby.
type, namely, to a monotone periodic motion about somerpe (m,n oscillatory coordinate system—corresponds to the
central periodic motion. local action-angle coordinates defined about(iamn) peri-
Below we mathematically formulate the definition of ggjic orpit of T, and the action is defined fai". Denote the
resonance islands, following the review paper of Méfss, projection to the first coordinate in this system Hy; .
which, in this part, is based updri™**Let Rotational island chains are defined using the rotational
2.1) coordinate system, oscillating rotational motion is defined
using (m,n oscillatory coordinate system about a rotational
Let T denote a lift of T so thatT acts onp=(x,y) e RXR. orbit with m#0 or about an oscillating rotational orbit, and
Denote the projection to the angle variable By II(p) oscillating island chains are defined using {Ben) oscillat-

T:p—p, p=(Xy)eSXR.

=X. ing coordinate system, or oscillating orbits about such oscil-
Recall the definitions of monotone sets and of rotationalatory orbits.
(class 0 periodic orbits. An invariant seM is said to be A few remarks are now in order. Note that when the

monotone if for anyp;, p,eM, II(p;)<II(p,) implies  minimax orbit is unstable, the island’s invariant region may,
II(T(p,))<II(T(p2)). An orbit is monotone if the set but is not necessarily, be of zero measure. Also note that if
formed from all its translates is monotone. the twist condition is locally violated, the theory still applies
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and length ofR). Then, in this limit the set of Tangle islands
and the set of Resonance islands are disjoint sets.

Proof. We will prove that in the near integrable limit the
tangle island orbits are nonmonotone in both the rotational
and the oscillatory coordinate systems. Since the resonance
islands centers are monotone, this proves the theorem.

Let x denote the central periodic orbit of the resonance
region R, and lett denote an orbit in thédn,m R-tangle
island. With no loss of generality, for simplicity of presenta-
tion, let us assume thatis in fact a fixed point. Divide the
cylindrical phase space to three regions, #ieregion above
FIG. 1. Resonance region and turnstile lobBsesonance region of the R, the —1 region belowR and 0 for points inR.
period one periodic orbitl. E-incoming lobesD-outgoing lobes. Let us divide the orbit of to segments according to the
region they belong to—denote lsye +1,0 the sequence of

the regional location of; (s;=1 indicates that; is in the

to regions WhiCh' are bounded away from this degenerat?egion aboveR). Clearly the sequencts} is n-periodic. If
curve. L\Iea'r this curve nontW|§t _resonance structuresi;&si+1 it follows thatt,e EUD, namelyt; belongs to a
appears Finally, clearly the definition of oscillatory/ turnstile lobe. In the near-integrable limit, the lobes are

rotational orbits depends on the observer frame of referenc%mall hence(s;} is composed of long strings of identical

Therefore, we can think of_our original cylindrical goo_rdl- values. We assume, for definiteness, that 1 ands,=0

nates as action-angle coordinates around a base periodic or{)ét — 1,5,=0 can be treated similarly. All other possibil
=—1,5= ) -

p. and all thg al_)ove Qef|n|t|ons can then be applied IOCaIIM[ies can be transformed, by shifting the origin, to one of these
near any periodic orbit. . .
: . . . two casep Let n;>1 denote the firsi>1 for which s,
Now, consider an island chain, and the resonance reg|on7&0 Natice that, by periodicity of and near-integrability
R which is defined by segments of the stable and unstable ™ ' o '
manifolds of the(m,n minimizing periodic orbitd® Two n,<n-—1. It follows that{ti}inil encirclex in an oscillatory
consecutive primary intersections of the manifolds define dashion. In particular, we now show that in rotational coor-
lobe, and the lobes are responsible for the flux through theinate system this segment is nonmonotone. Furthermore,
resonancé>!® see Fig. 1. In the resonance geometry, it isthe same argument shows that this segment is nonmonotone
possible to have islands inside the lobesve call such is- in the oscillatory coordinate system associated with any
lands tangle islands. More precisely, ledenote the mini- monotone(rotationa) periodic orbit which is not inR. De-
mizing (unstablg periodic orbit with stable and unstable note byi* the first “rotational turning point” along the or-
manifolds emanating from it and first intersecting at the pri-bit: then II,(t;« 1) <II,(t;») whereasll, (tj«)>1I,(tjx ).
mary homoclinic pointr, creating the resonance regi6h  Such a turning point, at which monotonicity is broken, nec-
Let x denote the minimaxcentral-elliptic or hyperbolic with  essarily exists if makl,(E)<minII(TE) (where II,(E)
reflection) periodic orbit inR (thusx, uhave the same period ={II,(x)|xeE}) and either maxI,(D)<minIl(TE) or
and there exist coordinates in which the first coordinate ofnaxII,(TD)<minII,(TE). These conditions clearly hold in
these orbits are ordered, i.€l,(x;)<II;(u;), i=0,..n—1).  the near-integrable case because the lobes are close to the
The entraining and detraining turnstile loke® are defined  |imiting separatrix and the separatrix is monotone w.r.t. the
by the segments of the stable and unstable manifolds corylindrical coordinate system.
necting the primary intersection poing to its image. In the Now, assume there exists an oscillatory coordinate sys-
near integrable geometry, where the turnstile lobes are smakém for which this segment dfis monotong(if such system
compared witfR and do not intersect each other, these lobegjoes not exist then the theorem is proped/e will prove
are defined by:R—(F(R)NR)=F(E) and R—(F"*(R)  next that there exist another segment of the orbit &6r
NR)=D, see Fig. 1. which this coordinate system is nonmonotone. For simplicity
Definition 2.1.An (n,m) R-tangle island is an invariant of presentation consider only the upper turnstile lobes. Since
stability regionC with positive Lebesgue measure satisfyingt, < E, t may not be confined to only one cell—in particular
CNE=CyandC=UM}T'Cy, T"C;=C;+m, whereE de- it must have a rotational segmefit . ,....ty—1 which ex-
notes one of the out-going turnstile lobeskof tends to at least one more cell to the left of the origin. This
It follows that C, lies in the interior ofE. Furthermore,  segment, in the near integrable limit, follows very closely the
the condition CoCE and its invariance implies that separatrices associated wRhand thus cannot be monotone
CoCT"(E)NE and that there exist B, 0<k=<n such that in the oscillatory coordinate system of the central periodic
Cy=TX(Co)CD. In the near integrable case>>n, wheren  orbit of R or in the oscillatory coordinate system associated
is the period of the periodic orbit which defin€& and 0  with any oscillatory periodic orbit ifR. In particular, letD,
<k<n. denote the uppeb lobe on the cell to the left of the oscilla-
Theorem 2.2Consider a twist map on the cylinder with tory coordinates central point. Then, an oscillatory turning
a rotational resonance island ch&nAssume this map has a point must exist if there exist an such that maXl,(T"D))
near integrable limiti.e., in this limit the turnstile lobes ®  <minTIy(TD;) and maxI,(T"D,)<minTI,(E). Such am ex-
are much smaller in both width and length w.r.t. the widthists in the near integrable case because of the closeness to the
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limiting rotational invariant circles which are necessarily A2 sinhrv/2
nonmonotonic in any of the oscillatory systems about mono-  Kn exp(monvl2) = 07— (3.3
tone periodic orbits since the width Bfhas been assumed to

be positive in this limit. 0 ando,= *1 is a dynamic sign function:

It follows that the definition of tangle islands and of
resonance islands are not equivalent. Furthermore, since ) )
minimizing periodic orbits are monotoriit follows that all ~ On the separatrik=0 (see Ref. 22 for more precise formu-
periodic orbits contained in the tangle island are not mini-lation). Consider the limitv>1, e<1: thenK, is exponen-
mizing in the rotational and oscillatory coordinates systemstially small in v and the separatrix splitting is given by the
We conjecture that even in the far-from integrable limit theMelnikov function providede<O(»~P): this has been re-
two families of islands are distinct. The resonance islands aréently proven fop>0 (see Ref. 24 for the general formula-
the ones which evolve continuously from the near-integrabldion and other referencedn this limit, simplified version of
limit until their stability zone diminishes whereas the tangle(3-3) IS
islands are the islands which appear via homoclinic bifurca- K=8mlexp —mvl2), o,=1
tions, thus have no near-integrable continuation. It follows  K,= _
that in the near integrable limit the majority of the stability 0, on=-1
zone is governed by resonance islands whereas in the stromgmely, toO(K/v?) only the upper separatrix breaks. In this
chaos case tangle islands are the main contributers to thepproximation, a simple ballistic trajectory can be defined by
stability regions. It is still an open question whether thesethe initial conditions:
two categories are exhaustive, see discussion. 0o=1, ho=eK/2, do=3ml2 3.6

if € v are such that

" sinhmy

On+1=0nSignhy . (3.4

(3.5

I1l. BALLISTIC MODES 1 T
|h3|: EG*K*:BZ exp — 2—*(2m+1) (3.7
Ballistic modes correspond to stable periodic motion on v
the cylinder with rotation rate which is different then the with integerm. In this case
rotation rate of the central periodic orbit denote byb the - x_ %
ballistic trajectory, then ha=ho. ¢2=d¢o+(4m+2)m= o(mod2m), 38

1 gy =0
liminf ﬁlT”b—T”x|=v>O.
n—oo

—

i.e. four is a characteristic period of the ballistic propagation
along ¢, and Eq.(3.7) defines a specific valueet,v*)
Such a motion influences transport as the separation is larg@mere the ballistic motion exists.

thanvt with some constant, as opposed to the “diffusive” Now, considering a smalhe deviation from the exact
behavior which is observed for nonsticky chaotic orbits. Wee* K* values, we find that the separatrix map hasmal)
may identify now that the anomalous transport observed istability island around this periodic orbit, as is seen in Fig. 2.
Ref. 16 for theABCflow and in Ref. 17 for the standard map This stable fixed point undergoes a period doubling bifurca-

was due to the orbits stickiness to ballistic modes. tion ate=0.520 95-0.000 05. A similar picture appears near
Clearly ballistic modes can be created by regular resoy=4, ¢=0.2359 wheres* (v=4,m=7)=0.235 704.
nance islands. For these, the “velocity” of the ballistic Indeed, the tangle island structure for the ballistic mode

motion, simply correspond to the rotation number. Howevercan be derived in a straightforward way. Let us define
tangle islands may also create ballistic motion with rotation N . .

numbers which are different then their central periodic or- Ahe=h—hi, Ad=d— b, o=oi,

bits, see the example below. S=Aele* =(e—e*)le*  (k=0,1234, (3.9

where the ballistic trajectoryh§ , ¢ ,o ) is given in(3.6),
A. Ballistic island near the separatrix (3.7), (3.8). Applying the map(3.2) with (3.5) four times for
The dynamics near a separatrix can be described by tHE€ values i, ¢y, ay) in the vicinity of the ballistic trajec-
so-called separatrix magRef. 18 or in more contemporary try, we find

form Refs. 19-28 For example, for the perturbed pendulum 3 ,
Ayr=Apo—4vo+2 Ahg)?,
X+ sinx= e sin(x— vt) (3. Ya=Ado=4vot 2457 (Aho)
with the perturbation parameterand perturbation frequency Ah,=Ahy+2h*Ayy,, (3.10

v, the separatrix map can be written using the dimensionless .
Where the new variable
energyh and phasep:

. 14
Rn+1=hyt+ eKpsing,, A=A+ h—*Ahk (3.11

_ (3.2
$n+1=datvIn(32hy.a]) - (mod2m), has been introduced and terms of the order of
where (8%2,6Ahy, 8A Y, (A )%, ApAh,...) areneglected, namely
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03 — Similar Hamiltonian structure was obtained in Ref. 8 in a

TR T A different way| see also the accelerator mode c&s8)]. Here
the Hamiltonian(3.13 is related to the ballistic mode island
and its parameters are correspondingly specified.

Will the stability island we have found for the separatrix
map appear in the Hamiltonian flow? Indedd,7) defines
€* =¢e(v,m), and as shown in Ref. 24, Melnikov analysis is
expected to be applicable only é=o0(1/v), hence the be-
havior of the map near the periodic orbh*(,¢*) reflects
the dynamics of the flow provideth is sufficiently large,
namelym must satisfy:

mzmmin:%(vz—l)—a%vlog v, a<l. (3.15
In Fig. 2 we takev=4 andm=6 [where by(3.15 with a

(a) phi =1, my,,=4], hence we expect thesgny) islands to appear
in the Hamiltonian flom3.1) as well.

The schematic structure of this periodic orbit in the
Hamiltonian flow is shown in Fig. 3. Fron8.9), it follows
that this period four orbit in ¢,h) corresponds to a period
Tm=(4m+2)7/v orbit in x(t). Moreover, sincehg >0,

h} <0, h3<0, h>0, h}=h{>0 it follows that x(T,,)
=x(0)+4m (see Fig. 3 Thus, the periodic orbit has a ro-
tation numbei(“velocity” ) 2v/(2m+ 1) which is of O(1/v)
for large v, corresponding to nonmonotone ballistic motion.

-0.198493

IV. ACCELERATOR MODES

Accelerator modes correspond to islands which are peri-
odic on the torusf§ € S) yet are nonperiodic on the cylinder
(peR). As p represents momentum, such motion corre-
sponds to unbounded increase in the kinetic energy. Usually,

-0.199857 ‘ such islands are found for very speciftgpically large pa-
©) Last7 " 150096 rameter valuese.g., see Ref.)4 However, using the separa-
trix map approximation for the web map, it has been recently
FIG. 2. Stability island around the ballistic tangle periodic orbit. The tangleestablished that for the web-map such islands may appear
islands of the separatrix maf8.2) at v=4, €=0.52 [where €*(v=4,m 3|50 for very small parameter valu&sBelow, in Secs. 4 A
=6)=0.516 963, (a) Stochastic layer with islandg black dots. (b) Zoom 54 4 B we present numerical examples for our main result,
on one island zone. . . .
which is subsequently formulated in Theorem 4.1 of Sec.
4 B: we establish that for both the standard map and the web
map, accelerator islands are necessarily contained in turnstile
these equations are consistent for orbits withh(A ) lobes, namely they are tangle islands.
=(0(V/6),0(8)). The map(3.10 is area preservingfor
this purpose the new variablzwas introducegdand for in-
finitesimal (A ¢ ,Ah,) can be written in a Hamiltonian form

dAy  Hpy  dAh dHpy

dr _ GAh' dr 9y (312
with the Hamiltonian
2 8
Hpai=h* (Ag)2+4v8-Ah— 2 55 (Ah)° (3.13 -

and dimensionless time=t/4. It follows from (3.13 and
(3.7) that the island exists fof>0 in the domain

—a(2m+1

0<Ah=<(66h*?/1?)1?=16\37A€ exp—— FIG. 3. Schematic phase space trajectory of separatrix islands. The stable
4 periodic orbit of Fig. 1 as a perturbed pendulum orbit shown in(thp

(3.19 plane. Dashed lines correspond to unperturbed pendulum separatrices.

+v
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; /
FIG. 4. Accelerator islands in the
ER Y, \ L4 Standard mapK=6.90 8745.A de-
3 3 notes the unstable periodic orbits at
(a) x 1/27 (x,p) = 1/27 ((2n+1) 7,2mm)
(@) Stable and unstable manifolds
1.53543 . (solid lineg and period-onémod 2m)

i E stability island(birdlike shapg inside
the lobes(b) Zoom on the stability is-
land.

y
0.19685 .
-0.264368 0.850575
X
A. Accelerator islands for the standard map An example of an accelerator mode is
Consider the standard map:
P Xo=72, Po=0, K*=2mm (4.2)

Pn+1=Pn—KSINX,,  Xp11=Xpt Ppiy, (Mod2m).
(4.1)  with integerm. Conditions(4.2) define linearly growingp,
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1.44094

FIG. 5. Motion of initial conditions
around accelerating island. Same pa-
rameter and island as in Fig. 4. A box
of initial conditions around the island
is iterated twice.

-1.48819
-1.18391 0.551724

(momentum which means growth of the energy. Then, The near-integrable limit of this map, corresponding to small
analysis of small deviations around this accelerator mod& values, consists of a diamond shape web, created by the

produces the following effective Hamiltonigeee Ref. % stable and unstable manifolds of the hyperbolic periodic or-
1 bits at (u,v)=(ma,(2n+m+1)7). These hyperbolic peri-
a . . . .
Her== (Ap)2+ AKAX— = (Ax)3 4.3 odic orbits persist for alk and so are the cells defined by
2 3 them. Below we refer to these cells as “resonance cells.”
with the equations of motion Theorem 2.2 may be easily modified for this case, showing
that in the near integrable limit tangle islands cannot be
d Her d  dHeg

—Ap=-— . —Ax= (4.4) monotone with respect to the centers of these cbkse all
dr dA¢’ dr dAh monotone orbits are of oscillatory type

which define the dynamics inside the accelerator island if ~An accelerator mode is found for
AK>0. - .

Indeed, we establish the existence of accelerator mode K=2#w, u=3-, v=_. (4.6)
. L . . 2 2
islands inside the turnstile lobes of a fundamental region of
the standard map; Fdf=6.908 45, we find the stable and A corresponding Hamiltonian 1s
unstable manifolds of the hyperbolic fixed points atp) 1
=(0.5,0) (mod 1) and the location of the accelerator mode _ _ . 3 3
island. In Fig. 4 it is demonstrated that the island is located HEf_ZAK(AV Au) 6 [(Av)"= (a7, @.7
inside the turnstile lobe. In Fig. 5 we put a box of initial _, . . . .
conditions which surround the island and resides within théNhICh together with the equations of motion
turnstile lobe. The dynamics of this box clearly demonstrates  d IHos d Mg
how a finite area around the .acceleratlng mode island is d—TAU—ma d—TAV—— AU (4.9
dragged along and stretched with the lobes.

Usually, one expects tangle islands to be quite smallprovides a description of the accelerator islands in the degen-
However, when the lobes are large, large islands may berate unperturbed case. Indeed, in Fig. 6 we see that this
created. This is the situation with the accelerating modes oficcelerator island is contained in turnstile lobes of the hyper-

the standard and web map, as shown in Fig. 4. bolic periodic orbit consisting of the point$(0,=m),
(+=,0)}.
B. Accelerator modes for the web map Theorem 4.1The islands corresponding to accelerator

modes of the Standard map and the Web map are contained
in turnstile lobes, namely they are tangle islands.

Un+1=Vn, Vpe1=—U,—Ksinv,, (mod2m). Proof. Accelerator modes, by definition, correspond to
(4.5 periodic orbits which jump in momentuiithe p variable for

Consider the web map
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FIG. 6. Accelerator island inside lobes
for the web mapK=6.3. Stable and
unstable manifolds of the period four
orbit (u,v)={(=7,0),(0xm)}
(crossep are shown(solid line). De-
formed circles correspond to period-4
accelerator island. Boxes denote pri-
mary homoclinic points defining the
resonance cell.

the standard map and theor v variable for the Web mgp  mechanism of transfer from one cell to the other is through
For both maps, there exist well defined resonance cells witthe turnstile lobes® Since accelerator modes, by definition,
well defined turnstile lobes for all parameter val@gs the  cannot stay in one cell, they must be contained in a turnstile
standard map, the cells defined by the stable and unstablebe, hence they are tangle islands.

manifolds ofp=2nm, x=* 7, for the web map, the cells Now consider the standard map. Here the main reso-
defined by the stable and unstable manifolds of the periodrance zone&; do not partition the phase space. Denote the
four periodic orbitsu=mm, v=(2n+m+1)7, m, neZ). gap between celr; and cellR;,; by G; ;.. For allK (see
Denote the resonance cells according to their central posasymptotic form ofR; above, it is a cylindrical band which
tion: for the standard maR,, for the cell centered at (On2r) is bounded from belowrespectively, from aboveby the

and for the web maR,, , for the cell centered anfw,n). segments of stable and unstable manifolds of the fixed point
These resonance zones are bounded and disjoint regions. dabx= 7, p=_2i# (resp.p=2(i + 1)) which define the up-
fact, it can be verified that for aK values they do not extend per(resp. lowe) boundary of the regioR; (resp.R;. ;). The
beyond the basic periodic celfe.g., &,p)e[—m, 7] union of all the region®; andG; ;,, for all i does supply a
X[(2n—1),(2n+ 1) 7] for the standard mdpsee, for ex- complete partition of the cylinder with a set of regions sepa-
ample, Refs. 13 and 12 and references therein. Indeed, foated by segments of stable and unstable manifolds. More-
largeK the regionR, asymptotes the parallelogram with ver- over, the turnstile lobes between regiGp; ;. ; and its neigh-

tices[(—,0),(Xy,Pu),(7,0), (= Xy, —pPu) ], Where borsR;, R;.; are exactly thée,D lobes defined for th&;’s.
5 1 Repeating the arguments as for the web map, it follows that
Xy = 77( 1— e +0 P ) the accelerator modes must be tangle islands.
4.9
P S P +0 1 49\ biscussion
Pumemicrt | - k1 Pk )

We defined tangle islands as islands contained in turn-
and the regiorR; corresponds to a translate Bf, by 2i stile lobes and proved that in the near-integrable limit this
along thep axis. Similarly, the region®,, ,, asymptote for definition provides a distinct class of islands which is differ-
largeK a double square shape which is bounded by the basient from the usual resonance islands. In particular these is-
cell unit (see Fig. 6. lands correspond to honmonotonic motion in both rotational
For the web map the union of all the regioRg, , sup-  and oscillatory coordinate systems. We demonstrated that
plies a complete partition dR? to regions which are sepa- tangled islands can be of the ballistic or accelerator type,
rated by partial barriers—the segments of the stable and unwhereas resonance islands can be either of trappesadlla-
stable manifolds. By orientation preservation, the onlytory) or ballistic (rotationa) type. We proved that for the
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