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Islands are divided according to their phase space structure—resonant islands and tangle islands are
considered. It is proved that in the near-integrable limit these correspond to two distinct sets, hence
that in general their definitions are not trivially equivalent. It is demonstrated and proved that
accelerator modes of the standard map and of the web map are necessarily of the tangle island
category. These islands have an important role in determining transport—indeed it has been
demonstrated in various works that stickiness to these accelerator modes may cause anomalous
transport even for initial conditions starting in the ergodic component. ©1999 American Institute
of Physics.@S1054-1500~99!02203-X#
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Typical Hamiltonian dynamics of low-dimensional sys-
tems is not ergodic and the domain of chaotic motion
contains an infinite number of islands embedded into the
area of chaos. The islands strongly influence transport of
particles and this feature is important for applications.
One type of islands is related to resonances. Another type
of islands appears in the chaotic area and is associate
with the so-called ballistic or accelerated modes of par-
ticle motion. These may have a distinct influence on
transport.

I. INTRODUCTION

The action of a time periodic two-dimensional Ham
tonian flow or equivalently of a two-dimensional area a
orientation preserving maps on a set of initial conditions
rather complicated. In real systems it is highly sensitive
the initial location of this set. Typically such flows have
mixed dynamics—they have both chaotic and ordered
gions. A stable periodic orbit of a two-dimensional area p
serving map is typically surrounded by invariant tori whi
define an area of stability around it.1 These areas of stability
are called islands, and correspond to practically ordered
tion. Practically—since even in these islands, near any s
resonance, tiny chaotic regions appear.2 Describing the cha-
otic region is more problematic since it is still an op
question whether, in real systems, there can be a cha
component with a positive measure. In fact even in see
ingly highly chaotic phase space regions islands may ap
~e.g., the standard map with largeK3,4,5 or smooth approxi-
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mations of scattering billiards6!. In particular, it is unknown
whether a patch~a connected set of positive Lebesgue me
sure! of initial conditions can be contained in the chao
component. Nonetheless, it follows that one may sepa
between the ordered and chaotic components up to a ce
resolution.

In these chaotic systems, tracking a single solution
quite meaningless, and one is usually interested in ei
qualitative description of significant phase space structure
information about some averaged quantities, the observa
Examples of observables are correlation functions, mome
~and in particular pair separation rate-i.e., diffusion!, resi-
dence time distribution from some specific regions, Poinc´
recurrences, line stretching rates etc. Such quantities ar
fluenced by the presence of islands; even if the contribu
from the major islands is subtracted, the stickiness to th
boundaries and the inclusion of tiny islands of high peri
biases the averaged quantities.

Here we propose to start classifying the stability islan
which appear in two dimensional chaotic flows.2,7,8 Classifi-
cation to the various possible dynamical behaviors of
islands will then serve as a first step in understanding th
influence on the space-averaged observables, or the kin
of particles~see Ref. 4 and references therein!. In particular,
since chaotic trajectories may stick around islands for v
long times, the time averages on the chaotic component
pend on the islands behavior as well. Sticking around os
latory resonant islands could cause subdiffusive beha
~though this has not been numerically observed!, whereas
sticking around accelerator mode islands or ballistic isla
causes superdiffusion. As both types of islands may co-e
© 1999 American Institute of Physics
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switching between subdiffusive and superdiffusive behav
may appear.

We consider nonlinear area-preserving maps. Furth
more, the two examples for which we demonstrate and s
stantiate our claims, the standard map and the web map
also twist maps. For such maps, a beautiful theory develo
by Aubry,9 Mather10 and MacKay and Meiss11 ~see the
review12 and references therein!, asserts that there exist a
action functional~sum over the generating function eval
ated along the orbit! from which many properties of the or
bits may be exerted. The beauty of the theory is that
assumption on closeness to integrable system is needed
will see that one type of islands—the resonance islands—
identified with the usual islands which were investigated
the above works and in Ref. 13 using the generating func
formulation, whereas the second type of islands, the tan
islands, were not described there. The appearance of ta
islands follows from Newhouse work.7 Self similarity prop-
erties of the tangle islands were predicted by Melnikov.8 We
will give a geometrical characterization of these islands a
prove that there are indeed different from the resonance
lands in the near integrable limit. It is possible that the
have also some variational characterization~we prove that
they cannot be characterized as minimizing!—we leave this
question to future studies.

The paper is ordered as follows: in Sec. II we defi
resonance and tangle islands and prove that these defini
are not equivalent, in Sec. III we demonstrate that tan
islands may give rise to ballistic modes and in Sec. IV
prove and demonstrate that accelerator modes of the stan
map and web map are tangle islands. Section V is devote
discussion.

II. RESONANCE VS TANGLE ISLANDS

Consider an area preserving, orientation preserving m
ping T̂ defined on the cylinder. The resonance islands oT̂
are the large islands seen in typical phase portraits of
dimensional near integrable area preserving maps. For
integrable flows, these correspond to the resonant resp
of the neighborhood of the unperturbed periodic motion
the perturbation frequency. These islands can be of a r
tional type, namely corresponding to periodic motion whi
monotonically traverses the cylinder, or to an oscillato
type, namely, to a monotone periodic motion about so
central periodic motion.

Below we mathematically formulate the definition
resonance islands, following the review paper of Meiss12

which, in this part, is based upon.9,10,11Let

T̂: p̂→ p̂, p̂5~ x̂,y!PS3R. ~2.1!

Let T denote a lift ofT̂ so thatT acts onp5(x,y)PR3R.
Denote the projection to the angle variable byP: P(p)
5x.

Recall the definitions of monotone sets and of rotatio
~class 0! periodic orbits. An invariant setM is said to be
monotone if for anyp1 , p2PM , P(p1),P(p2) implies
P(T(p1)),P(T(p2)). An orbit is monotone if the se
formed from all its translates is monotone.
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Let p(m,n) denote a periodic orbit of type~m,n!: pi 1n
(m,n)

5pi
(m,n)1(m,0). Then,p(m,n) is a rotational periodic orbit

~or class 0 periodic orbit! if the orbit of p(m,n) is monotone.
Namely, the set M (m,n)5$$(xi

(m,n)1 j ,yi
(m,n)% i 50

n21% j 50
m21 is

monotone. For an area preserving twist map, for any
prime ~m,n! there exist a pair of monotone~m,n! periodic
orbits ~modulo translations, i.e., 2n such orbits!, one which
minimizes the action and the other is a minimax~more than
two may exist, for simplicity of presentation we will assum
that precisely two, modulo translations, exist!. Moreover
these orbits are well ordered with respect to each othe10

Finally, it follows that the minimizing orbit~in the nonde-
generate case! is a saddle and that the minimax orbit is eith
elliptic or hyperbolic with reflection.11 Hence the stable and
unstable manifolds of the minimizing orbit may be used
define the resonance zone associated with~m,n!, even when
the minimax periodic orbit is unstable.12

To define the oscillatory resonance islands, consider
motion around the~m,n! minimax periodic orbit. Transform
Tn to action angle coordinates near this orbit. Since the m
is nonlinear, it is expected that in most regions it will be
twist map, hence, the above theory applies, and minimiz
and minimax periodic orbits of type (m1 ,n1) exist, defining
the ‘‘class 1’’ island chain. Clearly this procedure may
carried on, defining ‘‘classN’’ subislands as theNth level of
the island around island chain. If there exist an elliptic fix
point of T ~a stable~0, 1! minimax orbit!, the class 1 subis-
lands about this fixed point, and all of their higher lev
subislands correspond to motion which never traverses
cylinder. These are the oscillatory resonance islands. O
latory motion about an~m,n! periodic orbit withmÞ0 cor-
responds to oscillation about a rotational motion, and th
we will refer to it as an oscillating rotational motion.

To summarize, resonance island chains are defined
pair of relatively ordered monotone periodic orbits, the mi
mum and minimax of an action functional. The stable a
unstable manifolds of the minimizing orbit are used to defi
the resonance region, and the minimax orbit is called
center of the island. The coordinate system and dynam
used in the definition of the action functional may be one
two kinds: The rotational coordinate system—this cor
sponds to the original coordinate system defined on the
inder, and the action is defined by the original mapT. Denote
the projection to the first coordinate in this system byP r .
The ~m,n! oscillatory coordinate system—corresponds to
local action-angle coordinates defined about an~m,n! peri-
odic orbit of T, and the action is defined forTn. Denote the
projection to the first coordinate in this system byPo .

Rotational island chains are defined using the rotatio
coordinate system, oscillating rotational motion is defin
using ~m,n! oscillatory coordinate system about a rotation
orbit with mÞ0 or about an oscillating rotational orbit, an
oscillating island chains are defined using the~0, n! oscillat-
ing coordinate system, or oscillating orbits about such os
latory orbits.

A few remarks are now in order. Note that when t
minimax orbit is unstable, the island’s invariant region ma
but is not necessarily, be of zero measure. Also note tha
the twist condition is locally violated, the theory still applie
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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699Chaos, Vol. 9, No. 3, 1999 Islands of modes and tangles
to regions which are bounded away from this degene
curve. Near this curve nontwist resonance struct
appears.14 Finally, clearly the definition of oscillatory
rotational orbits depends on the observer frame of refere
Therefore, we can think of our original cylindrical coord
nates as action-angle coordinates around a base periodic
p, and all the above definitions can then be applied loca
near any periodic orbit.

Now, consider an island chain, and the resonance reg
R which is defined by segments of the stable and unsta
manifolds of the~m,n! minimizing periodic orbits.13 Two
consecutive primary intersections of the manifolds defin
lobe, and the lobes are responsible for the flux through
resonance,13,15 see Fig. 1. In the resonance geometry, it
possible to have islands inside the lobes8—we call such is-
lands tangle islands. More precisely, letu denote the mini-
mizing ~unstable! periodic orbit with stable and unstab
manifolds emanating from it and first intersecting at the p
mary homoclinic pointr 0 creating the resonance regionR.
Let x denote the minimax~central-elliptic or hyperbolic with
reflection! periodic orbit inR ~thusx, uhave the same perio
and there exist coordinates in which the first coordinate
these orbits are ordered, i.e.,P r(xi),P r(ui), i 50,...,n21!.
The entraining and detraining turnstile lobesE,D are defined
by the segments of the stable and unstable manifolds
necting the primary intersection pointr 0 to its image. In the
near integrable geometry, where the turnstile lobes are s
compared withR and do not intersect each other, these lob
are defined by:R2(F(R)ùR)5F(E) and R2(F21(R)
ùR)5D, see Fig. 1.

Definition 2.1.An (n̄,m̄) R-tangle island is an invarian
stability regionC with positive Lebesgue measure satisfyi
CùE5C0 andC5ø i 50

n̄21T̂iC0 , Tn̄Ci5Ci1m̄, whereE de-
notes one of the out-going turnstile lobes ofR.

It follows that C0 lies in the interior ofE. Furthermore,
the condition C0,E and its invariance implies tha
C0,T̂n̄(E)ùE and that there exist ak, 0,k<n̄ such that
Ck5T̂k(C0),D. In the near integrable case,n̄@n, wheren
is the period of the periodic orbit which definesR, and 0
,k,n̄.

Theorem 2.2.Consider a twist map on the cylinder wit
a rotational resonance island chainR. Assume this map has
near integrable limit~i.e., in this limit the turnstile lobes ofR
are much smaller in both width and length w.r.t. the wid

FIG. 1. Resonance region and turnstile lobes.R-resonance region of the
period one periodic orbitu. E-incoming lobes,D-outgoing lobes.
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and length ofR!. Then, in this limit the set of Tangle island
and the set of Resonance islands are disjoint sets.

Proof. We will prove that in the near integrable limit th
tangle island orbits are nonmonotone in both the rotatio
and the oscillatory coordinate systems. Since the resona
islands centers are monotone, this proves the theorem.

Let x denote the central periodic orbit of the resonan
region R, and let t denote an orbit in the~n,m! R-tangle
island. With no loss of generality, for simplicity of present
tion, let us assume thatx is in fact a fixed point. Divide the
cylindrical phase space to three regions, the11 region above
R, the 21 region belowR and 0 for points inR.

Let us divide the orbit oft to segments according to th
region they belong to—denote bysiP61,0 the sequence o
the regional location oft i ~si51 indicates thatt i is in the
region aboveR!. Clearly the sequence$si% is n-periodic. If
siÞsi 11 it follows that t iPEøD, namely t i belongs to a
turnstile lobe. In the near-integrable limit, the lobes a
small, hence$si% is composed of long strings of identica
values. We assume, for definiteness, thats051 and s150
~s0521, s150 can be treated similarly. All other possibil
ties can be transformed, by shifting the origin, to one of th
two cases!. Let n1@1 denote the firsti .1 for which si

Þ0. Notice that, by periodicity ofs and near-integrability,

n1!n21. It follows that$t i% i 51
n1

21

encirclex in an oscillatory
fashion. In particular, we now show that in rotational coo
dinate system this segment is nonmonotone. Furtherm
the same argument shows that this segment is nonmono
in the oscillatory coordinate system associated with a
monotone~rotational! periodic orbit which is not inR. De-
note byi * the first ‘‘rotational turning point’’ along the or-
bit: then P r(t i* 21),P r(t i* ) whereasP r(t i* ).P r(t i* 11).
Such a turning point, at which monotonicity is broken, ne
essarily exists if maxPr(E),minPr(TE) ~where P r(E)
5$P r(x)uxPE%! and either maxPr(D),minPr(TE) or
maxPr(TD),minPr(TE). These conditions clearly hold in
the near-integrable case because the lobes are close t
limiting separatrix and the separatrix is monotone w.r.t.
cylindrical coordinate system.

Now, assume there exists an oscillatory coordinate s
tem for which this segment oft is monotone~if such system
does not exist then the theorem is proved!. We will prove
next that there exist another segment of the orbit oft for
which this coordinate system is nonmonotone. For simplic
of presentation consider only the upper turnstile lobes. Si
t0PE, t may not be confined to only one cell—in particul
it must have a rotational segmenttn2n2

,...,tn21 which ex-

tends to at least one more cell to the left of the origin. T
segment, in the near integrable limit, follows very closely t
separatrices associated withR, and thus cannot be monoton
in the oscillatory coordinate system of the central perio
orbit of R or in the oscillatory coordinate system associa
with any oscillatory periodic orbit inR. In particular, letDl

denote the upperD lobe on the cell to the left of the oscilla
tory coordinates central point. Then, an oscillatory turni
point must exist if there exist ann such that maxPo(T

nDl)
,minPo(TDl) and maxPo(T

nDl),minPo(E). Such ann ex-
ists in the near integrable case because of the closeness
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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700 Chaos, Vol. 9, No. 3, 1999 V. Rom-Kedar and G. Zaslavsky
limiting rotational invariant circles which are necessar
nonmonotonic in any of the oscillatory systems about mo
tone periodic orbits since the width ofR has been assumed t
be positive in this limit. h

It follows that the definition of tangle islands and
resonance islands are not equivalent. Furthermore, s
minimizing periodic orbits are monotone,12 it follows that all
periodic orbits contained in the tangle island are not m
mizing in the rotational and oscillatory coordinates system
We conjecture that even in the far-from integrable limit t
two families of islands are distinct. The resonance islands
the ones which evolve continuously from the near-integra
limit until their stability zone diminishes whereas the tang
islands are the islands which appear via homoclinic bifur
tions, thus have no near-integrable continuation. It follo
that in the near integrable limit the majority of the stabili
zone is governed by resonance islands whereas in the s
chaos case tangle islands are the main contributers to
stability regions. It is still an open question whether the
two categories are exhaustive, see discussion.

III. BALLISTIC MODES

Ballistic modes correspond to stable periodic motion
the cylinder with rotation rate which is different then th
rotation rate of the central periodic orbitx: denote byb the
ballistic trajectory, then

lim inf
n→`

1

n
uTnb2Tnxu5v.0.

Such a motion influences transport as the separation is la
thanvt with some constantv, as opposed to the ‘‘diffusive’’
behavior which is observed for nonsticky chaotic orbits. W
may identify now that the anomalous transport observed
Ref. 16 for theABCflow and in Ref. 17 for the standard ma
was due to the orbits stickiness to ballistic modes.

Clearly ballistic modes can be created by regular re
nance islands. For these,v, the ‘‘velocity’’ of the ballistic
motion, simply correspond to the rotation number. Howev
tangle islands may also create ballistic motion with rotat
numbers which are different then their central periodic
bits, see the example below.

A. Ballistic island near the separatrix

The dynamics near a separatrix can be described by
so-called separatrix map~Ref. 18 or in more contemporar
form Refs. 19–23!. For example, for the perturbed pendulu

ẍ1sinx5e sin~x2nt ! ~3.1!

with the perturbation parametere and perturbation frequenc
n, the separatrix map can be written using the dimension
energyh and phasef:

hn115hn1eKn sinfn ,
~3.2!

fn115fn1n ln~32/uhn11u! ~mod 2p!,

where
Downloaded 09 Sep 2008 to 132.77.4.43. Redistribution subject to AIP lice
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Kn5
4pn2

sinhpn S exp~psnn/2!2sn

sinhpn/2

n2 D ~3.3!

andsn561 is a dynamic sign function:

sn115sn•signhn11 . ~3.4!

On the separatrixh50 ~see Ref. 22 for more precise formu
lation!. Consider the limitn@1, e!1: thenKn is exponen-
tially small in n and the separatrix splitting is given by th
Melnikov function providede<O(n2p): this has been re-
cently proven forp.0 ~see Ref. 24 for the general formula
tion and other references!. In this limit, simplified version of
~3.3! is

Kn5H K58pn2 exp~2pn/2!, sn51

0, sn521
~3.5!

namely, toO(K/n2) only the upper separatrix breaks. In th
approximation, a simple ballistic trajectory can be defined
the initial conditions:

s051, h05eK/2, f053p/2 ~3.6!

if e, n are such that

uh0* u5
1

2
e* K* 532 expS 2

p

2n* ~2m11! D ~3.7!

with integerm. In this case

h4* 5h0* , f4* 5f0* 1~4m12!p5f0~mod 2p!,
~3.8!

s4* 5s0*

i.e. four is a characteristic period of the ballistic propagat
along f, and Eq. ~3.7! defines a specific value (e* ,n* )
where the ballistic motion exists.

Now, considering a smallDe deviation from the exact
e* ,K* values, we find that the separatrix map has a~small!
stability island around this periodic orbit, as is seen in Fig.
This stable fixed point undergoes a period doubling bifur
tion ate50.520 9560.000 05. A similar picture appears ne
n54, e50.2359 wheree* (n54,m57)50.235 704.

Indeed, the tangle island structure for the ballistic mo
can be derived in a straightforward way. Let us define

Dhk5hk2hk* , Dfk5fk2fk* , sk5sk* ,
~3.9!

d5De/e* 5~e2e* !/e* ~k50,1,2,3,4!,

where the ballistic trajectory (hk* ,fk* ,sk* ) is given in~3.6!,
~3.7!, ~3.8!. Applying the map~3.2! with ~3.5! four times for
the values (hk ,fk ,sk) in the vicinity of the ballistic trajec-
tory, we find

Dc45Dc024nd12
n3

h* 2 ~Dh0!2,

Dh45Dh012h* Dc4 , ~3.10!

where the new variable

Dck5Dfk1
n

h*
Dhk ~3.11!

has been introduced and terms of the order
(d2,dDhk ,dDck ,(Dck)

2,DcDh,...) areneglected, namely
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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701Chaos, Vol. 9, No. 3, 1999 Islands of modes and tangles
these equations are consistent for orbits with (Dh,Dc)
5(O(Ad),O(d)). The map~3.10! is area preserving~for
this purpose the new variablec was introduced! and for in-
finitesimal (Dck ,Dhk) can be written in a Hamiltonian form

dDc

dt
52

]Hbal

]Dh
,

dDh

dt
5

]Hbal

]Dc
~3.12!

with the Hamiltonian

Hbal5h* ~Dc!214nd•Dh2
2

3

n3

h* 2 ~Dh!3 ~3.13!

and dimensionless timet5t/4. It follows from ~3.13! and
~3.7! that the island exists ford.0 in the domain

0<Dh<~6dh* 2/n2!1/2516A3pDe exp
2p

4 S2m11

n
1n D .

~3.14!

FIG. 2. Stability island around the ballistic tangle periodic orbit. The tan
islands of the separatrix map~3.2! at n54, e50.52 @where e* (n54, m
56)50.516 965#. ~a! Stochastic layer with islands~4 black dots!. ~b! Zoom
on one island zone.
Downloaded 09 Sep 2008 to 132.77.4.43. Redistribution subject to AIP lice
Similar Hamiltonian structure was obtained in Ref. 8 in
different way@see also the accelerator mode case~4.3!#. Here
the Hamiltonian~3.13! is related to the ballistic mode islan
and its parameters are correspondingly specified.

Will the stability island we have found for the separatr
map appear in the Hamiltonian flow? Indeed,~3.7! defines
e* 5e(n,m), and as shown in Ref. 24, Melnikov analysis
expected to be applicable only ife5o(1/n), hence the be-
havior of the map near the periodic orbit (h* ,f* ) reflects
the dynamics of the flow providedm is sufficiently large,
namelym must satisfy:

m>mmin5
1

2
~n221!2a

2

p
n logn, a!1. ~3.15!

In Fig. 2 we taken54 andm56 @where by~3.15! with a
51, mmin54#, hence we expect these~tiny! islands to appear
in the Hamiltonian flow~3.1! as well.

The schematic structure of this periodic orbit in th
Hamiltonian flow is shown in Fig. 3. From~3.8!, it follows
that this period four orbit in (f,h) corresponds to a period
Tm5(4m12)p/n orbit in x(t). Moreover, sinceh0* .0,
h1* ,0, h2* ,0, h3* .0, h4* 5h0* .0 it follows that x(Tm)
5x(0)14p ~see Fig. 3!. Thus, the periodic orbit has a ro
tation number~‘‘velocity’’ ! 2n/(2m11) which is ofO(1/n)
for largen, corresponding to nonmonotone ballistic motio

IV. ACCELERATOR MODES

Accelerator modes correspond to islands which are p
odic on the torus (pPS) yet are nonperiodic on the cylinde
(pPR). As p represents momentum, such motion cor
sponds to unbounded increase in the kinetic energy. Usu
such islands are found for very specific~typically large! pa-
rameter values~e.g., see Ref. 4!. However, using the separa
trix map approximation for the web map, it has been recen
established that for the web-map such islands may ap
also for very small parameter values.25 Below, in Secs. 4 A
and 4 B we present numerical examples for our main res
which is subsequently formulated in Theorem 4.1 of S
4 B: we establish that for both the standard map and the
map, accelerator islands are necessarily contained in turn
lobes, namely they are tangle islands.

FIG. 3. Schematic phase space trajectory of separatrix islands. The s
periodic orbit of Fig. 1 as a perturbed pendulum orbit shown in the~x,p!
plane. Dashed lines correspond to unperturbed pendulum separatrices
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 4. Accelerator islands in the
Standard map,K56.90 8745.n de-
notes the unstable periodic orbits a
1/2p (x,p) 5 1/2p ((2n11) p,2mp)
~a! Stable and unstable manifold
~solid lines! and period-one~mod 2p!
stability island~birdlike shape! inside
the lobes.~b! Zoom on the stability is-
land.
A. Accelerator islands for the standard map

Consider the standard map:

pn115pn2K sinxn , xn115xn1pn11 , ~mod 2p!.
~4.1!
Downloaded 09 Sep 2008 to 132.77.4.43. Redistribution subject to AIP lice
An example of an accelerator mode is

x05p/2, p050, K* 52pm ~4.2!

with integerm. Conditions~4.2! define linearly growingpn
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 5. Motion of initial conditions
around accelerating island. Same p
rameter and island as in Fig. 4. A bo
of initial conditions around the island
is iterated twice.
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~momentum! which means growth of the energy. The
analysis of small deviations around this accelerator m
produces the following effective Hamiltonian~see Ref. 4!:

Hef5
1

2
~Dp!21DKDx2

p

3
~Dx!3 ~4.3!

with the equations of motion

d

dt
Dp52

]He f

]Df
,

d

dt
Dx5

]He f

]Dh
~4.4!

which define the dynamics inside the accelerator islan
DK.0.

Indeed, we establish the existence of accelerator m
islands inside the turnstile lobes of a fundamental region
the standard map; ForK56.908 45, we find the stable an
unstable manifolds of the hyperbolic fixed points at (x,p)
5(0.5,0) ~mod 1! and the location of the accelerator mo
island. In Fig. 4 it is demonstrated that the island is loca
inside the turnstile lobe. In Fig. 5 we put a box of initi
conditions which surround the island and resides within
turnstile lobe. The dynamics of this box clearly demonstra
how a finite area around the accelerating mode island
dragged along and stretched with the lobes.

Usually, one expects tangle islands to be quite sm
However, when the lobes are large, large islands may
created. This is the situation with the accelerating mode
the standard and web map, as shown in Fig. 4.

B. Accelerator modes for the web map

Consider the web map

un115vn , vn1152un2K sinvn , ~mod 2p!.
~4.5!
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The near-integrable limit of this map, corresponding to sm
K values, consists of a diamond shape web, created by
stable and unstable manifolds of the hyperbolic periodic
bits at (u,v)5(mp,(2n1m11)p). These hyperbolic peri-
odic orbits persist for allK and so are the cells defined b
them. Below we refer to these cells as ‘‘resonance cell
Theorem 2.2 may be easily modified for this case, show
that in the near integrable limit tangle islands cannot
monotone with respect to the centers of these cells~here all
monotone orbits are of oscillatory type!.

An accelerator mode is found for

K52p, u53
p

2
, v5

p

2
. ~4.6!

A corresponding Hamiltonian is4

He f5
1

2
DK~Dv2Du!2

p

6
@~Dv !32~Du!3#, ~4.7!

which together with the equations of motion

d

dt
Du5

]He f

]Dv
,

d

dt
Dv52

]He f

]Du
~4.8!

provides a description of the accelerator islands in the deg
erate unperturbed case. Indeed, in Fig. 6 we see that
accelerator island is contained in turnstile lobes of the hyp
bolic periodic orbit consisting of the points$~0,6p!,
~6p,0!%.

Theorem 4.1.The islands corresponding to accelera
modes of the Standard map and the Web map are conta
in turnstile lobes, namely they are tangle islands.

Proof. Accelerator modes, by definition, correspond
periodic orbits which jump in momentum~the p variable for
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 6. Accelerator island inside lobe
for the web map,K56.3. Stable and
unstable manifolds of the period fou
orbit (u,v)5$(6p,0),(0,6p)%
~crosses! are shown~solid line!. De-
formed circles correspond to period-
accelerator island. Boxes denote pr
mary homoclinic points defining the
resonance cell.
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the standard map and theu or v variable for the Web map!.
For both maps, there exist well defined resonance cells w
well defined turnstile lobes for all parameter values~for the
standard map, the cells defined by the stable and unst
manifolds ofp52np, x56p, for the web map, the cells
defined by the stable and unstable manifolds of the per
four periodic orbitsu5mp, v5(2n1m11)p, m, nPZ!.
Denote the resonance cells according to their central p
tion: for the standard mapRn for the cell centered at (0,2np)
and for the web mapRm,n for the cell centered at (mp,np).
These resonance zones are bounded and disjoint region
fact, it can be verified that for allK values they do not exten
beyond the basic periodic cell@e.g., (x,p)P@2p,p#
3@(2n21)p,(2n11)p# for the standard map#, see, for ex-
ample, Refs. 13 and 12 and references therein. Indeed
largeK the regionR0 asymptotes the parallelogram with ve
tices @(2p,0),(xu ,pu),(p,0),(2xu ,2pu)#, where

xu5pS 12
2

K11
1OS 1

K2D D ,

~4.9!

pu52p
K

K11 S 12
1

K11
1OS 1

K2D D ,

and the regionRi corresponds to a translate ofR0 by 2p i
along thep axis. Similarly, the regionsRn,m asymptote for
largeK a double square shape which is bounded by the b
cell unit ~see Fig. 6!.

For the web map the union of all the regionsRm,n sup-
plies a complete partition ofR2 to regions which are sepa
rated by partial barriers—the segments of the stable and
stable manifolds. By orientation preservation, the o
Downloaded 09 Sep 2008 to 132.77.4.43. Redistribution subject to AIP lice
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mechanism of transfer from one cell to the other is throu
the turnstile lobes.15 Since accelerator modes, by definitio
cannot stay in one cell, they must be contained in a turns
lobe, hence they are tangle islands.

Now consider the standard map. Here the main re
nance zonesRi do not partition the phase space. Denote
gap between cellRi and cellRi 11 by Gi ,i 11 . For all K ~see
asymptotic form ofRi above!, it is a cylindrical band which
is bounded from below~respectively, from above! by the
segments of stable and unstable manifolds of the fixed p
at x5p, p52ip ~resp.p52(i 11)p! which define the up-
per ~resp. lower! boundary of the regionRi ~resp.Ri 11!. The
union of all the regionsRi andGi ,i 11 for all i does supply a
complete partition of the cylinder with a set of regions sep
rated by segments of stable and unstable manifolds. M
over, the turnstile lobes between regionGi ,i 11 and its neigh-
borsRi , Ri 11 are exactly theE,D lobes defined for theRi ’s.
Repeating the arguments as for the web map, it follows t
the accelerator modes must be tangle islands.

V. DISCUSSION

We defined tangle islands as islands contained in tu
stile lobes and proved that in the near-integrable limit t
definition provides a distinct class of islands which is diffe
ent from the usual resonance islands. In particular these
lands correspond to nonmonotonic motion in both rotatio
and oscillatory coordinate systems. We demonstrated
tangled islands can be of the ballistic or accelerator ty
whereas resonance islands can be either of trapped~oscilla-
tory! or ballistic ~rotational! type. We proved that for the
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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standard map and the web map accelerator islands are
essarily tangle islands. It is still an open question whether
the strongly chaotic regime, where large accelerator mo
appear, the tangle islands are necessarily nonmonotone

Clearly both resonance islands and tangle islands m
have themselves their own subislands which again can b
either resonance or tangle type. Since one expects tha
width of the separatrix splitting of the sub-island chains fa
off exponentially with each sub-structure, one expects t
the tangle islands of the second generation will be extrem
small ~in Ref. 8 it is proved that if these tangle islands exi
then there could be a mechanism for creating self-sim
tangle island structures around them!.

In the definition of the resonance islands we have u
the monotonicity property which is associated with perio
orbits of twist maps. Two sources for oscillatory islan
which are not monotone may arise. First, when the tw
condition is violated at a certain frequency nearby re
nances have special structure which may provide nonmo
tone orbits.14 The second source may be islands produced
homoclinic bifurcations:7,8 Notice that tangle islands are pro
duced by homoclinic bifurcations. We now argue that su
bifurcations may produce, in addition, oscillatory islands o
different type. Indeed, consider first ‘‘open’’ systems—t
turnstile lobes of these have no mechanism to self-inter
~like in the Hénon map!. In ‘‘open’’ systems, homoclinic
tangencies may occur only outside of the turnstile lobes
their images—hence if any islands are created they are
essarily of an oscillatory nature. In particular these must h
the same rotation number as the base periodic orbit.
these islands ordered with respect to the base periodic o
Hockett and Holmes26 results show that unstable period
orbits associated with the horseshoes which are created
the homoclinic points may have arbitrary order. It is an op
question whether the stability islands which are created
saddle-center bifurcations of these orbits are necessarily
ordered ~knot theory may be useful to investigate su
questions27!. If they are, then they may be included in th
category of the resonance islands. If not, then they neces
ily create a new category, since tangle islands cannot exi
‘‘open’’ systems. Thus, we conclude that for any two dime
sional mapping: Either the Newhouse islands are well
dered, or, there exist a third category of islands which are
resonant nor of a tangle type.
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2H. Poincare´, ‘‘Sur les équations de la dynamique et le proble`me de trois
corps,’’ Acta Math. Acad. Sci. Hung.13, 1–270~1890!.

3C. F. F. Karney, ‘‘Long time correlations in the stochastic regime
Physica D8, 360 ~1983!.

4G. M. Zaslavsky, M. Edelman, and B. Niyazov, ‘‘Self-similarity, reno
malization and phase space nonuniformity of Hamiltonian chaotic dyn
ics,’’ Chaos7, 159 ~1997!.

5P. Duarte, ‘‘Plenty of elliptic islands for the standard family of area p
serving maps,’’ Ann. Inst. Henri Poincare´ Anal. Non Linaire11, 359–409
~1994!.

6D. Turaev and V. Rom-Kedar, ‘‘Islands appearing in near-ergodic flow
Nonlinearity 11, 575–600~1998!; V. Rom-Kedar and D. Turaev, ‘‘Big
islands in dispersing billiard-like potentials,’’ Physica D130, 187–210
~1999!.

7S. Newhouse, ‘‘Quasi-elliptic periodic points in conservative dynami
systems,’’ Am. J. Math.99, 1061–1087~1977!.

8V. K. Melnikov, ‘‘On the existence of self-similar structures in the res
nance domain,’’ inTransport, Chaos and Plasma Physics, II, Procee
ings, Marseille, edited by F. Doveil, S. Benkadda, and Y. Elskens~World
Scientific, Singapore, 1996!, pp. 142–153.

9S. Aubry, ‘‘The twist map, the extended Frenkel-Kontorova model and
devil’s staircase,’’ Physica D7, 240–258~1983!.

10J. N. Mather, ‘‘A criterion for non-existence of invariant circles,’’ Pub
Math. I.H.E.S.63, 153–204~1986!.

11R. S. MacKay and J. D. Meiss, ‘‘Linear stability of periodic orbits
Lagrangian systems,’’ Phys. Lett. A98, 92–94~1983!.

12J. D. Meiss, ‘‘Symplectic maps, variational principles, and transpor
Rev. Mod. Phys.64, 795–848~1992!.

13R. S. MacKay, J. D. Meiss, and I. C. Percival, ‘‘Resonances in a
preserving maps,’’ Physica D27, 1–20~1987!.

14D. del Castillo-Negrete, J. M. Green, and P. J. Morrison, ‘‘Are
preserving nontwist maps: Periodic orbits and transition to chao
Physica D61, 1–23~1996!.

15V. Rom-Kedar and S. Wiggins, ‘‘Transport in two-dimensional maps
Arch. Ration. Mech. Anal.109, 239–298~1990!.

16G. M. Zaslavsky, D. Stevens, and M. Weitzner, ‘‘Self-similar transport
incomplete chaos,’’ Phys. Rev. E48, 1683–1694~1993!.

17R. White, S. Benkadda, S. Kassibrakis, and G. M. Zaslavsky, ‘‘N
threshold anomalous transport in the standard map,’’ Chaos8, 757–767
~1998!.

18G. M. Zaslavsky and N. N. Filonenko, ‘‘Stochastic instability of trapp
particles and conditions of applicability of the quasi-linear approxim
tion,’’ Sov. Phys. JETP25, 851–857~1968!.

19B. V. Chirikov, ‘‘A universal instability of many-dimensional oscillato
systems,’’ Phys. Rep.52, 263–379~1979!.

20D. F. Escande, ‘‘Stochasticity in classical Hamiltonian systems: Unive
aspects,’’ Phys. Rep.121, 165–261~1985!.

21V. Rom-Kedar, ‘‘Homoclinic tangles—classification and applications
Nonlinearity7, 441–473~1994!.

22V. Rom-Kedar, ‘‘Secondary homoclinic bifurcation theorems,’’ Chaos5,
385–401~1995!.

23G. M. Zaslavsky and S. S. Abdullaev, ‘‘Scaling properties and anomal
transport of particles inside the stochastic layer,’’ Phys. Rev. E51, 3901–
3910 ~1995!.

24A. Delshams and T. M. Seara, ‘‘Splitting of separatrices in Hamilton
systems with one and a half degrees of freedom,’’ Math. Phys. Electro
3, 1–40~1997!.

25A. Iomin, D. Gangardt, and S. Fishman, ‘‘Nonlinear dynamics in perio
phase space,’’ Phys. Rev. E57, 4054–4062~1998!.

26K. Hockett and P. Holmes, ‘‘Josephson’s junction, annulus maps, Birkh
attractors, horseshoes and rotation sets,’’ Ergod. Th. and Dynam. Sy6,
205–239~1986!.

27R. W. Ghrist, P. J. Holmes, and M. C. Sullivan,Knots and Links in
Three-dimensional Flows~Springer-Verlag, Berlin, 1997!.
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp


