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Abstract: The behavior of a point particle traveling with a constant speed in a region
D ⊂ RN , undergoing elastic collisions at the regions’s boundary, is known as the bil-
liard problem. Various billiard models serve as approximation to the classical and semi-
classical motion in systems with steep potentials (e.g. for studying classical molecular
dynamics, cold atom’s motion in dark optical traps and microwave dynamics). Here we
develop methodologies for examining the validity and accuracy of this approximation.
We consider families of smooth potentials Vε , that, in the limit ε → 0, become sin-
gular hard-wall potentials of multi-dimensional billiards. We define auxiliary billiard
domains that asymptote, as ε → 0 to the original billiards, and provide, for regular
trajectories, asymptotic expansion of the smooth Hamiltonian solution in terms of these
billiard approximations. The asymptotic expansion includes error estimates in the Cr

norm and an iteration scheme for improving this approximation. Applying this theory
to smooth potentials that limit to the multi-dimensional close to ellipsoidal billiards, we
predict when the billiard’s separatrix splitting (which appears, for example, in the nearly
flat and nearly oblate ellipsoids) persists for various types of potentials.

1. Introduction

Imagine a point particle travelling freely (without friction) on a table, undergoing elastic
collisions with the edges of the table. This model resembles a game of billiards, but it
looks much simpler - we have only one ball, which is a dimensionless point particle.
There is no friction and the table has no pockets. The shape of the table determines the
nature of the motion (see [26] and references therein) – it can be ordered (integrable,
e.g. in ellipsoidal tables), ergodic (e.g. in generic polygons), mixing and possessing K
and B-properties (in dispersing-Sinai [50] tables or focusing-Bunimovich tables [7]), or
of a mixed nature (most billiard shapes). While the above dynamical classification of
two-dimensional billiards is well established, the statistical properties of such systems
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(e.g. the rate of the decay of correlations) is still widely open and is non-trivial even for
mixing systems, like Sinai and Bunimovich billiards, see [36, 60] and references therein.

While two-dimensional billiards had been extensively studied, much less in known
regarding the dynamics in higher dimensional billiards; motivated by Boltzmann ergo-
dic hypothesis, the geometrical and dynamical properties of a hard sphere gas had been
the focuss of a series of works; indeed the motion of N rigid d-dimensional balls in a
d-dimensional box (d = 2 or 3) corresponds to a billiard problem in an n-dimensional
domain, where n = N ×d and the domain’s boundary is formed by a union of cylinders
[13, 31, 49]. The corresponding billiards are called semi-dispersing, and their ergodic
properties had been extensively studied [27–30, 45–48]. On the other extreme, there exist
several studies of integrable billiards in ellipsoids and their perturbations (see below),
and several studies of ergodic and/or hyperbolic multi-dimensional billiards [8–11, 39,
59] (the nature of the singularity set in the higher dimensional case is a delicate issue
[2]). Multi-dimensional billiards with mixed phase space were also studied in [11, 59]
and in [61]. In [40] a semiclassical study of the three-dimensional Sinai billiard had
been conducted. Recently, the hyperbolicity of certain finite range multi-dimensional
spherically symmetric billiard potentials was proved [4] (see below).

In the context of Physics, the billiard description is usually used to model a more
complicated system for which a particle is moving approximately inertially, and then
is reflected by a steep potential. The reduction to the billiard problem simplifies the
analysis tremendously, often allowing to describe completely the dynamics in a given
geometry. Numerous applications of this idea appear in the physics literature; it works
as an idealized model for the motion of charged particles in a steep potential, a model
which is often used to examine the relation between classical and quantized systems (see
[22, 52] and references therein); this approximation was utilized to describe the dynam-
ics of the motion of cold atoms in dark optical traps (see [24] and references therein);
this model has been suggested as a first step for substantiating the basic assumption of
statistical mechanics – the ergodic hypothesis of Boltzmann ([31, 49–51, 53, 54]). The
opposite point of view may be taken when one is interested in studying numerically the
hard wall system in a complicated geometry (e.g. apply ideas of [37] to [38]) – then
designing the “correct” limiting smooth Hamiltonian may simplify the complexity of
the programming.

The first strategy for studying the effects of the soft potentials was to introduce finite
range axis-symmetric potentials (potentials which identically vanish away from a set
of circular scatterers and are axisymmetric at the scatterers). For the two-dimensional
case [1, 3, 17, 19, 25, 32, 33, 35, 49], it was shown that a modified billiard map may be
defined, and several works have utilized this modified map to prove ergodicity of some
configurations [3, 19, 32, 33, 49], or to prove that other configurations may possess
stability islands [1, 17]. More recently [4], it was shown that a similar strategy may be
employed in arbitrary finite dimensions, and, moreover, that such an approach together
with a careful study of the cone properties of the multi-dimensional modified billiard
map, may be utilized to prove hyperbolicty of such a flow (under suitable conditions on
the spherically symmetric finite range potentials and the spacing between the scatterers).

The more general problem of studying the limiting process of making a steep two-
dimensional potential steeper up to the hard-wall limit can be approached in a variety
of ways. In [37] approach based on generalized functions was proposed. In [56] we
developed a different paradigm for studying this problem. We first formulated a set of
conditions on general smooth steep potentials in two-dimensional domains (Cr -smooth,
not necessarily of finite range, nor axis-symmetric) which are sufficient for proving that
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regular reflections of the billiard flow and of the smooth flow are close in the Cr topology.
This statement, which may appear first as a mathematical exercise, is quite powerful.
It allows to prove immediately the persistence of various kinds of billiard orbits in the
smooth flows (see [56] and Theorem 5 in Sect. 3.4) and to investigate the behavior near
singular orbits (e.g. orbits which are tangent to the boundary) by combining several
Poincaré maps, see for example [12, 43, 57]. The first part of this paper (see Theorems
1-2) is a generalization of this result to the multi-dimensional case in the most general
geometrical setting.

Thus, it appears that the Physicists’ approach, of approximating the smooth flow by
a billiard has some mathematical justification. How good is this approximation? Can
this approach be used to obtain an asymptotic expansion to the smooth solutions? The
second part of this paper answers these questions. We propose an approximation scheme,
with a constructive twist - we show that the best zero-order approximation should be
a billiard map in a slightly distorted domain. We provide the scaling of the width of
the corresponding boundary layer with the steepness parameter and with the number
of derivatives one insists on approximating. Furthermore, the next order correction is
explicitly found, supplying a modified billiard map (reminiscent of the shifted billiard
map of [4, 17, 49]) which may be further studied. We believe this part is the most signifi-
cant part of the paper as it supplies a constructive tool to study the difference between
the smooth flow and the billiard flow.

In the last part of this paper we demonstrate how these tools may be used to instantly
extend novel results (that were obtained for billiards) to the steep potential setting; it
is well known that the billiard map is integrable inside an ellipsoid [26]. Moreover, the
Birkhoff-Poritski conjecture claims that in 2 dimensions among all the convex smooth
concave billiard tables only ellipses are integrable [55]. In [58] this conjecture was gen-
eralized to higher dimensions. Delshams et al ([15, 14] see references therein) studied
the effect of small entire symmetric perturbations to the ellipsoid shape on the integra-
bility. They proved that in some cases (nearly flat and nearly oblate) the separatrices
of a simple periodic orbit split; thus, they proved a local version of the Birkhoff con-
jecture in the two-dimensional setting, and provided several non-integrable models in
the n-dimensional case. Here, we show that a simple combination of their results with
ours, extends their result to the smooth case - namely it shows that the Hamiltonian
flow, in a sufficiently steep potential which asymptotically vanishes in a shape which
is a small perturbation of an ellipsoid, is chaotic. Furthermore, we quantify, for a given
perturbation of the ellipsoidal shape, what “sufficiently steep” means for exponential,
Gaussian and power-law potentials.

These results may give the impression that the smooth flow and the billiard flow
are indeed very similar, and so a Scientist’s dream of greatly simplifying a complicated
system is realized here. In the discussion we go back to this point - as usual dreams never
materialize in full. In particular, we discuss there the possibility of having non-hyperbolic
orbits and even effective stability islands in the case of steep repelling multi-dimensional
potentials.

The paper is ordered as follows; in Sect. 2 we define and describe the billiard flow
and billiard map. In Sect. 3 we study the smooth Hamiltonian flow; we first prove that if
the potential satisfies some natural conditions, the smooth regular reflections will limit
smoothly to the billiard’s regular reflections (Theorems 1, 2). Then, we define a natural
Poincaré section on which a generalized billiard map may be defined for the smooth flow.
Next, we derive the correction term to the zeroth order billiard approximation (Theorem
3) and calculate it for three model potentials (exponential, Gaussian and power-law). We



570 A. Rapoport, V. Rom-Kedar, D. Turaev

end this section by stating its immediate implication - a persistence theorem for various
types of trajectories (Theorem 5). In Sect. 4 we apply these results to the perturbed ellip-
soidal billiard. We end the paper with a short summary and discussion. The appendices
contain most of the proofs, whereas in the body of the paper we usually only indicate
their main steps.

2. Billiards in d Dimensions

2.1. The billiard flow. Consider a billiard flow as the motion of a point mass in a com-
pact domain D ⊂ R

d or T
d . Assume that the boundary ∂D consists of a finite number

of Cr+1 smooth (r ≥ 1) (d − 1) -dimensional submanifolds:

∂D = �1 ∪ �2 ∪ ... ∪ �n, i = 1 . . . n. (1)

The boundaries of these submanifolds, when these exist, form the corner set of ∂D:

�∗ = ∂�1 ∪ ∂�2 ∪ ... ∪ ∂�n, i = 1 . . . n. (2)

The moving particle has a position q ∈ D and a momentum vector p ∈ R
d which are

functions of time. If q ∈ int (D), then the particle moves freely with a constant velocity
according to the rule1:

{
q̇ = p
·
p = 0

. (3)

Equation (3) is Hamiltonian with the Hamiltonian function (hereafter p2 = 〈p, p〉)

H(q, p) = p2

2
. (4)

The particle moves at a constant speed and bounces of ∂D according to the usual elastic
reflection law : the angle of incidence is equal to the angle of reflection. This means that
the outgoing vector pout is related to the incoming vector pin by

pout = pin − 2〈pin, n(q)〉n(q), (5)

where n(q) is the inward unit normal vector to the boundary ∂D at the point q, see [13].
To use the reflection rule (5), we need the normal vector n(q) to be defined, hence the
rule cannot be applied at points q ∈ �∗, where such a vector fails to exist2.

Definition 1. The domain D is called the configuration space of the billiard system.

The phase space of the system is P = D×Sd−1, where Sd−1 is a (d −1)-dimensional
unit sphere (we set H = 1

2 ) of velocity vectors. So the elements of P are

ρ ≡ (q, p).

1 We assume that the particle has mass one (otherwise one may rescale time).
2 To be precise, one may define n(q) by continuity at points of �∗, but this might give more than one

normal vector n(q), hence the dynamics would be multiply defined for a generic corner. We adopt the standard
convention that the reflection is not defined at any q ∈ �∗.
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Denote the time t map of the billiard flow as

bt : ρ0 → ρt . (6)

We do not consider reflections at the points of the corner set, so ρt = btρ0 implies here
that the distance between any point on the trajectory connecting q0 with qt and the set
�∗ is bounded away from zero. A point ρ ∈ P is called an inner point if q /∈ ∂D and
a collision point if q ∈ ∂D \ �∗. Obviously, if ρ0 and ρt = btρ0 are inner points, then
ρt depends continuously on ρ0 and t . If ρt is a (non-tangent) collision point then the
velocity vector undergoes a jump. Thus, in this case both bt−0 and bt+0 are defined. The
map R◦ = bt+0b−1

t−0 is the reflection law (5) (augmented by qout = qin).
If the piece of the trajectory which connects q0 with qt does not have tangencies with

the boundary, then ρt depends Cr -smoothly on ρ0. It is well-known [50, 56] that the
map bt loses smoothness at any point q0 whose trajectory is tangent to the boundary
at least once on the interval (0, t). Clearly a tangency may occur only if the boundary
is concave in the direction of motion at the point of tangency. Consider hereafter only
non-degenerate tangencies, namely assume that the curvature in the direction of motion
does not vanish. Choose local coordinates q = (x, y) in such a way that the origin corre-
sponds to the collision point, the y-axis is normal to the boundary and looking inside the
billiard region D, and the x-coordinates (x ∈ R

d−1) correspond to the directions tangent
to the boundary. If Q(x, y) = 0 is the equation of the boundary in these coordinates, then
Qy(0, 0) �= 0 and Qx (0, 0) = 0. We choose the convention that Qy(0, 0) > 0. Obvi-
ously, the tangent trajectory is characterized by the condition py = 0, where (px , py)

are the components of the momentum p. The vector px = ẋ indicates the direction of
motion of the tangent trajectory. It is easy to check that the tangency is non-degenerate
if and only if

pT
x Qxx (0, 0)px > 0. (7)

If the billiard boundary is strictly concave (strictly dispersing), then all the tangen-
cies are non-degenerate. On the other hand, if the billiard’s boundary has saddle points
(or if the billiard is semi-dispersing), then there always exist directions for which this
non-degeneracy assumption fails. Let x = (x1, . . . , xd−1) with x1 corresponding to the
direction of motion (i.e. px = (1, 0, . . . , 0)). Then, the boundary surface near the point
of non-degenerate tangency is described by the following equation:

y = −αx2
1 + O(z2, x1z), α > 0,

where we denote z = (x2, . . . , xd−1). It is easy to see now that for a non-degenerate
tangency, for a small τ the map bτ of the line ρ0 = (x0 = (−τ/2, 0, . . . , 0), y0 ≤ 0,
p0x = (1, 0, . . . , 0), p0y = 0) is given by

ρτ = ((τ/2, 0, . . . , 0) + O(y0), 2τ
√−αy0 + O(y0),

(1, 0, . . . , 0) + O(y0), 4
√−αy0 + O(y0)).

As we see, the billiard flow loses smoothness indeed (it has a square-root singularity in
the limit y → −0) near the tangent trajectory. See Fig. 1.
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Fig. 1. Singularity near a tangent trajectory. For better visualization we present a slanted hyperplane which is
divided into 2 parts: bτ has a square-root singularity on the boundary between AR and AS

2.2. The billiard map. It is standard in dynamical system theory to reduce the study of
flows to maps by constructing a cross-section. The latter is a hypersurface transverse to
the flow. For the flow bt , such a hypersurface in phase space P can be naturally con-
structed with the help of the boundary of D, i.e. the natural cross-section S corresponds
exactly to the collision points of the flow with the domain’s boundary:

S = {ρ = (q, p) ∈ P : q ∈ ∂D, 〈p, n(q)〉 ≥ 0}. (8)

This is a (2d − 2)-dimensional submanifold in P . Any trajectory of the flow bt crosses
S every time it reflects at ∂D. This defines the Poincaré map

B : S → S such that Bρ = bτ◦(ρ)+0ρ, (9)

where

τ◦(ρ) = min{t > 0 : bt+0ρ ∈ S}.
Definition 2. The map B is called the billiard map.

We propose to represent the billiard map as a composition of a free-flight and a
reflection:

B = R◦ ◦ F◦,
where the free-flight map is given by

F◦(q, p) = bτ◦(ρ)−0(q, p), (10)

and the reflection law is given by

R◦(q, p) = (q, p − 2〈p, n(q)〉n(q)).
The billiard map B is a Cr−diffeomorphism at all points ρ ∈ S\� such that Bρ ∈ S\�,
where � is the singular set

� = �tangencies

⋃
�corners = {(q, p) ∈ S : 〈p, n(q)〉 = 0} ∪ {(q, p) ∈ S : q ∈ �∗},

(11)

and B is C0 at the non-degenerate tangent trajectories.
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3. Smooth Hamiltonian Approximation

3.1. Setup and conditions on the potential. Consider the family of Hamiltonian systems
associated with:

H = p2

2
+ V (q; ε), (12)

where the Cr+1-smooth potential V (q; ε) tends to zero inside a region D as ε → 0,
and it tends to infinity (or to a constant larger than the fixed considered energy level,
say H = 1

2 ) outside. Formally, the billiard flow in D may be expressed as a limiting
Hamiltonian system of the form:

Hb = p2

2
+ Vb(q), (13)

where

Vb(q) =
{

0 q ∈ int (D)
+∞ q /∈ D . (14)

Let us formulate conditions under which this simplified billiard motion approximates the
smooth Hamiltonian flow. In the two-dimensional case these conditions were introduced
in [56].
Condition I. For any fixed (independent of ε) compact region K ⊂ int (D) the potential
V (q; ε) diminishes along with all its derivatives as ε → 0:

lim
ε→0

‖V (q; ε)|q∈K ‖Cr+1 = 0. (15)

The growth of the potential near the boundary for sufficiently small ε values needs to
be treated more carefully. We assume that the level sets of V may be realized by some
finite function near the boundary. Namely, let N (�∗) denote the fixed (independent of ε)
neighborhood of the corner set and N (�i ) denote the fixed neighborhood of the bound-
ary component �i (in the Rd topology); define Ñi = N (�i )\N (�∗) (we assume that
Ñi ∩ Ñ j = ∅ when i �= j). Assume that for all small ε ≥ 0 there exists a pattern function

Q(q; ε) :
⋃

i

Ñi → R
1

which is Cr+1 with respect to q in each of the neighborhoods Ñi and it depends contin-
uously on ε (in the Cr+1-topology, so it has, along with all derivatives, a proper limit as
ε → 0). See Fig. 2. Further assume that in each of the neighborhoods Ñi the following
is fulfilled.
Condition IIa. The billiard boundary is composed of level surfaces of Q(q; 0)3:

Q(q; ε = 0)|q∈�i ∩Ñi
≡ Qi = constant. (16)

In the neighborhood Ñi of the boundary component �i (so Q(q; ε) is close to Qi ),
define a barrier function Wi (Q; ε), which is Cr+1 in Q, continuous in ε and does not
depend explicitly on q, and assume that there exists ε0 such that

3 This is the Q(x, y; 0) defined in Sect. 2.1.
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Fig. 2. Level sets of a pattern function Q(q; ε). A bold line is a trajectory of the Hamiltonian flow near the
boundary; a solid is a billiard trajectory

Condition IIb. For all ε ∈ (0, ε0] the potential level sets in Ñi are identical to the
pattern function level sets and thus:

V (q; ε)|q∈Ñi
≡ Wi (Q(q; ε)− Qi ; ε), (17)

and

Condition IIc. For all ε ∈ (0, ε0],∇V does not vanish in the finite neighborhoods of
the boundary surfaces, Ñi , thus:

∇Q|q∈Ñi
�= 0 (18)

and for all Q(q; ε)|q∈Ñi

d

d Q
Wi (Q − Qi ; ε) �= 0. (19)

Now, the rapid growth of the potential across the boundary may be described in
terms of the barrier functions alone. Note that by (18), the pattern function Q is mono-
tone across �i ∩ Ñi , so either Q > Qi corresponds to the points near �i inside D and
Q < Qi corresponds to the outside, or vice versa. To fix the notation, we will adopt the
first convention.
Condition III. There exists a constant (may be infinite) E > 0 such that as ε → +0 the
barrier function increases from zero to E across the boundary �i :

lim
ε→+0

W (Q; ε) =
{

0, Q > Qi
E, Q < Qi

. (20)

By (19), for small ε, Q could be considered as a function of W and ε near the bound-
ary: Q = Qi + Q i (W ; ε). Condition IV states that for small ε a finite change in W
corresponds to a small change in Q:
Condition IV. As ε → +0, for any fixed W1 and W2 such that 0 < W1 < W2 < E, for
each boundary component �i , the function Q i (W ; ε) tends to zero uniformly on the
interval [W1,W2] along with all its (r + 1) derivatives.
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Fig. 3. Gaussian potential given near the boundary by W (Q; ε) = e− Q2
ε satisfies Conditions I-IV

Figure 3 shows the geometric interpretation of the pattern function and a typical
dependence of the barrier function on Q and ε. The use of the pattern and barrier func-
tions essentially reduces the d-dimensional Hamiltonian dynamics in arbitrary geome-
try to a one-dimensional dynamics, thus allowing direct asymptotic integration of the
smooth problem. This is the main tool, introduced first in [56] for the two-dimensional
case, which enables us to deal with arbitrary geometry and dimension.

3.2. C0 and Cr - closeness theorems.

Theorem 1. Let the potential V (q; ε) in (12) satisfy Conditions I-IV. Let hεt be the
Hamiltonian flow defined by (12) on an energy surface H = H∗ < E (with positive
H∗), and bt be the billiard flow in D. Let ρ0 and ρT = bT ρ0 be two inner phase points.
Assume that on the time interval [0, T ] the billiard trajectory of ρ0 has a finite number of
collisions, and all of them are either regular reflections or non-degenerate tangencies.
Then hεt ρ−→

ε→0
btρ, uniformly for all ρ close to ρ0 and all t close to T .

Theorem 2. In addition to the conditions of Theorem 1, assume that the billiard trajec-
tory of ρ0 has no tangencies to the boundary on the time interval [0, T ]. Then hεt −→

ε→0
bt

in the Cr -topology in a small neighborhood of ρ0, and for all t close to T .

Recall that we speak here about trajectories which do not visit corner points, i.e. all
the collisions are on ∪i�i ∩ Ñi .

The proof of the theorems follows closely their proof for the two-dimensional case
in [56]. However, as minor corrections needed to be introduced, we presented the proof
in the supplement [42]. Most of it deals with the analysis of the equations of motion in
the boundary layers Ñi . Informally, the logic behind Conditions I-IV is as follows. Con-
dition I implies that the particle moves with almost constant velocity (along a straight
line) in the interior of D until it reaches a thin layer near the boundary where V runs
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from zero to large values (a smaller ε corresponds to a thinner boundary layer). Note
that the boundary layer can not be fully penetrated by the particle. Indeed, as in all
mechanical Hamiltonians, the energy level defines the region of allowed motion: for a
fixed energy level H = H∗ < E, all trajectories stay in the region V (q; ε) ≤ H∗. It fol-
lows from Condition III that for any such H∗, the region of allowed motion approaches
D as ε → 0. Thus, by Condition III, if the particle enters the layer near a boundary
surface (note that points from �∗ are not considered in this paper), it has, in principle,
two possibilities. First, it may be reflected and then exit the boundary layer near the
point it entered. The other possibility, which we want to avoid, is that the particle sticks
to the boundary and travels along it far from the entrance point. It is shown in the proof
of Theorem 1 that Condition IV guarantees that if the reflection is regular, or if it is
tangent and the tangency is non-degenerate, then the travel distance along the boundary
vanishes asymptotically with ε. The case of degenerate tangencies is important but it is
not studied here; notice that degenerate tangencies cannot occur in the strictly dispersing
case, yet these are unavoidable if the boundary has directional curvatures of opposite
signs (saddle points) or in the semi-dispersing case.

Once we know that the time spent by the particle near the boundary is small, we can
see that Condition II guarantees that the reflection will be of the right character, namely
the smooth reflection is C0-close to that of the billiard. Indeed, Condition II implies
that the reaction force is normal to the boundary, hence, as the time of collision is small
and the position of the particle does not change much during this time, the direction of
the force stays nearly constant during the collision. Thus, only the normal component
of the momentum is changing sign while the tangent components are nearly preserved.
Computations along these lines provide a proof of Theorem 1.

Proving Theorem 2, i.e. the Cr -closeness, makes a substantial use of Condition IV.
Let us explain in more detail the difference between the C0 and Cr topologies in this
context. Take the same initial condition (q0, p0) for a billiard orbit and for an orbit of
the Hamiltonian system (12) (the Hamiltonian orbit will be called the smooth orbit).
Consider a time interval t for which the billiard orbit collides with the boundary only
once. In these notations ϕin is the angle between p0 (the momentum at the point q0)
and the normal to the boundary at the collision point, ϕout is the angle between pt (the
velocity vector at the point qt ) and the normal. Define the incidence and reflection angles
(ϕin(ε) and ϕout (ε)) for the smooth trajectory in the same way. Theorem 1 implies the
correct reflection law for smooth trajectories:

ϕin(ε) + ϕout (ε) ≈ 0 (21)

for sufficiently small ε. However, ϕin + ϕout is a function of the initial conditions, so a
non-trivial question is when it is close to zero along with all its derivatives. In Theorem
2 we prove that Condition IV is sufficient for guaranteeing the correct reflection law in
the Cr -topology in the case of non-tangent collision (near tangent trajectories the deriv-
atives of the smooth flow cannot converge to those of the billiard because the billiard
flow is singular there, see Fig. 1).

Hereafter, we will fix the energy level of the Hamiltonian flow to H∗ = 1
2 . Notice

that the analysis may be applied to systems with steep potentials which do not depend
explicitly on ε (or do not degenerate as ε → 0) in the limit of sufficiently high energy:
the reduction to the setting (12) which we consider here may be achieved by a scaling
of time.
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Fig. 4. Free flight between boundaries �εi and �εj . A smooth trajectory is marked by a bold line and an
auxiliary billiard trajectory is marked by a solid line

3.3. Asymptotic expansion for regular reflections. It follows from the proof of Theo-
rem 2 that the behavior of smooth trajectories close to billiard trajectories of regular
reflections can be described by an analogue of the billiard map. More precisely, one
can construct a cross-section Sε in the phase space of the Hamiltonian flow, close to
the “natural” cross-section S where the billiard map B is defined; the trajectories of the
Hamiltonian flow which are close to regular billiard trajectories define the Poincaré map
on Sε , and this map is Cr -close to B. Let us explain this in more details. It is convenient
to consider an auxiliary billiard in the modified domain Dε , defined as follows. For each
i , take any νi (ε) → +0 such that the function (inverse barrier) Q i (W ; ε) tends to zero
along with all its derivatives, uniformly for 1

2 ≥ W ≥ νi . We will use the notation

M (r)
i (ν; ε) = sup

ν ≤ W ≤ 1
2

0 ≤ l ≤ r + 1

|Q(l)
i (W ; ε)|. (22)

Condition IV implies that M approaches zero as ε → 0 for any fixed ν > 0, hence
the same holds true for any sufficiently slowly tending to zero ν(ε), i.e. the required
νi (ε) exist. Let ηi (ε) = Q i (νi ; ε) and consider the billiard in the domain Dε which is
bounded by the surfaces �εi : Q(q; ε)|q∈Ñi

= Qi + ηi (ε) (see Fig. 4). For sufficiently
small ε, the surface �εi is a smooth surface which is close to �i and is completely con-
tained in Ñi (its boundaries belong to N (�∗)). Indeed, recall that the boundaries �i of
the original billiard table D are given by the level sets Q(q; 0) = Qi and that ηi (ε) is
small, so the new billiard is close to the original one. In particular, for regular reflections,
the billiard map Bε of the auxiliary billiard tends to the original billiard map B along
with all its derivatives. It is established in the proof of Theorem 2 that for any choice of
νi ’s tending to zero, the condition q ∈ ∂Dε defines a cross-section in the phase space of
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the smooth Hamiltonian flow; trajectories which are close to the billiard trajectories of
regular reflection, i.e. those which intersect ∂Dε at an angle bounded away from zero,
define the map

Fε : (q ∈ ∂Dε, p looking inwards Dε) → (q ∈ ∂Dε, p looking outwards Dε),

namely

Fε(q, p) = hετ ε (q, p) (23)

and this map is close to the free-flight map Fε◦ (see Sect. 2.2) of the billiard in Dε :

Fε◦ (q, p) = bτ ε◦ −0(q, p), (24)

where τ ε(q, p) is the time the smooth Hamiltonian orbit of (q, p) needs to reach ∂Dε ,
and τ ε◦ (q, p) denotes the same for the billiard orbit. Note that we cannot claim the close-
ness of the time τ maps for the smooth Hamiltonian and billiard flows everywhere in
Dε , still we claim that the maps (23) and (24) are close; we will return to this later.

Outside Dε , the overall effect of the motion of smooth orbits is close to that of a
billiard reflection. Namely, as it is proved in Theorem 2, once νi is chosen such that
M (r)

i (νi , ε) → 0, the smooth trajectories which enter the region Wi (Q; ε) ≥ νi at a
bounded away from zero angle to the boundary, spend in this region a small interval of
time (denoted by τ εc (qin, pin)) after which they return to the boundary Wi (Q; ε) = νi
(namely to Q(q; ε) = Qi + ηi (ε)). Thus, these orbits define the map

Rε : (qin ∈ ∂Dε, pin looking outwards Dε) → (qout ∈ ∂Dε, pout looking inwards Dε).

It follows from the proof of Theorem 2 that the map Rε is close to the standard reflection
law Rε◦ from the boundary ∂Dε :

Rε◦(q, p) = (q, p − 2n(q) 〈n(q), p〉) , (25)

where n(q) is the unit normal vector to the boundary ∂Dε at the point q. See Fig. 5. Note
that the smooth reflection law Rε corresponds to a non-zero (though small) collision
time τ εc (q, p), unlike the billiard reflection Rε◦ which happens instantaneously.

Summarizing, from the proof of Theorem 2 we extract that on the cross-section

Sε = {ρ = (q, p) : q ∈ ∂Dε, 〈p, n(q)〉 > 0} (26)

the Poincaré map

�ε = Rε ◦ Fε (27)

is defined for the smooth Hamiltonian flow (for regular orbits - orbits which intersect
∂Dε at an angle bounded away from zero), and this map is Cr -close to the billiard map
Bε = Rε◦ ◦ Fε◦ . As the billiard map Bε is close to the original billiard map B, we obtain
the closeness of the Poincaré map �ε to B as well. However, when developing asymp-
totic expansions for�ε , it is convenient to use the map Bε (rather than B) as the zeroth
order approximation for �ε . Then, the next term in the asymptotic may be explicitly
found (see below) and the whole asymptotic expansion may be similarly developed.

We start with the estimates for the “free flight” segment of the motion, i.e. for the
smooth Hamiltonian trajectories inside Dε . For every boundary surface�i , choose some
δi (ε) → 0 such that the surfaces Q(q; ε)|q∈Ñi

= Qi +δi (ε) together with ∂N (�∗) bound
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Fig. 5. Reflection from the boundary �i . A smooth trajectory is marked by a bold line. An auxiliary billiard
trajectory only changes its direction according to the law (25)

Fig. 6. The partition of the domain D into regions: Dεint ⊂ Dε

the region Dε
int inside Dε in which the potential V tends to zero uniformly along with

all its derivatives. See Fig. 6. Let

m(r)(δ; ε) = sup
q ∈ Dε

int
1 ≤ l ≤ r + 1

‖∂ l V (q; ε)‖. (28)

According to Condition I, m(r) approaches zero as ε → 0 for any fixed δ of the appropri-
ate signs, therefore the same holds true for any choice of sufficiently slowly tending to
zero δi (ε). As m(r) → 0, it follows that within Dε

int the flow of the smooth Hamiltonian
trajectories is Cr -close to the free flight, i.e. to the billiard flow. In other words, the time
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τ map hετ (q, p) = (qτ , pτ ) of the smooth flow in Dε
int is OCr (m(r))-close to the time τ

map of the billiard flow

bτ (q, p) =
(

q + pτ
p

)
. (29)

Note that on the boundary of Dε we have, by construction, Q′
i (W ; ε) → 0, i.e.

W ′
i (Q; ε) → ∞, while on the boundary of Dε

int we have W ′
i (Q; ε) → 0. Thus, we have

a boundary layer Dε\Dε
int of a non-zero width |δi (ε)− ηi (ε)| in which the gradient of

the potential rapidly decreases. The speed with which the value of Q(q(t); ε) changes
within this boundary layer is bounded away from zero (see the proof of Theorem 2), so
the time the orbit needs to penetrate it is O(δi ). Within this boundary layer the time τ
map (q, p) �→ (qτ , pτ ) of the smooth flow is not necessarily close to the time τ map
of the billiard flow (29). However, it is shown in the proof of Theorem 2, that the maps
from one surface Q = const to any other such surface within the boundary layer are
Cr -close for the two flows. This, obviously, implies the closeness of the maps Fε and Fε◦
(because the corresponding cross-section is the surface of the kind Q = const indeed).

In Appendix 7.1 we show that by an appropriate change of coordinates in each of
the three regions we consider (inside Dε

int , in Dε\Dε
int , and outside Dε), the equations

of motion may be written as differential equations integrated over a finite interval with
a right-hand side which tends to zero in the Cr -topology as ε → 0. Thus, not only do
we obtain error estimates for the zeroth order approximation, we also find a method for
obtaining higher order corrections using Picard iterations; the asymptotic behavior of
the right-hand side of the equations leads to a contractivity constant which asymptoti-
cally vanishes and thus the Picard iteration scheme provides asymptotic for the solutions
(each new iteration provides a better asymptotic). In this way we prove in Appendix 7.2
the following

Lemma 1. Let q be an inner point of D, and p be such that the first hit of the billiard orbit
of (q, p)with the boundary is at�i\N (�∗) and is non-tangent. Let the potential V (q; ε)
satisfy Conditions I-IV, and choose δi ’s and νi ’s such that δi (ε), νi (ε),m(r)(ε),M (r)

i (ε)

→ 0 as ε → 0. Then, for sufficiently small ε ≤ ε0, the orbit of the smooth flow hits the
cross-section {q ∈ �εi } = {Q(q; ε) = Qi + ηi (ε)} at the point (qτ , pτ ) such that

qτ = q + pτ + OCr (m(r) + νi )

= q + pτ +
∫ τ

0 ∇V (q + ps; ε)(s − τ)ds + O
Cr−1 ((m

(r) + νi )
2),

pτ = p + OCr (m(r) + νi )

= p − ∫ τ
0 ∇V (q + ps; ε)ds + O

Cr−1 ((m
(r) + νi )

2),

(30)

where τ = τ ε(q, p) denotes the travel time to the boundary of Dε (so Q(qτ ; ε) =
Qi + ηi (ε)):

τ ε(q, p) = τ ε◦ (q, p) + OCr (m(r) + νi )

= τ ε◦ (q, p) +
〈∇Q,

∫ τε◦
0 ∇V (q+ps;ε)(τ ε◦ −s)ds〉

〈∇Q,p〉 + O
Cr−1 ((m

(r) + νi )
2),

(31)

∇Q is evaluated at the (auxiliary) billiard collision point q + pτ ε◦ (p, q), and τ ε◦ (p, q)
is the time the billiard orbit of (q, p) needs to reach �εi .
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Now, let us estimate the free-flight map Fε of the Hamiltonian flow. If q ∈ �εj and
〈p, n(q)〉 is positive and bounded away from zero, and if the straight line issued from q
in the direction of p first intersects ∂Dε (say, the surface �εi ) transversely as well (in our
notations this can be expressed as the condition that 〈p, n(q + pτ ε◦ (q, p))〉 is negative
and bounded away from zero), then the orbits of the Hamiltonian flow define the map
Fε from a small neighborhood of (q, p) on the cross-section {q ∈ �εj } in phase space
into a small neighborhood of the point (q + pτ ε◦ (q, p), p) on the cross-section {q ∈ �εi },
see Fig. 4. Take an inner point (q1, p1) on the smooth Hamiltonian trajectory of (q, p).
By construction (see (23)),

τ ε(q, p) = τ ε(q1,−p1) + τ ε(q1, p1),

(q, p) = hε−τ ε(q1,−p1)
(q1, p1)

and

Fε(q, p) = hετ ε(q1,p1)
(q1, p1).

As q1 is bounded away from the billiard boundary, we can plug (30) and (31) in these
relations, which gives us the following

Lemma 2. Let the potential V (q; ε) satisfy Conditions I-IV , and choose δi ’s and νi ’s
such that δi (ε), νi (ε),m(r)(ε),M (r)

i (ε) → 0 as ε → 0. Given a c > 0 and sufficiently
small ε ≤ ε0, consider the set of initial condition (q, p) such that q ∈ �εj for some
j , the segment q + pτ with τ ∈ [0, τ ε◦ (p, q)] connects �εj with �εi for some i and lies
inside Dε so that q + pτ ε◦ (q, p) ∈ �εi , 〈p, n(q)〉 > c and 〈p, n(q + pτ ε◦ (q, p))〉 < −c.
Then, the free flight map Fε : (q, p) �→ (q

τε
, p

τε
) for the smooth Hamiltonian flow is

OCr (m(r) + νi + ν j )-close to the free flight map Fε◦ of the billiard in Dε and is given by

q
τε

= q + pτ ε +
∫ τ ε

0 ∇V (q + ps; ε)(s − τ ε)ds + O
Cr−1 ((m

(r) + νi + ν j )
2),

p
τε

= p − ∫ τ ε
0 ∇V (q + ps; ε)ds + O

Cr−1 ((m
(r) + νi + ν j )

2).
(32)

The flight time τ ε(q, p) is OCr (m(r) + νi + ν j )-close to τ ε◦ (p, q) and is uniquely defined
by the condition Q(qτ ε ; ε) = Qi + ηi (ε) (cf.(31)):

τε(q, p) = τε◦ (q, p) +
〈∇Q,

∫ τ ε◦
0 ∇V (q + ps; ε)(τ ε◦ − s)ds〉

〈∇Q, p〉 + O
Cr−1 ((m

(r) + νi + ν j )
2),

(33)

where ∇Q is taken at the billiard collision point q + pτ ε◦ (p, q), where Qi (q + pτ ε◦ (p, q);
ε) = Qi + ηi (ε).

This could be written as

Fε = Fε◦ + OCr (m
(r) + νi + ν j ) = Fε◦ + Fε1 + O

Cr−1 ((m
(r) + νi + ν j )

2),

where Fε1 = OCr (m(r)+νi +ν j ) and Fε◦ is defined by (24). Note that the above estimates
hold true for any choice of δi ’s such that m(r) → 0. Therefore, one may take δi ’s tending
to zero as slow as needed in order to ensure as good estimates as possible for the error
terms in (32),(33).
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Next we estimate the reflection law Rε for the smooth orbit. Consider a point q ∈ �εi
and let the momentum p be directed outside Dε (i.e. towards the boundary) at a bounded
from zero angle with�εi . As we explained, the smooth trajectory of (q, p) spends a small
time τ εc (q, p) outside Dε and then returns to �εi with the momentum directed strictly
inside Dε . Let py and px denote the components of momentum, respectively, normal
and tangential to the boundary �εi at the point q:

py = 〈n(q), p〉, px = p − pyn(q). (34)

We assume that the unit normal to �εi at the point q, n(q), is oriented inside Dε , so
py < 0 at the initial point. Denote by Qy(q; ε) the derivative of Q in the direction of
n(q):

Qy(q; ε) := 〈∇Q(q; ε), n(q)〉.
Recall that the surface �εi is a level set of the pattern function Q(q; ε), and thus we
may study how the normal n(q) changes as one moves along the level set �εi (in the
tangential plane) and as one moves to nearby level sets (in the normal direction). Let
K (q; ε) denote the derivative of n(q) in the directions tangent to �εi , and let l(q; ε)
denote the derivative of n(q) in the direction of n(q). Obviously, Qy is a scalar, K is
a matrix, and l is a vector tangent to �εi at the point q. Note that Qy �= 0 by virtue of
Condition IIc. Define the integrals:

I1 = I1(q, p) = 2
∫ −py

0 Q′
i (

1−p2
x −s2

2 ; ε)ds,

I2 = I2(q, p) = 2
∫ −py

0 Q′
i (

1−p2
x −s2

2 ; ε)s2ds,
(35)

and the vector J :

J (q, p) =
[
− I2(q, p)

py
l(q; ε) + I1(q, p)K (q; ε)px

]
/Qy(q; ε). (36)

Notice that J is a vector tangent to �εi at the point q and that by (22),

I1,2 = OCr (M
(r)
i ), J = O

Cr−1 (M
(r)
i ). (37)

In Appendix 7.3 we prove the following

Lemma 3. Let the potential V (q; ε) satisfy Conditions I-IV , and choose δi ’s and νi ’s
such that δi (ε), νi (ε),m(r)(ε),M (r)

i (ε) → 0 as ε → 0. Consider a point q ∈ �εi and
assume 〈p, n(q)〉 < −c < 0. Then, for sufficiently small ε ≤ ε0 the collision time of the
smooth Hamiltonian flow is estimated by

τ εc (q, p) = OCr (M
(r)
i ) = − 1

Qy(q; ε) I1(q, p) + O
Cr−1 ((M

(r)
i )2). (38)

The reflection map Rε : (q, p) �→ (q̄, p̄) is given by:

q̄ = q + OCr (M
(r)
i ) = q + pxτ

ε
c (q, p) + O

Cr−1 ((M
(r)
i )2),

p̄ = p − 2n(q)py + OCr (M
(r)
i ) = p − 2n(q)py − py J (q, p)− n(q)〈px , J (q, p)〉

+O
Cr−1 ((M

(r)
i )2). (39)
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Fig. 7. Billiard map B (solid). Billiard map of the auxiliary billiard Bε (dashed). Poincaré map for the smooth
Hamiltonian flow �ε (bold). The first approximation of �ε Bε +�ε1 (dash-dotted)

As we see from this lemma (see also (37)),

Rε = Rε◦ + OCr (M
(r)
i ) = Rε◦ + Rε1 + O

Cr−1 ((M
(r)
i )2),

where Rε1 = O
Cr−1 (M

(r)
i ) and Rε◦ is defined by (25). Thus, the smooth reflection law is

OCr (M
(r)
i )-close to the billiard reflection law (25) and we have obtained explicit expres-

sion to the next order correction term. These estimates are obviously non-uniform in c -
they must break when the collision is nearly tangent. Combining the above lemmas we
establish:

Theorem 3. Let the potential V (q; ε) satisfy Conditions I-IV , and choose δi ’s and νi ’s
such that δi (ε), νi (ε),m(r)(ε),M (r)

i (ε) → 0 as ε → 0. Then, on the cross-section Sε
(see (26)) near orbits of regular reflections4, for all sufficiently small ε ≤ ε0 the Poincaré
map �ε of the smooth Hamiltonian flow is defined, and it is O(m(r) + ν + M (r))-close
in the Cr -topology to the billiard map Bε = Rε◦ ◦ Fε◦ in the auxiliary billiard table Dε

(see Fig. 7). Furthermore,

�ε=Rε◦Fε=Bε+OCr (m
(r)+ ν +M (r))=(Rε◦+Rε1)◦(Fε◦ +Fε1 )+O

Cr−1 ((m
(r)+ν+M (r))2)

=: Bε +�ε1 + O
Cr−1 ((m

(r) + ν + M (r))2) (40)

(where ν = maxi νi , M (r) = maxi M (r)
i ,�ε1 = O

Cr−1 (m
(r) + ν + M (r)), and the first

order corrections Fε1 and Rε1 are explicitly calculated in Lemmas 2 and 3).

4 That is, given any constant C > 0, near the points (q, p) ∈ Sε such that 〈n(q), p〉 ≥ C and |〈n(q̄), p̄〉| ≥ C
where (q̄, p̄) = Bε(q, p).
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Theorem 4. Under the same conditions as in Theorem 3, given a finite T and a regular
billiard trajectory in [0, T ], the time t map of the smooth Hamiltonian flow and of the
corresponding auxiliary billiard are O(ν + m(r) + M (r))-close in the Cr -topology for all
t ∈ T \TR, where TR is the finite collection of impact intervals each of them of length
O(|δ| + M (r)).

3.3.1. Error estimates for some model potentials. Now we can estimate the deviation of
the smooth Hamiltonian trajectories from the regular (non-tangent, non-corner) billiard
ones for various concrete potentials V (q; ε). To make a general estimate possible, we
assume that the behavior of the potential near the boundary dominates the estimate; we
say that V (q; ε) is boundary dominated, if V (q; ε) and its derivatives are smaller in the
interior of Dε

int (i.e. in the region bounded by the surfaces Q(q; ε) = Qi + δi (ε)) than
on the boundary of this domain. This means that for boundary dominated potentials

m(r)(δ; ε) = sup
q ∈ Dε

int
1 ≤ l ≤ r + 1

‖∂ l V (q; ε)‖ = sup
q ∈ ∂Dε

int
1 ≤ l ≤ r + 1

‖∂ l V (q; ε)‖. (41)

By the definition of the pattern function Q, near a given boundary �i ,

V (q; ε)
∣∣∣∣
q∈∂Dε

int

≡ Wi (Q(q; ε)− Qi ; ε)
∣∣∣∣
Q=Qi +δi

= Wi (δi ; ε).

Since Q(q; ε) is bounded with its derivatives, we conclude that there exists a constant
C such that

m(r)(δ; ε) = C max
i

max
1≤l≤r+1

|W (l)
i (δi ; ε)|. (42)

Thus, for boundary dominated potentials, one can estimate the differences hεt − bt and
�ε − Bε in terms of the barrier functions alone.

Remark 1. The boundary dominance condition is a natural condition which is introduced
as a matter of convenience. Its introduction allows to explicitly estimate the errors for
general geometries with given potential growth near the boundaries, without the need
of specifying the potentials in the full domain. When it is not satisfied (e.g. if in a spe-
cific application the potential becomes mildly rougher in the domain’s interior as ε is
decreased), one needs to compute m(r)(δ; ε) explicitly and then proceed as below.

The corresponding estimates given by Theorems 4 and 3 hold true for every choice
of ν and δ such that δ(ε), ν(ε),mr (δ(ε); ε),Mr (ν(ε); ε) → 0 as ε → 0 (for simplicity
of notation we assume hereafter that the barrier function W is the same for all boundary
surfaces �i , and thus suppress the dependence on i). To obtain the best estimates, we
have to find ν(ε) and δ(ε)which minimize the expression ν + M (r)(ν; ε)+ m(r)(δ; ε). In
this way, we first find ν(ε) which minimizes ν + M (r)(ν; ε). Since M (r) is a decreasing
function of ν (see (22)), the sought ν(ε) solves the equation

ν = M (r)(ν; ε). (43)

After ν is determined, we may try to make δ(ε) go to zero so slow that the corresponding
value of m(r) (see (42)) will be asymptotically equal to ν(ε). Then, this ν(ε) (given by
(43)) estimates the deviation between regular billiard and smooth trajectories.
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Notice that the significance of ν(ε) is three-fold. First, it determines the optimal aux-
iliary billiard which supplies the best approximation to the smooth Hamiltonian flow
(see Lemma 3). Second, it estimates the accuracy of this approximation. Third, it deter-
mines, via the relation m(r)(δ) = ν, the width |δ(ε)| + ν(ε) of the boundary layer in
which the billiard and the Hamiltonian flows are not close (Theorem 4). Let us proceed
to examples.

Proposition 1. Consider the boundary dominated potential V (q; ε) corresponding to

the barrier function W (Q) = e− Q
ε for small Q. Then, δ(ε) = −(r + 1 + 1

r+2 )ε ln ε
and ν(ε),m(r)(ε),M (r)(ε) = O( r+2

√
ε) supply adequate bounds for Theorem 3 to apply

near regular billiard trajectories. Hence, the smooth Hamiltonian flow is O( r+2
√
ε)-close

in the Cr -topology to the billiard flow within the auxiliary billiard defined by the level
set Q(q; ε) = Qi + η(ε) = Qi + O(ε ln ε). The corresponding Poincaré map �ε is
OCr (

r+2
√
ε)-close to the auxiliary billiard map Bε . The impact intervals lengths are

O( r+2
√
ε).

Proof. Since W (l)(Q; ε) = (−ε)−l e− Q
ε , we obtain that m(r)(δ; ε) = O(ε−(r+1)e− δ

ε )

(since the potential is boundary dominated, we may use (42)). The inverse to W (Q; ε) is
given by Q(W ; ε) = −ε ln W , so Q(l)(W ; ε) = (−1)l(l − 1)!εW −l , and M (r)(ν, ε) =
O(εν−(r+1)) (see (22)). Plugging this in (43), we find

ν(ε) = r+2
√
ε. (44)

By choosing δ(ε) = −(r + 1 + 1
r+2 )ε ln ε, we obtain m(r)(δ, ε) ∼ ν(ε), so for ν given by

(44) we have that ν + M (r) + m(r) = O(ν), and the proposition now follows immediately
from Theorems 3 and 4 (the value of η(ε) = O(ε ln ε) is given by η = Q(ν; ε)). ��
Proposition 2. Let the boundary dominated potential V (q; ε) correspond to the bar-

rier function W (Q) = e− Q2
ε for small Q. Then, δ(ε) =

√
− 1

2 (r + 1 + 1
r+2 )ε ln ε and

ν(ε),m(r)(ε),M (r)(ε) = O( 2(r+2)
√

ε
| ln ε| ) supply adequate bounds for Theorem 3 to ap-

ply near regular billiard trajectories. Hence, near the regular billiard trajectories, the

smooth Hamiltonian flow is O(ν(ε)) = O( 2(r+2)
√

ε
| ln ε| )-close in the Cr -topology to the

billiard flow within the auxiliary billiard defined by the level set Q(q; ε) = Qi +η(ε) =
Qi + O(

√
ε| ln ε|). The corresponding Poincaré map �ε is OCr (ν(ε))-close to the aux-

iliary billiard map Bε . The impact intervals are of the length O(ν(ε)).

Proof. It is easy to see that W (l)(Q; ε) = O(( Q
ε
)l e− Q2

ε ) for Q � √
ε, hence m(r)(δ; ε) =

O(( δ
ε
)r+1e− δ2

ε ). FromQ(W ; ε) = √−ε ln W we obtain M (r)(ν; ε) = O(
√

ε
| ln ν|ν

−(r+1)).

Plugging this in (43), we indeed find

ν(ε) = M (r)(ν; ε) = O( 2(r+2)

√
ε

| ln ε| ),

as required. By choosing δ(ε) ∼
√

− 1
2 (r + 1 + 1

r+2 )ε ln ε, we obtain m(r)(δ; ε) ∼ ν(ε),
so the rest follows directly from Theorems 3 and 4. ��
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Proposition 3. Let the boundary dominated potential V (q; ε) correspond to the bar-
rier function W (Q) = ( εQ )

α . Then, ν(ε),m(r)(ε),M (r)(ε) = O( r+2+ 1
α
√
ε) and δ(ε) =

ν
α(r+2)1
r+1+α supply adequate bounds for Theorem 3 to apply near regular billiard trajec-

tories. Hence, near the regular billiard trajectories, the smooth Hamiltonian flow is
O(ν(ε)) = O( r+2+ 1

α
√
ε)-close in the Cr -topology to the billiard flow within the auxiliary

billiard defined by the level set Q(q; ε) = Qi + η(ε) = Qi + O(νr+2). The correspond-
ing Poincaré map �ε is OCr (ν(ε))-close to the auxiliary billiard map Bε . The impact

intervals are O(ν(ε)) when α ≥ 1, and O(ν(ε)
α(r+2)
α+r+1 ) when α ≤ 1.

Proof. As above, using W (l)(Q; ε) = O( εα

Ql+α ) we obtain that m(r)(δ; ε) = O( εα

δr+1+α ),

and since Q(W ; ε) = ε
W 1/α , we find Q(l)(W ; ε) = O( ε

Wl+1/α ) and thus M (r)(ν; ε) =
O( ε

νr+1+1/α ). It follows that ν(ε) = O( r+2+ 1
α
√
ε) solves ν = M (r)(ν; ε). Now η(ε) =

Q(ν) = ε
ν1/α = O(νr+2). By taking δ(ε) = ν

α(r+2)
r+1+α , we ensure that m(r)(δ, ε) ∼ ν(ε).

The length of the impact intervals is now given by O(ν + δ). ��
These three propositions are summarized by the following table (see the next section

for the interpretation of the last column):

Table 3.3.1.

Potential Boundary layer width Approximation error Length of impact intervals Transverse homoclinics

W (Q; ε) η(ε) m(r) + ν + M(r) TR = O(|δ| + M(r)) εg(γ )

e− Q
ε O(ε| ln ε|) O( r+2√ε) O( r+2√ε) γ 3+κ , κ > 0

e− Q2
ε O(

√
ε| ln ε|) O( 2(r+2)

√
ε

| ln ε| ) O( 2(r+2)
√

ε
| ln ε| ) γ 6+κ , κ > 0

( εQ )
α ε

r+2
r+2+1/α O( r+2+ 1

α
√
ε)

O( r+2+ 1
α
√
ε) α ≥ 1

ε

α(r+2)

(r+1+α)(r+2+ 1
α ) α ≤ 1

γ 3+ 1
α +κ , κ > 0

Note that the asymptotic for the deviation of the smooth trajectories from the billiard
ones and for the length of the impact intervals depend strongly on r , i.e. on the number
of derivatives (with respect to initial conditions) which we want to control.

3.4. Persistence of periodic and homoclinic orbits. The closeness of the billiard and
smooth flows after one reflection leads, using standard results, to persistence of regular
periodic and homoclinic orbits. For completeness we state these results explicitly:

Theorem 5. Consider a Hamiltonian system with a potential V (q, ε) satisfying Condi-
tions I-IV in a billiard table D. Let Pb(t) denote a non-parabolic, non-singular peri-
odic orbit of a period T for the billiard flow. Then, for any choice of ν(ε), δ(ε) such
that ν(ε), δ(ε),m(1)(ε),M (1)(ε) → 0 as ε → 0, for sufficiently small ε, the smooth
Hamiltonian flow has a uniquely defined periodic orbit Pε(t) of period T ε = T + O(ν +
m(1) + M (1)), which stays O(ν + m(1) + M (1))-close to Pb for all t outside of collision
intervals (finitely many of them in a period) of length O(|δ|+ M (1)). Away from the colli-
sion intervals, the local Poincaré map near Pε is OCr (ν +m(r) + M (r))-close to the local



Approximating Multi-Dimensional Hamiltonian Flows by Billiards 587

Fig. 8. Pb is a billiard periodic orbit (solid). Pε is a periodic orbit of the smooth Hamiltonian flow (bold)

Poincaré map near Pb. In particular, if Pb is hyperbolic, then Pε is also hyperbolic and,
inside Dε , the stable and unstable manifolds of Pε approximate OCr (ν + m(r) + M (r))-
closely the stable and unstable manifolds of Pb on any compact, forward-invariant or,
respectively, backward-invariant piece bounded away from the singularity set in the bil-
liard’s phase space; furthermore, any transverse regular homoclinic orbit to Pb is, for
sufficiently small ε, inherited by Pε as well.

Proof. As Pb is a regular periodic orbit, i.e. it makes only regular reflections from the
boundary (a finite number of them on the period), it follows from Theorem 3 that a
Poincaré map for the smooth Hamiltonian flow near Pb is O(ν + m(1) + M (1))-close in
C1 topology to the Poincaré map of the auxiliary billiard Dε , while the latter is O(η(ε))-
close to the Poincaré map for the original billiard D. Moreover, from (22) it follows that
η(ε) ≤ M (0) ≤ M (1) and we can conclude that a Poincaré map for the smooth Hamil-
tonian flow near Pb is O(ν + m(1) + M (1))-close in C1 topology to the Poincaré map for
the original billiard D. Since, by assumption, Pb(t) is non-parabolic, the corresponding
fixed point of the Poincaré map persists for sufficiently small ε by virtue of the implicit
function theorem (the closeness of the corresponding continuous-time orbits is given by
Theorem 4). The continuous dependence of the invariant manifolds on ε in the hyper-
bolic case follows from the continuous dependence of the Poincaré map �ε on ε at all
ε ≥ 0 (Theorem 3), and implies the persistence of transverse homoclinics immediately.
Indeed, the formulation regarding the closeness of compact pieces of the global stable
and unstable manifolds may be easily verified by applying finite time extensions of the
local stable and unstable manifolds. Note that a similar persistence result holds true for
topologically transverse homoclinic orbits. ��
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More generally, one may claim (by the shadowing lemma) the persistence of compact
uniformly hyperbolic sets composed of regular billiard orbits. Note that the accuracy of
the approximation of smooth orbits (periodic and aperiodic) by the billiard ones, does
not depend on the orbit (e.g. is independent of its period) and is given by the maximal
deviation for each reflection (times a constant). This holds true for any compact set of
regular orbits of a strictly dispersing billiard flow (since such billiards are uniformly
hyperbolic); see for example a nice application by Chen [12]. In some cases, to establish
the existence of transverse or topologically transverse homoclinic orbits in a family of
billiard flows bt (γ ) in Dγ , one uses higher dimensional generalizations of the Poin-
caré-Melnikov integral (see Sect. 4). In particular, with the near integrable setting, the
“splitting distance” between the manifolds near the transverse homoclinic orbit may be
proportional to an unfolding parameter γ . The above theorem implies that if εg = εg(γ )

is chosen so that ν(εg, γ ) + m(1)(δ(εg, γ ); εg, γ ) + M (1)(ν(εg, γ ); εg, γ )) = o(γ ) and
εg(γ ) → 0 as γ → 0 then, for sufficiently small γ , transverse homoclinic orbits appear
in the smooth flow for all ε ∈ (0, εg(γ )). The value of εg(γ ) for the three types of
potentials considered here are listed in the last column of Table 3.3.1. In the next section
we use this remark and [14] to establish that transverse homoclinic orbits appear in
families of smooth billiard potentials that limit to the ellipsoidal billiard.

4. Application to Ellipsoidal Billiards with Potential

Consider the billiard motion in an ellipsoid

D = {q ∈ R
n : 〈q, A−2q〉 ≤ 1},

A = diag(d1, . . . , dn) d1 ≥ . . . ≥ dn ≥ 0.

(45)

The ellipsoid is called generic if all the above inequalities are strict. A well known result
of Birkhoff [5] is that the billiard motion in an ellipsoid is integrable, and the mathe-
matical theory which may be invoked to describe and generalize this result is still under
development - see [20] and references therein. Delshams et al [14] and recently Bolotin
et al [6] (see also references therein) investigate when small non-quadratic symmetric
perturbations to the ellipsoidal shape change the integrability property. In this series of
works the authors prove the persistence of some symmetric homoclinic orbits, and for
specific cases they prove that these orbits are transverse homoclinic orbits of the per-
turbed billiard, thus proving that integrability is destroyed. Here, we show that using the
machinery we developed we can immediately extend their work to the smooth billiard-
potential case (notice that in [6] some results are extended to billiards with a C2-small
Hamiltonian perturbation in the domain’s interior, however the billiard potentials which
we consider do not fall into this category - near the boundary they correspond to a large
perturbation even in the C1-norm). We will first explain the relevant main results of
Delshams et al, then supply the corresponding proposition for the smooth case (conse-
quences of Theorem 2, or more specifically of Theorem 5) and then the corresponding
quantitative estimates for specific potentials (which follows from Propositions 1-3 and
are summarized in Table 3.3.1).

4.1. The billiard in a perturbed ellipsoid. Consider the simplest unstable periodic orbit
in an ellipsoidal billiard - the orbit along the diameter of the ellipsoid joining the verti-
ces (−d1, 0, . . . , 0) and (d1, 0, . . . , 0).Denote the set formed by the two-periodic points
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associated with the diameter by

Pb = {ρ+, ρ−} ρ± = {q±, p∓} q± = (±d1, 0, . . . , 0) p± = (±1, 0, . . . , 0). (46)

These points correspond to isolated two-periodic hyperbolic orbits of the Billiard map B
and the corresponding periodic orbit Pb

t = bt (ρ+) of the billiard flow. The
(n − 1)-dimensional (n-dimensional for the flow) stable and unstable manifolds of this
periodic orbit coincide; in 2-dimensions there are 4 separatrices connecting {ρ+, ρ−}
whereas the topology of the separatrices in the higher dimensional case is non-trivial
- it is well described by CW complexes for the 3 dimensional case and by hierarchal
structure of separatrix submanifolds in the higher dimensional case (see [14]). Of spe-
cific interest are the symmetric homoclinic orbits - it is established in [14] that in the
generic 2 dimensional case there are exactly 4 homoclinic orbits which are x−symmetric
(symmetric, in the configuration space, to reflections about the x-axis) and 4 which are
y−symmetric. In the generic 3 dimensional case, in addition to the 16 planar symmetric
orbits (8 in each of the symmetry planes- xy and xz) there are 16 additional symmetric
spatial orbits - 8 are symmetric with respect to reflection about the xz plane and 8 are
y axial. In the n dimensional case there are 2n+1 spatial symmetric orbits. Denote by

Pb−hom =
{

Pb−hom
i

}∞
i=−∞ one of these symmetric homoclinic orbits of the billiard

map in the ellipsoid, so Pb−hom
i+1 = B Pb−hom

i and Pb−hom
t = bt (P

b−hom
0 ) denotes the

corresponding continuous orbit of the billiard flow. Given a ς such that 0 < ς � dn ,
define the local cross-sections of the billiard map by:

�− = {(q, p)|q ∈ ∂D, q1 + d1 < ς, 1 − p1 < ς},
�+ = {(q, p)|q ∈ ∂D, d1 − q1 < ς, p1 + 1 < ς},

so, in particular, ρ± ∈ �± and �± ⊂ S, where S is the natural cross-section on which
the billiard map is defined (see Sect. 2.2). It follows that only a finite number of points
in Pb−hom do not fall into �±, and that for any given geometry there exist a finite ς
such that Pb−hom\{Pb−hom ∩�±} �= ∅ for all the symmetric orbits. See Fig. 9. Thus,
it is possible to choose Pb−hom

0 and a local cross-section �0 such that Pb−hom
0 ∈ �0 ⊂

{S\{�+ ∪�−}}. Notice that for the ellipsoid all the reflections are regular, and further-
more, for the symmetric homoclinic orbits, if d1 is finite and dn is positive then all the
reflection angles of Pb−hom are strictly bounded away from π/2.

Now, consider a symmetric perturbation of the ellipsoid Q of the form:

Dγ = {q ∈ R
n : 〈q, A−2q〉 ≤ 1 + γ�(

q2
1

d2
1

, . . . ,
q2

n

d2
n
)}, (47)

where the hypersurface Dγ ⊂ R
n is symmetric with regard to all the coordinate axis

of R
n and the function � : R

n → R is either a general entire function, such that
�(0, . . . , 0) = 0 or of a specific form (e.g. quadratic). By using symmetry arguments,
Delshams et al [14] prove that for a generic billiard the above mentioned symmetric
homoclinic orbits persist under such symmetric perturbations. Furthermore, analyzing
the asymptotic properties of the symplectic discrete version of the Poincaré-Melnikov
potential (the high-dimensional analog [14, 16] of the planar Poincaré-Melnikov integral
[21, 15]), they prove that for sufficiently small perturbations (small γ ) the n-dimensional
symmetric homoclinic orbits are transverse in the following four cases:
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Fig. 9. Billiard trajectory giving rise to a y-symmetric homoclinic orbit (solid)

1. In two-dimensions, for narrow ellipses (β1 = d2
2

d2
1

� 1), for any analytic small enough

symmetric perturbation.

2. In two-dimensions, in the non-circular case (β1 �= 1), for �( x2

d2
1
,

y2

d2
2
) = y4

d4
2

.

3. In the three-dimensional case, for nearly flat ellipses (β2 = d2
3

d2
1

� 1), for perturba-

tions of the form: �( x2

d2
1
,

y2

d2
2
, z2

d2
3
) = z2

d2
3

R( y2

d2
2
, z2

d2
3
), where R is a generic polynomial

(or of some specific list).

4. In the three-dimensional case, for nearly oblate ellipses (β1 = d2
2

d2
1

� 1), for the

perturbation �( x2

d2
1
,

y2

d2
2
, z2

d2
3
) = z2

d2
3

y2

d2
2

.

To establish these results, the Poincaré-Melnikov potential is calculated for each of
these cases, and it is shown that it has non-degenerate critical points at the corresponding
symmetric trajectories. It follows that Pb−hom −γ persists and the change in the splitting
distance between the separatrices Wu and Ws near Pb−hom −γ

0 is proportional to γ , the

perturbation amplitude, so that near Pb−hom −γ
0 at the local cross-section �0−γ ,

d(W s
γ ,W u

γ ) = M(τ )γ + O(γ 2), (48)

where τ ∈ Rn−1 denotes some parametrization along W and M(τ ) (the gradient of the
Poincaré-Melnikov potential) has simple zeroes at the parameter values corresponding
to any of the spatial symmetric homoclinic orbits Pb−hom

0 .

4.2. Smooth potential in a near ellipsoidal region. Let us now consider a two parameter
family of smooth potentials V (q; γ, ε) which limit, as ε → 0 to the billiard flow in the
perturbed ellipsoid family Dγ ; namely, consider the family of Hamiltonian flows:

H(ε, γ ) = p2

2
+ V (q; γ, ε), (49)
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Fig. 10. Perturbation of a billiard flow inside a perturbed ellipsoid family Dγ

where V (q; γ, ε) satisfies conditions I-IV for all γ values. In the four cases mentioned
above, the flow limits, as ε → 0, to an integrable billiard motion inside the ellipsoid D
when γ = 0 and, for γ �= 0, to a non-integrable billiard motion inside the perturbed
ellipsoid Dγ . See Fig. 10. Applying Theorem 5 to an interior transverse local return map
near �0−γ , and noticing that all homoclinic orbits of the billiard flow in Dγ are regular
orbits, we immediately establish:

Proposition 4. Consider the Hamiltonian flow (49), where V (q; γ, ε) is a billiard po-
tential limiting to the billiard flow in Dγ (V (q; γ, ε) satisfies Conditions I-IV for all
ε ∈ (0, ε0] for all γ values). Let the function εg(γ ) satisfy

ν(εg, γ ) + m(1)(δ(εg, γ ); εg, γ ) + M (1)(ν(εg, γ ); εg, γ )) = o(γ )

and εg(γ ) → 0 as γ → 0. Then, for each of the above cases 1-4, for sufficiently
small γ > 0, the smooth flow has transverse homoclinic orbits which limit the billiard’s
transverse homoclinic orbits for all 0 < ε < εg(γ ).

Indeed, for sufficiently small γ > 0, εg(γ ) < ε0 and Eq. (48) is valid, and thus
the homoclinic billiard orbit Pb−hom −γ is transverse, so the above theorem follows
immediately from Theorem 5 and the discussion after it. Based on this proposition and
Propositions 1-3 we conclude (see Table 3.3.1):

Proposition 5. Consider the Hamiltonian flow (49), where V (q; γ, ε) is a billiard poten-
tial limiting the billiard flow in Dγ (V (q; γ, ε) satisfies Conditions I-IV for all ε ∈ (0, ε0]
for all γ values). Further assume that the potential V (q; γ, ε) is boundary dominated
and is given near the boundary of Dγ by W (Q; ε), so that (41) holds for the corre-
sponding δ values which are specified below. Then, for each of the above cases 1-4, for
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sufficiently small γ > 0, the smooth flow has transverse homoclinic orbits which limit the
billiard’s transverse homoclinic orbits and thus is non-integrable for all 0 < ε < εg(γ ),
where

• For W (Q; ε) = e− Q
ε : δ = O(−ε ln ε) and εg(γ ) = γ 3+κ,κ > 0.

• For W (Q; ε) = e− Q2
ε : δ = O(

√−ε ln ε) and εg(γ ) = γ 6+κ,κ > 0.

• For W (Q; ε) = ( εQ )
α : δ = O( 3+ 1

α
√
ε) and εg(γ ) = γ 3+ 1

α
+κ,κ > 0.

The existence of transverse homoclinic orbits implies non-integrability; there are
regions which are mapped onto themselves in the shape of a horseshoe, and thus there
are invariant sets on which the motion is chaotic (conjugate to a Bernoulli shift). In par-
ticular, it is thus established that the topological entropy of the flow is positive. Whether
the metric entropy is positive is, as usual in these near-integrable settings, unknown (see
for example [21]).

5. Discussion

The paper includes three main results:

• Theorems 1-2 deal with the smooth convergence of flows in steep potentials to the
billiard’s flow in the multi-dimensional case. These results, which are a natural exten-
sion of [56], provide a powerful theoretical tool for proving the persistence of various
billiard trajectories in the smooth systems, and vice versa. Several issues are yet to be
addressed in this higher dimensional setting. First, the study of corners and regular
tangencies (extending [43, 57] to higher dimensions) is yet to be developed. Sec-
ond, for geometries which are not strictly dispersing, the unavoidable emergence of
degenerate tangencies, which is inherently a higher dimensional phenomena, is yet
to be addressed.

• Theorems 3-4 provide the first order corrections for approximating the smooth flows
by billiards for regular reflections. Theorem 3 proposes the appropriate zeroth order
billiard geometry which best approximates the steep billiard and a simple formula for
computing the first order correction terms, thus allowing to study the effect of smooth-
ing. The smooth flow and the billiard flow do not match in a boundary layer - the
width of it and the time spent in it are specified in Theorem 4. Propositions 1-3, as
summarized in Table 3.3.1, supply the estimates for the boundary layer width and the
accuracy of the auxiliary billiard approximation for some typical potentials (expo-
nential, Gaussian and power-law). All these results are novel for any dimension, and
propose a new approach for studying problems with relatively steep potentials. A
plethora of questions regarding the differences between the smooth and hard wall
systems can now be rigorously analyzed.

• Theorem 5 and Proposition 5 are two examples for applications of the above results.
The C1 estimates of the error terms lead naturally to the persistence Theorem 5.
Applying these results to the billiards studied in [14], we prove that the motion in
steep potentials in various deformed ellipsoids is non-integrable for an open interval
of the steepness parameter, and we provide a lower bound for this interval length
for the above mentioned typical potentials. While the analysis of higher dimensional
Hamiltonian systems is highly non-trivial, we demonstrate here that some results
which are obtained for maps may be immediately extended to the smooth steep case.
We note that the same statement works in the opposite direction. Furthermore, one
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may use the first order corrections developed in Theorem 3 and Propositions 1-3 to
study the possible appearance of non-integrability due to the introduction of smooth
potentials.

These results may give the impression that the smooth flow and the billiard flow are
very similar. While in this work we emphasize the closeness of the two flows, it is impor-
tant to bear in mind that this is not the case in general. This observation applies to the
local behavior near solutions which are not structurally stable and is especially important
when dealing with asymptotic properties such as ergodicity, as discussed below.

Let us first remark about the local behavior. As in the two-dimensional settings,
we expect that singular orbits of the billiard give rise to various types of orbits in the
smooth setting. The larger the dimension of the system, the larger is the variety of orbits
which may emerge from these singularities. Moreover, in this higher dimensional setting,
even though our theory implies that regular elliptic or partially-elliptic (non-parabolic)
periodic orbits persist, the motion near them (and their stability) may change due to
resonances.

Global properties of the phase space are even more sensitive to small changes. If the
billiard periodic orbit is hyperbolic, while it and its local stable and unstable manifolds
persist (see for example Theorem 5 ), their global structure in the smooth case may be
quite different; first of all, integrability of one of the systems does not imply integrability
of the other (for example, it may be possible to use the correction terms computed in
Sect. 3.3 to establish that the smooth flow has separatrix splitting even when the billiard
is integrable). Second, if the billiard flow has singularities, the global manifolds of a
hyperbolic billiard orbit may have discontinuities and singularities whereas the global
manifolds of the smooth orbit are smooth (see for example [56]).

Finally, the most celebrated global property one is interested in is ergodicity and
mixing. In [18] it was shown that when two particles with a finite range potential move
on a two-dimensional torus a stable periodic orbit may emerge. In [43, 56, 57] we proved
that in the two-dimensional case (Cr -smooth potentials, not necessarily finite range, not
necessarily symmetric), near singular trajectories (tangent trajectories or corner trajec-
tories) islands of stability are born in the smooth flow for arbitrarily steep potentials.
Furthermore, the scaling of the island’s size with the steepness parameter for the general
two-dimensional setting was found analytically. Thus there is a fundamental differ-
ence in the ergodic properties of hard-wall potentials as compared to smooth potentials.
Although these results only apply to two-particle systems, they raise the possibility that
systems with large numbers of particles interacting by smooth potentials could also be
non-ergodic. Recently, we provided numerical evidence for the appearance of islands of
effective stability for arbitrary steep potentials which are close to particular strictly dis-
persing billiards (not the N− particle case) in three dimensions [41] and in n dimensions
[42]. The tools developed here may be essential for studying these and other prototype
examples theoretically. In particular, one would hope that beyond an existence proof,
these tools may assist in finding the scaling of the islands with the dimension n.

Acknowledgements. We would like to thank Ilana Zhurubin for her help in preparing the figures. This research
is supported by the Israel Science Foundation (Grant no. 926/04) and by the Minerva Foundation.

7. Appendix

7.1. Picard iteration for equations with small right-hand side. Before we proceed to
the proof of Lemmas 1 and 3, we recall the main tool of their proofs - the Picard iteration
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scheme for equations with small right-hand side (see e.g. [23] and [44]). Consider the
differential equation

v̇ = ψ(v,µ, t, ε), (50)

where ψ is a Cr -smooth function of v and µ, continuous with respect to t and ε.
Assume that for t ∈ [0, L(ε)] and bounded (v, µ) we have a function J (ε) such that
J (ε)L(ε) → 0 and

‖ψ‖Cr ≤ J (ε). (51)

Then, according to the contraction mapping principle, the Picard iterations vn where

vn+1(t) = v0 +
∫ t

0
ψ(vn(s), µ, s, ε)ds (52)

converge to the solution of (50) starting at t = 0 with initial condition v(0) = v0 on the
interval t ∈ [0, L(ε)], in the Cr -norm as a function of v0 and µ:

vn(t; v0, µ) →Cr v(t; v0, µ) = v0 +
∫ t

0
ψ(v(s; v0, µ), µ, s, ε)ds.

One can show by induction that ‖vn(t) − v0‖Cr = O(L(ε)J (ε)) uniformly for all n.
Then it follows that

v(t; v0, µ) = v0 + OCr (L(ε)J (ε)). (53)

Furthermore, we now show that

v(t; v0, µ) = vn(t; v0, µ) + O
Cr−1 ((L(ε)J (ε))

n+1) (54)

(such kind of estimates are, in fact, a standard tool in the averaging theory). In order to
prove (54), we will use induction in n. At n = 0 we have an even better result than (54)
(see (53)). Now note that

v(t)− vn+1(t) =
∫ t

0
(ψ(v(s), µ, s, ε)− ψ(vn(s), µ, s, ε)ds

=
∫ t

0

(∫ 1

0
ψ ′
v(vn(s) + z(v(s)− vn(s)), µ, s, ε)dz

)
· (v(s)− vn(s))ds.

It follows immediately that

‖v−vn+1‖Cr−1 = O(L(ε)‖ψ ′
v‖Cr−1 ) · O(‖v−vn‖

Cr−1 ) = O(L(ε)J (ε)) · ‖v−vn‖
Cr−1 ,

and (54) indeed holds true by induction.
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7.2. Proof of Lemma 1. The “free flight” (the motion inside Dε) is composed of motion
in Dε

int and the motion in the layer N< = Dε\Dε
int . We show that in each of these

regions the equations may be brought to the form (50), (51). We will first consider the
flight inside Dε

int . Recall that the equations of motion for the smooth orbit are

q̇ = p
ṗ = −∇V (q; ε). (55)

Let us make the following change of coordinates

q̃(t) := q(t)− p(t)t. (56)

Then (55) takes the form

˙̃q = ∇V (q̃ + pt; ε)t,
ṗ = −∇V (q̃ + pt; ε), (57)

with initial data (q̃(0), p(0)) = (q0, p0). Since the time spent in Dε
int must be finite as

it is Cr−close to the billiard’s travel time in Dε
int which is finite here, and using (28),

we have

‖ψ‖Cr = ‖
( ∇V (q̃ + pt; ε)t

−∇V (q̃ + pt; ε)
)

‖Cr = O(m(r)(δ(ε); ε)).

Thus, system (57) does satisfy (51) with L = O(1), J = O(m(r)). It follows then from
(53) that

p(t) = p0 + OCr (m
(r)). (58)

Furthermore, by applying one Picard iteration (52), we obtain from (54) the following
estimate for p(t):

p(t) = p0 −
∫ t

0
∇V (q0 + p0s; ε)ds + O

Cr−1 ((m
(r))2). (59)

By integrating the equation q̇ = p, we also obtain from (58) that

q(t) = q0 + p0t + OCr (m
(r)). (60)

Next, we show that the equations in the layer N< = {W : W (Q; ε) ≤ ν} can be
brought to the form (50), (51) as well. Recall (see the proof of Theorem 2 in the supple-
ment [42]) that Q̇ = 〈∇Q, p〉 is bounded away from zero in N<, hence Q can be taken
as a new independent variable (it changes in the interval η ≤ Q − Qi ≤ δ). Now the
time t is considered as a function of Q and of the initial conditions (q(tδ), p(tδ) (where
tδ is the moment the trajectory enters N<). We show in the proof of Theorem 2 that t is
a smooth function of the initial conditions, with all the derivatives bounded. So, in N<,
we rewrite (57) as

dq̃

d Q
= W ′(Q; ε) ∇Q(q̃ + pt; ε)

〈∇Q(q̃ + pt; ε), p〉 t,

dp

d Q
= −W ′(Q; ε) ∇Q(q̃ + pt; ε)

〈∇Q(q̃ + pt; ε), p〉 .
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As W is a monotone function of Q in this layer (i.e. W ′(Q; ε) �= 0), we can take W as
a new independent variable, so the equations of motion take the form

dq̃
dW = ∇Q(q̃+pt;ε)

〈∇Q(q̃+pt;ε),p〉 t,

dp
dW = − ∇Q(q̃+pt;ε)

〈∇Q(q̃+pt;ε),p〉 .
(61)

Since all the derivatives of t with respect to the initial conditions are bounded, we may
consider (61) as the system of type (50), (51) with J = O(1), and L = O(ν) (recall that
the value of W changes monotonically from W0 = W (δ, ε) to ν). Thus, by applying one
Picard iteration (52), we obtain from (54) that

p(W ) = p(W0)−
∫ W

W (δ,ε)

∇Q( ˜q(W0) + p(W0)t; ε)
〈∇Q(q̃(W0) + p(W0)t; ε), p(W0)〉dW + O

Cr−1 (ν
2).

From (53) we also obtain

p(W ) = p(W0) + OCr (ν).

Note that O
Cr−1 (ν

2) and OCr (ν) refer here to the derivatives (with respect to the initial
conditions) of p at constant W or, equivalently, at constant Q. Returning to the original
time variable, these equations yield

p(t) = p(tδ) + OCr (ν) = p(tδ)−
∫ t

tδ
∇V (q(tδ) + p(tδ)(s − tδ); ε)ds + OCr−1(ν2).

Using expressions (58),(59) for p(tδ) and (60) and q(tδ), we finally obtain

p(t) = p0 + OCr (ν + m(r)) = p0 −
∫ t

0
∇V (q0 + p0s; ε)ds + OCr−1((m(r) + ν)2) (62)

for all t such that q(t) ∈ Dε , in complete agreement with the claim of the lemma (as
we mentioned, the O

Cr−1 (·) and OCr (·) terms refer to the derivatives at constant Q).
The corresponding expression for q(t) (see (30)) is obtained by integrating the equation
q̇ = p. The expression (31) for the flight time τ is immediately found from the relation
W (Q(q(τ ); ε); ε) = ν or, equivalently, Q(q(t); ε) = Qi + η (recall that Q̇ is bounded
away from zero in the layer N<).

7.3. Proof of Lemma 3. Here we compute the reflection map Rε : (qin, pin) :�→
(qout , pout ) defined by the smooth trajectories within the most inner layer N> : {W ≥ ν}.
We put the origin of the coordinate system at the point qin (corresponding to q at Fig. 5)
and rotate the axes with ε so that the y-axis coincides with the inward normal (denoted by
n(q) in Fig. 5) to the surface Q(q; ε) = Q(qin; ε) at the point qin and the x-coordinates
span the corresponding tangent plane. It is easy to see that in the notations of Lemma 3
we have (the explicit dependence on ε is suppressed for brevity, and the normal direction
is suppressed)

K (qin) = Qxx (qin)/Qy(qin), l(qin) = Qxy(qin)/Qy(qin). (63)
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By (12) and Condition II, near the boundary, the equations of motion have the form:

ẋ = ∂H

∂px
= px ṗx = −∂H

∂x
= −W ′(Q; ε)Qx , (64)

ẏ = ∂H

∂py
= py ṗy = −∂H

∂y
= −W ′(Q; ε)Qy . (65)

Note that Qy(qin) �= 0, because the y-direction is normal to the level surface of Q at the
point qin . It is shown in the proof of Theorem 2 that the orbit may spend only a small
time in N>, so it stays close to qin all the time it stays in N>. It follows that Qy(qin) stays

bounded away from zero. Hence, dpy
dt is bounded away from zero in (65). Therefore, we

may use py as the new independent variable. Equations (64), (65) are then rewritten as

dq

dpy
= −Q′(W ; ε) p

Qy
,

dt

dpy
= −Q′(W ; ε) 1

Qy
,

dpx

dpy
= Qx

Qy
, (66)

where

W = H − 1

2
p2. (67)

In order to bring the equations of motion to the required form with the small right-hand
side, we make the additional transformation

px → p̃ = px − Qx (q)

Qy(q)
py . (68)

Note that Qx (qin; ε) = 0, hence (see (63))

p̃ = px − K (qin)(x − xin)py − l(qin)(y − yin)py + O((q − qin)
2). (69)

In particular

p̃(tin) = px,in . (70)

After the transformation, taking into account (67), Eqs. (66) take the form

dq

dpy
= −Q′(1

2
− 1

2
p2)

p

Qy
, (71)

dt

dpy
= −Q′(1

2
− 1

2
p2)

1

Qy
, (72)

d p̃

dpy
= Q′(1

2
− 1

2
p2)

d

dq

(
Qx

Qy

)
p

Qy
py . (73)

Since Q′(W ; ε) is small in the inner layer, these equations belong to the class (50), (51),
with J = O(M (r)) (see (22)) and L = O(1) (the change in py is bounded by the energy
constraint). Thus, by (53), we obtain (see (70))

(q, t, p̃) = (qin, tin, px,in) + OCr (M
(r)). (74)

Recall that W (qout ) = W (qin). Therefore, by energy conservation,

p2
x,in + p2

y,in = p2
x,out + p2

y,out , (75)



598 A. Rapoport, V. Rom-Kedar, D. Turaev

so (74) implies

py,out = −py,in + OCr (M
(r)). (76)

By (74), and by using Qx (qin, ε) = 0, Eqs. (71) may be written up to O
Cr−1 ((M

(r))2)-
terms as

dq

dpy
= −Q′(1

2
(1 − p2

x,in − p2
y))
(px,in, py)

Qy(qin)
, (77)

dt

dpy
= −Q′(1

2
(1 − p2

x,in − p2
y))

1

Qy(qin)
, (78)

d p̃

dpy
= Q′(1

2
(1 − p2

x,in − p2
y))(K (qin)px,in + l(qin)py))

py

Qy(qin)
. (79)

Now, by applying to Eqs. (71) the estimate (54) with n = 1 (one Picard iteration), we
can restore from (77) all the formulas of Lemma 3 (we use (69) to restore px from p̃,
and use (75) to determine py,out ; note also that, up to O(M (r))-terms, the interval of
integration is symmetric by virtue of (74), so the integrals of odd functions of py in the
right-hand-sides of (77) are O((M (r))2)).
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