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Chaotic scattering by steep repelling potentials
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Consider a classical two-dimensional scattering problem: a ray is scattered by a potential composed of

several tall, repelling, steep mountains of arbitrary shape. We study when the traditional approximation of this
nonlinear far-from-integrable problem by the corresponding simpler billiard problem, of scattering by hard-
wall obstacles of similar shape, is justified. For one class of chaotic scatterers, named here regular Sinai
scatterers, the scattering properties of the smooth system indeed limit to those of the billiards. For another
class, the singular Sinai scatterers, these two scattering problems have essential differences: though the invari-
ant set of such singular scatterers is hyperbolic (possibly with singularities), that of the smooth flow may have
stable periodic orbits, even when the potential is arbitrarily steep. It follows that the fractal dimension of the
scattering function of the smooth flow may be significantly altered by changing the ratio between the steepness
parameter and a parameter which measures the billiards’ deviation from a singular scatterer. Thus, even in this
singular case, the billiard scattering problem is utilized as a skeleton for studying the properties of the smooth
flow. Finally, we see that corners have nontrivial and significant impact on the scattering functions.
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I. INTRODUCTION

Since the days of Boltzmann, scientists have been using
billiard models [1] to approximate the motion in systems
with steep potentials; such models were used for studying
various atomic and molecular dynamics problems [2-4],
fragmentation phenomena in chemical reactions [5], various
limits of the motion of point charges with Coulomb poten-
tials (see [6—8] and references therein), cold atom’s motion
in dark optical traps [9], and microwave dynamics in cavities
with soft walls [10]. Mathematically, one may formulate this
approach by introducing a one parameter family of steep
smooth potentials depending on a steepness parameter &, and
study the flows induced by the corresponding Hamiltonians
in the domain D as follows:

N 2
H=E&+W(q;s),
i-1 2
(1)
0 q € D\oD
W(g:e) — , DCRNM.
e—=0| C q e JD

This formulation allows one to examine whether, for suffi-
ciently small g, the simplifying approximation of the smooth
flow by a billiard flow is justified. In the last decade, together
with Turaev, we developed a new perturbational approach to
the analysis of far from integrable N degrees of freedom
Hamiltonian systems of the form (1) by utilizing the singular
billiard limit [11-16]. These works include two complimen-
tary types of results: the first kind are persistence
theorems—it is established that under some natural condi-
tions on W and D, regular hyperbolic orbits of the limiting
billiards are inherited by the smooth flow, and error estimates
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and next order corrections are derived [12]. The second type
demonstrate that singular semiorbits of the billiards may give
rise to stable motion in the steep smooth system. These re-
sults imply that the softness of the walls may destroy the
ergodicity and the mixing properties of Sinai billiards (for
compact D) even when the walls are repelling, arbitrarily
steep and the billiard is of arbitrarily high dimension [13-16]
(see [9] for an experimental realization of this phenomenon).
Notice that even in this singular case the billiard limit is
utilized—it serves as a mathematical tool for establishing the
emergence of stable motion in the smooth system. The focus
in all these studies was on the compact D case. Here, we
examine the implications and extensions of this theory and
approach to the problem of chaotic scattering (noncompact
D) in two-dimensional geometries.

When a ray of inertial trajectories, parametrized by an
input parameter, enters an interaction region in which the
trajectories are modified by nonlinear forces, the ray is scat-
tered and leaves the region in various directions. The ob-
served escape angles and residence times are traditionally
called scattering functions of the input parameter. Scattering
problems arise in a wide spectrum of models in physics and
chemistry (see [17] and [18]): celestial mechanics [19-24],
charged particle trajectories in electric and magnetic field
[25,26], hydrodynamical processes [27-31], models of
chemical reactions [5,32-34] and scattering in atomic and
nuclear physics [35,36]. Typically, most of the trajectories of
the impinging ray stay in the interaction region for a finite
time. However, in the Hamiltonian case, there may exist a
Lebesgue-measure-zero set of input parameters producing
trajectories that get trapped in the interaction region for an
arbitrarily long time. This measure-zero set gives rise to
strong oscillations in the scattering functions, influencing the
nearby trajectories. When the invariant set associated with
the scatterers has chaotic components, the singularity set of
the scattering functions, which includes all initial conditions
in the ray that belong to the stable manifold of the chaotic
invariant set, is fractal [37,38]. Thus, traditionally, if for
some ray the fractal dimension of the scattering function dg,
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is larger than one [39] then the scattering is called chaotic
[40], otherwise, it is called regular.

The structure of the scattering function was examined in
diverse scattering problems. Hard-wall scatterers were stud-
ied in several two-dimensional geometries (three hard disks
scatterers [37,5], three hard disks and a uniform magnetic
field [25], billiard traps with two openings [41,42], disk
moving along a Keplerian orbit [19,22], and a wedged bil-
liard with gravity [20,43]). In some of these studies the dy-
namics on the invariant set is fully characterized by symbolic
dynamics. Then, particle escape rates and other scattering
characteristics may be found using the thermodynamic for-
malism [44,5]. In [45,46,25,47,48,38,7,8,49,17,50] scattering
by finite range axis-symmetric potential hills and by smooth
potential hills were studied. We note that at high energies,
these scattering problems that arise in various fields of phys-
ics, may be formulated as scattering by steep repelling [51]
potentials of the form (2) (scattering by smooth attractive
potential wells [52,53] may require other analytical method-
ologies; see, e.g., [7,8,49]).

Due to the abundance of local and global bifurcations in
nonintegrable systems, the structure of the invariant sets of
scattering by smooth potential problems may depend sensi-
tively on the energy and on the systems’s parameters
[45-47,54,32,55]. For example, the abrupt bifurcation, by
which lowering the energy below a critical energy value E,
leads to a sudden change in the topology of the Hill’s region
(the region of allowed motion in the configuration space
[56]), creates a new hyperbolic invariant set which is struc-
turally stable [57] and leads to fully developed chaotic scat-
tering [45,46,58]. On the other hand, the appearance of is-
lands of stability via local bifurcations [45,47,55], or the
appearance of parabolic orbits (even without stability is-
lands) [54], gives rise to nonhyperbolic scattering—the scat-
tering functions appear to have singularities on a set of frac-
tal measure one and thus dgq approaches two.

Summarizing, the following classification of typical scat-
tering problems emerges; when the invariant set is simple
(consists of a countable number of unstable periodic orbits)
regular scattering is produced and dg is one. When the in-
variant set is uniformly hyperbolic and has, on some appro-
priately defined section, a fractal dimension larger than one,
hyperbolic chaotic scattering is created and dg € (1,2). Fi-
nally, when the invariant set is nonhyperbolic (containing
KAM-tori or parabolic orbits), nonhyperbolic chaotic scat-
tering is observed and dgq approaches 2. While for many
billiard problems and finite range potentials the invariant set
may be explicitly constructed by geometrical means, for the
smooth case its structure is complex and is usually found via
numerical simulations.

Here, we extend the methodologies of [11-16] to study
scattering by a family of billiardlike potentials W(g;e),
which, in the limit € —0, becomes the hard-wall billiard
scatterer D=U"_ D;. The D;’s are smooth obstacles (compact
closed smooth domains of “height” &;, where £;>0 and may
be infinite), n is finite, and the distance between the obstacles
is bounded from above (yet they may overlap). Rewriting
Eq. (1) by setting D=R?\D, we thus consider
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H=—"+W(qg;e), W(q;e )
(g:¢) (q;8) — £ 4 < oD,

I pll? 0 g¢geR’\D
2 e—0
()

h € (0,€=min &).

For example, the potential may be of a power-law form
W(g;e)=2"eE;/Qq) or of exponential form W(q;e)
=31 E; exp[-0i(q)/&], where Q;(¢) is the distance from JD;
[s0 Qi@)lycran, >0 and Q,(g),em,=0]. More generally,
W(q; &) may have local minima (yet their depth [59] must go
to zero with &), and point charges may be similarly studied
(by considering a fictitious finite size obstacle with energy-
dependent radii, see [6]).

At a fixed energy level below &, for sufficiently small €
values, the particle moves essentially freely between the ob-
stacles and bounces of their boundary when it encounters
them. Intuitively, one would expect that this motion is close
to the scattering by the hard-wall scatterer D—this is the
underlying hypothesis which made the hard-wall scattering
models so popular. Formulating the scattering problem ap-
propriately as a return map to some large circle S; which
encloses D (see Sec. IT) and using the persistence results for
regular hyperbolic orbits in S [12], we establish here that for
some scatterers—the regular Sinai scatterers—this intuitive
result may be rigorously justified: their hyperbolic invariant
sets are topologically conjugate (Theorem 1) and hence their
scattering functions are similar (see Sec. III B).

Yet, we know that for the general steep repelling potential
problem (1), singularities of the billiards (tangent orbits and
semiorbits ending up in corners of the billiard domain) lead
to substantial differences between the smooth flow and its
billiard limit for arbitrary small & values [11-16]. Here, we
explore the implication of this observation on the scattering
problem. We are thus led to the study of the billiard singu-
larities in this scattering context.

While the influence of tangent singularities on the invari-
ant set of scattering systems was studied in [37,5,50], corner
singularities (that arise only when the scatterers boundary is
not smooth) have been mostly neglected (though see
[20,43]). We propose that the appearance of corners affects
the scattering in a nontrivial fashion even in the billiard case
(see Sec. ITE 2). Moreover, we expect these effects (and
their smoothed counterparts) to be of physical significance in
applications with nontrivial geometries such as scattering by
complex molecules (we envision that the scatterers level sets
are then composed of several convex, overlapping obstacles’
hills, and the concave smooth meeting segments of these
convex parts play the role of smoothed out corners). For such
systems we show that the billiard-with-corners limit provides
a useful skeleton for predicting the scattering by the smooth
potentials (even though it is of an essentially different na-
ture).

The paper is ordered as follows: in Sec. II we present a
proper setup for the billiard scattering problem: we define the
scattering map and the regular and singular Sinai scatterers,
and explain how tangencies and corners influence their in-
variant set and their scattering functions. To demonstrate
these effects we introduce two families of singular Sinai bil-
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liard scatterers—one with smooth boundaries and the other
with corners. In Sec. III a paradigm for studying chaotic
scattering by smooth steep billiardlike potentials is pre-
sented. Indeed, once the scattering map is properly defined,
the application of [11-16] to the scattering problem produces
immediately nontrivial results regarding the structure of the
invariant sets of smooth potentials limiting to hard-wall scat-
terers. In particular, we conclude that for regular Sinai scat-
terers the steep smooth flow and the limiting billiard scatterer
have similar chaotic scattering functions. In Sec. IV, the scat-
tering by steep smooth potentials is investigated when the
limiting billiards are singular, having either a corner polygon
or a tangent periodic orbit. It is demonstrated that the billiard
singularities may be utilized to control the fractal dimension
of the scattering functions of the steep smooth potentials. In
the Appendix we include precise statements regarding the
classes of potentials we consider and the rigorous persistence
results that apply to these.

II. BILLIARD SCATTERING
A. Formulation

We first provide a formal definition of the scattering map
so that standard tools regarding compositions of maps and
the methodologies developed in [11-16] may be easily ap-
plied to the scattering problem. Consider a scattering billiard
in R%; let Sz CR? denote a circle, centered at the origin, of

finite radius E, parametrized by s € [0,27). The scatterer D,
a collection of hard wall obstacles, resides inside S. The
obstacles are assumed to have piecewise smooth, C™*! com-
ponents (r>3). We call the scatterer D a Sinai scatterer if its
boundary is composed of a finite number 7z of C"*'-smooth
scattering components I'; that are either bounded away from
each other by some minimal distance or have pairwise inter-
sections at angles that are bounded away from zero [60]. We
denote by '™ the corner set at which the scatterer boundary is
not smooth. Some of our results apply to a general scatterer
geometry, yet, we will mostly consider Sinai scatterers. We
notice that Sinai scatterers are regularly used as models for
various scattering processes (see [61], and references
therein).

A typical trajectory enters S at some s;, with velocity
(Pxspy) = V2h(cos @y, sin @;,), moves freely under the billiard
flow, reflecting elastically from the obstacles inside S, until
it exits S at time 7., at some point s,,, with velocity in the

direction ¢, Thus, the E-degendent scattering map

- L(-3R)
S(R): (Sin»> Pin) — Souts Pouts fow= "7 ), whereL(-) denotes

the length of the orbit, may be naturally defined. Instead of
using the R-dependent coordinates s;,,s,,, it is traditional to

define the transformation to the R-independent impact pa-
rameters b;, and b, as follows:

bin= R Sin(q’in - Sin) and by, = R Sin(@oul - Sout) . (3)

The scattering map may be thus written in terms of the im-
pact coordinates. The scattering functions at (b;,, ¢;,) are de-
fined as
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((I)(b)a T(b)) = ((Pout(bin + b’ (Pin)Jout(bin + b’ (Pin))’

be J(bin’ (Pin)’ (4)

where J, in the nontrivial [62] case, is a closed interval con-
taining the origin such that for all b € J(b;,, ¢;,) the scatter-
ing is nontrivial: the initial condition (b;,+b, ¢;,) does hit the

scatterer. Let J(bi,, ¢in)={(b,@)|b=by+b.,b € J(by, 0, @
=¢;,} denote the corresponding phase-space section, so ®
and T are the first and third components of S(R)| by e,)- LEL
B(x, 6) denote the billiard map associated with the scatterers
inside S, where y parameterizes the scatterers boundaries
[63] and O e [—757 72—7] is the incidence angle. For any regular
nontrivial (b;,, ¢i,), we may write

(bout’ Qoout) = Sout ° Bk ° Bk—l AR Bl ° Sin(bin’ Qoin;R)7
)
_ L(bin’ Qoin;R)
out \3’% >

where B;=B(x;, 6;) correspond to the interior billiard map ©
denotes map composition, and whereas S;, and S, corre-
spond to the mapping from S to the first (last) reflection
values (x;,6,) and (x;, 6;), respectively. More generally, for
any nontrivial (b;,,¢;,) an interior orbit may be defined as
follows:

O(bin’ ‘Pin) = {Xi’ ai}f'(:l . (6)

When k is finite and all the k reflections are regular (so
6;# = 5 and X; & Bcomer, Where Eomer denotes the values of
x at ', the corner set), (b;,, ¢;,) is a regular value. Then, the
composition (5) results in a smooth C" mapping with a
smooth dependence of the scattering time 7, on initial con-
ditions. Since for Sinai scatterers the set of initial conditions
resulting in singular orbits is of measure zero, it follows that
for Sinai scatterers, for almost all initial conditions, the map
S is a smooth (C") mapping. In principle, there are exactly
two sources for nonsmooth behavior of S: interior singulari-
ties that are associated with singular reflections from the
scatterers and trapping singularities associated with the di-
vergence of the number of interior reflections k (i.e., k— ).

B. Interior billiard singularities

For Sinai scatterers, the only interior singularities that
may appear [64] are related to tangencies and to corners.
Such singularities lead to nonsmooth behavior and disconti-
nuities in the scattering functions as explained next.

1. Tangencies

Assume the orbit O(b;,, ¢;,) is tangent to one of the scat-
terers at some point (x;, 6,) (so 6, e {—72—7 , g}), and contains no
other singularities. Thus, k is finite, and for all i #¢ the re-
flections are regular. It follows that (by,,¢;,) belongs to a
singularity line X, of initial conditions (b, ¢) that have a
tangency at the ¢ iterate near (x,,6,). A small neighborhood
of X, is thus divided by X, to two parts—on one side of
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FIG. 1. (Color online) Scattering map and the effect of tangen-
cies on it. Solid line—tangent orbit, dashed (dotted-dashed) line—a
close-by orbit with initial condition below (respectively, above)
San- The image of J(by,, ;) is not smooth and not monotonic
across .

San trajectories reflect exactly k times before escaping
whereas on the other side trajectories have only k—1 reflec-
tions (see Fig. 1). Using the properties of the billiard map
and flow near tangencies [65], it follows that the scattering
map S is C” [depends continuously yet not differentially on
(b, )] across such singularity lines (see Fig. 1). Such tan-
gent singularity lines may intersect—the transverse intersec-
tion point of two [66] such lines corresponds to orbits with
two tangencies. Notice that for regular orbits of the Sinai
scatterers the universal Sinai cone property holds—the cones
dq-dp>0 are forward invariant, and their orientation is pre-
served under an even number of reflections and reversed un-
der an odd number of reflections. This property implies that
at regular values (by,,¢;,), the function ®(b;b;,,e;,) is
monotone whereas tangent values lead, in addition to the
nonsmoothness, to nonmonotonicity (see Fig. 1).

2. Corners

Assume the orbit O(by,, ¢;,) reaches a corner at its end
point (xx, 6,), and contains no other singularities: & is finite,
Xt € Bcomer and for all i <k the reflections are regular. Using
the properties of the billiard map near regular corners (not
cusps) [65], it follows that (b;,, ¢;,) belongs to a line 3, of
singular values of (b,¢) all ending up at this corner point
after k reflections. Initial conditions starting arbitrarily close
to (by,, ¢;,) on one side of this singularity line hit first the
upper boundary component near the corner, reflecting finally
with some outgoing angle 6 and initial condition on the
other side first hit the lower boundary, reflecting finally with
some outgoing angle @;. Assume that the resulting two out-
going orbits escape to infinity after a finite number of regular
reflections. Then, in general, all the components of the scat-
tering map S are discontinuous across 2. Yet, S is well de-
fined and smooth on either side of this singularity curve (in
particular, 7., has a finite value for all initial conditions that
do not belong to 3,.). Other cases, for example, trapping of
an outgoing trajectory by redirecting it into a corner (creating
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a corner polygon) or trapping by some components of the
invariant set (creating a corner-hyperbolic invariant set—C-
HIS—-connection), are expected to appear at meeting points
of 3, with additional components of the singularity set. List-
ing all such generic constructions deserves a separate study.
We denote by 2;=2,,UZ. the collection of singularity
lines of initial conditions (b;,, ¢;,) that contain a billiard tan-
gency or end up in a billiard corner.

C. Trapping singularities

The singularities associated with the divergence of k (i.e.,
when k— ) are caused by orbits that asymptote the bil-
liard’s invariant set, its corner polygons or its C-HIS and
HIS-C connections (it appears that only the first possibility
was previously considered); denote by A the generalized in-
variant set of B, which includes, in addition to the proper
invariant set, all these singular semiorbits. Denote by X, the
set of initial conditions (b;,,¢;,) that never escape, so k=00
for these orbits and S is not defined for them. The set 3,
contains all the initial conditions belonging to stable mani-
folds of the hyperbolic component of the invariant set A,
and, if A has nonhyperbolic components or includes singular
semiorbits, it may contain other nonhyperbolic sticky orbits
or orbits that asymptote singularities.

D. Scattering functions and singularities for Sinai scatterers

Summarizing, let % define the set of all singular initial
conditions on (b, @) € (=R,R) X[0,27): 3 =Sy U 4.
Then, for Sinai scatterers, the scattering functions S, ®, and
T are smooth and monotone away from the singularity lines
composing . Generically, these singularity lines cross the
segment J(b;,, ¢i,) transversely. In the simplest case X,
crosses J(bi,, ;) at isolated points [67] that correspond to
simple tangent escaping orbits or to simple corner semior-
bits. Across such isolated intersections of J(b;,, ¢;,) With the
singularity line ,,,, S, @, and T are finite, continuous yet not
smooth, and nonmonotone, see Fig. 3. In the corner case, i.e.
across 2, these functions are discontinuous, and, depending
on the corner properties and on ¢;,, may be monotone or
nonmonotone (see [16] for the related analysis). Finally, near
3, we will always have an accumulation of singularities.
Near the intersection of J(b;,, ¢i,) With the singularity lines
corresponding to initial conditions belonging to the stable
manifold of the hyperbolic component of A, EAh, the scat-
tering functions have self similar structure and a diverging 7.

The behavior near other components of X, is yet to be stud-
ied (see, e.g., [55]).

E. Regular and singular Sinai scatterers

We call the Sinai scatterer D regular if it has no corners
and its invariant set A is bounded away from the singularity
set so it is uniformly hyperbolic (the classical example of
three identical circular scatterers of radius a centered on the
vertices of an equilateral triangle with edges of length R is a
regular Sinai scatterer for R>3a: then the invariant set A, is
bounded away from any tangent trajectory, and A, is fully
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FIG. 2. (Color online) The geometries of the two singular Sinai scatterers. (A) The pearly billiard with one corner. (B) The pearly billiard
with n—1 corners: dashed (black) n=1, bold (blue) n=2, dotted bold (red) n=3, solid (green) n=38. (C) The symmetric four-disks case

(u=K). (D) The asymmetric tangent case: u=0.

described by symbolic dynamics on three symbols with a
simple transition matrix [5]). In such a case, A is structurally
stable—a sufficiently small smooth deformation of D does
not change the symbolic dynamic description of the dynam-
ics on A nor its hyperbolic structure. The Sinai scatterer is
singular when A contains any singular orbits (tangent orbits)
or singular semiorbits (corner polygons or C-HIS and HIS-C
connections).

For regular Sinai scatterers, the hyperbolic structure of A
implies that for most (by,, ¢;,) € 24, the image under suffi-
ciently many reflections of a small neighborhood of
J(by,, i) aligns along the unstable manifold of A and thus
inherits its self-similar, fractal, and hyperbolic properties (see
[37,5,17,50]).

When the invariant set A undergoes a bifurcation, the
Sinai scatterer becomes singular. For example, in the classi-
cal three identical disks scatterer problem, when the equidis-
tance between the disks is decreased, orbits in A undergo
tangent bifurcations, a more detailed partition is needed, and
the transition matrix becomes more complex, until, in the
limit at which the disks touch each other (which is not a
Sinai scatterer since cusps are created) infinite partition is
achieved and the invariant set has a full measure [5]. Here,

we choose two symmetric geometrical settings, inspired by
[11,13,16], to examine such scatterers: the first corresponds
to a billiard geometry with a tangency and the second to one
with corners (see Fig. 2).

1. Symmetric four disks scatterer—scatterers with tangent
invariant orbits

Consider four disks, Iy j 53 of radii R,r,r/2,r/2, respec-
tively, that are arranged as follows [see Figs. 2(C) and 2(D)]:
I, is centered at (xé,yé):(%,%), I'y at (x7,y7)=(0,0), and
I, 5 are centers along the line y=—x+1 at a distance 2Kr
apart, where the distance of I'; from the diagonal is ur. At
u=0 the diagonal is tangent to I',, and at u=K the circles
I', 5 are placed symmetrically with respect to the line y=ux.
The four-disk geometry corresponds to a regular Sinai bil-
liard when the disks are placed sufficiently far from each
other and sufficiently away from collinear configurations. At
u=0 the invariant set has a tangent periodic orbit [Fig.
2(D)]. For most values of x>0 the invariant set is nonsin-
gular, thus hyperbolic, producing a self-similar scattering
function with fractal dimension greater than one, exactly as
in [37,5,17,50]. To examine the behavior near a singular Si-
nai scatterer we fix R=10r, L=13r, r=1 and u=K=0.1r so

016207-5



A. RAPOPORT AND V. ROM-KEDAR

O=0_/n

PHYSICAL REVIEW E 77, 016207 (2008)

out # reflections
no corners no corners
2 — N\ L/ ’
1 1 5t .:'. S
M ' _ i
0 0 —
-1.5 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1
S S
1 corners 1 corners
2 20
N 2
NN P S
0 ot— — —
15 -1 05 0 05 1 45 -1 05 0 05 1
S S
2 corners 2 corners . . .
2 - 20 | | FIG. 3. (Color online) Scattering function for
/\k \i s f/\ X 2 5 the n-pearls scatterer ®,(s) and the correspond-
1 !\ !\W—, 1 10',1 .E.. E _E_. Iy e 1 ing number of reflections 7,(s) (T=1, red; T=2,
0 === e S, S S green; T=2 blue) for different values of n.
-15 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1
S S
3 corners 3 corners
2 20
NS S $ '/\ '
1 1 o . o
N 1\1\/ A AAA
0 0
-15 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1
S S
7 corners 7 corners
2
IR EEE! . 20
Nvddéii; /\
AANMANAY—
0
-15 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1
S S

the diagonal belongs to the symmetry line of the scatterer
and is close to being tangent.

2. Pearly scatterer—scatterers with corners

Consider n+1 disks, I'y; ., of radii R,r,,...,r,, respec-
tively, that are arranged as follows [see Figs. 2(A) and 2(B)]:
Iy is centered at (xg,y(‘j)—(%,%) andathe disks I'y , are
centered along the line y=—x+ \Z(I—L%) so that they cover
uniformly an interval of length r. The radius r,(u) is chosen
so that for all n the angle between [68] any two neighboring

circles is a(u) as follows:

a = —arccos[1 —2(1 — u?)],

.
21+ (n - DV1 = u2]

Iy = . mel0.1]. (7
Hereafter we fix R=10r, L=r(12+u+1-u?), r=1 and vary
n and w. This geometry corresponds to a singular Sinai scat-
terer for any finite n and u € (0, 1). Following the same pro-
cedure as in [5], for most values of u € (0,1) one may fully
characterize the invariant set using symbolic dynamics in
which the n+1 symbols {0,1,...,n} encode the order of the
collisions with the circles T';, and, since the circles are dis-
persing, the sequence I',I'; is always forbidden. The detailed
phase space partition and the corresponding transition matrix
depend on w in a nontrivial fashion; for w values that are

close to 1 we expect that the symbolic sequences in the in-
variant set will be simple and consist of pairs of collisions of
the form I';I"y with i#0 (for such w values collisions be-
tween neighboring small circles I';I";., with i,i = 1+#0, are
subsequently reflected to infinity and do not belong to the
invariant set). On the other hand, for small u's, sequences of
the form I'.I";,I';---I';,1I"y with preamble of varying length
of up to [ () collisions between the neighboring scatterers

I'; and I';,; are expected to emerge (in the non-Sinai limit of
p—0 an infinite partition is needed). Thus, we expect that
the fractal dimension of the scattering function will be in-
creased as a(u) is decreased. The study of the topological
changes of the invariant set as a(u) crosses the rational
angles 7/m is interesting.

Figure 3 demonstrates some of these corner effects for
m=0.9 and several n values. It clearly shows that each addi-
tional corner leads to an additional unresolved region, a
property that is kept under the self-similar magnification. It
also demonstrates that the scattering functions are indeed
discontinuous across 2. To supply further details regarding
the scattering of an incoming ray of initial conditions we
divide this ray to resolved (trajectories escaping after one or
two reflections) and unresolved (trajectories remaining close
to the stable manifold of the unstable periodic orbits) inter-
vals 1;, and describe their corresponding symbolic dynamics
in Table I (see Figs. 3 and 4, left). On the resolved intervals
I 3467 the scattering function is smooth and monotone (see
Figs. 3 and 4, left). The unresolved intervals 112',5 may be
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TABLE 1. Resolved/unresolved intervals of the scattering func-
tion at ©=0.9.

Interval T Collisions Resolved/unresolved Color
I, 2 ISk R Green
K =2 I[yl... (j=1,....n) U Blue
I 2 I’ Sk R Green
n 1 T'ySk R Red
A =2 I,Ll... (j=1,...,n) U Blue
I 2 ISk R Green
I; 1 TI,Si R Red

further subdivided to n unresolved regions according to their
next collision, and this process can be further repeated in a
self-similar manner, namely, we propose that for ©=0.9 a
fully chaotic scattering is developed for n=2.

Since all the trapping trajectories at w=0.9 consist of
pairs I'gI"; (with j#0), the magnification factor M(n) of the
corresponding self-similar invariant set depends linearly on
the curvature of the small circles (7) [see the right part of
Fig. 4, where, for n=10 and a fixed ©=0.9 we obtain
In(M(n); ©=0.9)=1.3+In(1/r,)]. Moreover, the growth fac-
tor in the number of unresolved intervals at this value of wu is
observed to be n. Thus, the fractal (box-counting) dimension
of the singularity set is estimated by

In(n) _ In(n)
In(M(1),0.9)  1.3+In(1/r,)

F(n;u=0.9)= (®)

where r, is defined by Eq. (7). The dependence of this ex-
pression on w and larger n values is yet to be explored. From
Eq. (7) we conjecture that this fractal dimension approaches
1 as n is increased at a fixed u value (a somewhat expected
result—the boundary of the scatterer becomes nonsmooth in
this limit).

Thus, we propose that there are two mechanisms to in-
crease the complexity of the scattering functions in nontrivial
billiard geometries with corners—one by increasing the
number of corners and the other by making the corners
sharper.

PHYSICAL REVIEW E 77, 016207 (2008)

III. SCATTERING BY STEEP POTENTIALS
A. Formulation

Consider the smooth two-dimensional Hamiltonian flow
(2) with the steep, billiardlike potential W(g;e), that limits,
as € —0, to the hard-wall scatterer problem in the closed

interior

region (with boundary) D=S 2en \D, where A>0. Roughly,
we require W(g;e) to asymptotically vanish away from the
scatterer, we require that the level sets of W(g;e) approach
smoothly the scatterer boundary, and that the normal force on
these level sets is repelling so that the time spent near the
scatterers’ boundary is small and depends smoothly on the
initial conditions. For example, potentials of the form

n 0i(q)
W(q;8)=2i:lEiVi(_T)’ where Qi(Q)|qe¢9Di=0’ Qi(q)|qED
>0, E;=£>0, N is finite, and there exists an @>0 such that
the smooth functions V; satisfy [69]

1
Vi(0)=1, Viz)>0, Vi(z)=0cr+|<—a) forz>1,
Z

)

are billiardlike potentials. Conditions I-IV listed in the
Appendix imply that for all 4 e (0,£=min; E;V(0)) and
sufficiently small & (nonuniformly in %), the Hill’s region in
Sk has the same topology as D. Equivalently, let W, ,.(¢),
Wain(€), Wea(e), and W, z(e) be the sets of the
potential values at its local maxima, minima, and
saddle points in D, and its maximal value on S, respectively.
Notice that {Wmax(s) s Wiin(€), Wea(e), Wmax—k(s)}
—{E;v(0)},0,0,0} as £—0, so, there exists g,.(k) such
that for any &€ (0,&,,4(1)), the local maxima values
{Whax(€)} are all larger than & and all the other extremal
points are below h: max{W,(), Wea(€) , Winaxr(€)} < h
<min{ W, ()}, for all € € (0, &, (h)). Thus, e, (h) serves
as an upper bound for & values for which the current ap-
proach may be applicable [70]—for & > g,,,,(h) the topology
of the Hill’s region of the smooth flow is different than the
topology of D (see Fig. 5).

Define the scattering map [71] of the smooth flow S%(R)
as the return map to the section g e Sz:S?(R): (s, @)

— (5%, 9%, 15,)- Next, we examine the properties of S?(R)
for various types of scatterers.

3.5

~——e— log(M(n)) = 0.83 log(n) + 1.69
-9 - Iog(1/rn) =0.83 log(n) + 0.39

25

FIG. 4. (Color online) Left:
The trajectories corresponding to

9°°€, the intervals of initial conditions

ﬂ,,d“an ] 1, (solid), I; (dashed), 1, (bold), I,

° (dotted), and I; (bold dashed).
,e’d 1 Right: The magnification factor

and the curvature of small disks as
a function of n in a natural loga-
rithmic scale.

.
1.5
log(n), n=number of small circles

.
25 3
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FIG. 5. (Color online) The level set of the exponential potential
at h=% for €=0.3 e(O,emax(%)=0.6) (left) and €=0.75> €4
(right). The dashed circles correspond to the billiard limit.

B. Closeness theorems

Using the formulation developed in Sec. II in which the
scattering map is appropriately defined, and the above defi-

nition of D and S%(R), the methodologies developed in
[12,14] may be now applied to the scattering problem. These

imply, for example, that some orbits of S(R) are shadowed

by orbits of S?(R): if (s;,(bs, @iniR), @1y) is a nontrivial regu-
lar value (respectively, (s, @in) € 24, has a finite number of
collisions, one tangent and all the rest regular) of the billiard
scattering map S, then, there exists a nearby initial condition
(53, @%), limiting to (s;,, ¢;,) as € — 0, such that the smooth
scattering map S° is C" close [72] (respectively, is C° close)
to S at (si,, ¢;) (see the Appendix for details and error esti-
mates). Most importantly, we can now establish that for
regular Sinai scatterers the smooth flow and the billiard scat-
terer have the same scattering properties since their invariant
sets are similar (see the Appendix).

Theorem 1. Consider the Hamiltonian system (2) with a
billiardlike potential W(g,e) defined in the domain D

interior

=Sz, \D, where A>0, and D is a regular Sinai scatterer

so that A is a nontrivial uniformly hyperbolic invariant set of
B. Then, the energy level i e (0,£) contains, for sufficiently
small &, a uniformly hyperbolic invariant set A®, which is
topologically conjugate to A. Moreover, the local stable and
unstable manifolds of A® are C” close to the local stable and
unstable manifolds of A.

The self-similar structure and the fractal dimension of the
scattering functions of the smooth flow thus limit to the cor-
responding structures of the billiard scatterers. These positive
conclusions, which allow one to approximate smooth flows
by billiards, are natural and are clearly observed in various
simulations (e.g., Fig. 11). We do note though that without
the correct setup of Sec. II and the machinery developed in
[12,15] it is not obvious how to prove such results: the limit
of the smooth flow to the billiard flow is singular (e.g., the
vector fields associated with these two flows are not close
even in the C' topology).

For example, to study the problem of scattering by n cen-
ters of Coloumbic potentials (e.g., charged particles), a so-
phisticated and beautiful mathematical setup was developed
to prove that in the high energy limit the invariant set is

PHYSICAL REVIEW E 77, 016207 (2008)

hyperbolic provided the centers are not collinear [7,3,49]. We
propose that by introducing another fictitious radius param-
eter as in [6], the above corollary may be used to construct
an additional proof of this result for the repelling case. More-
over, the current tools may be employed to detect configura-
tions and (high) energy levels at which the invariant set in
the repelling Coulombic case is nonhyperbolic.

In fact, Theorem 1 may be easily formulated in a more
general form—for any two-dimensional scatterer geometry,
for sufficiently small &, any isolated component of the invari-
ant set which is hyperbolic and is bounded away from any
singularity of the billiard map—persists.

IV. BILLIARD SINGULARITIES AND STEEP POTENTIAL
SCATTERING

Since tangent and corner singularities of billiards’ orbits
may lead to stable orbits of the smooth flow [14-16], we
expect that when A has such singularities the smooth flow
and the billiard will have a substantial different scattering
function. To demonstrate these effects we consider two fami-
lies of Hamiltonian flows that limit to the two geometrical
settings introduced in Secs. IIE 1 and II E 2 as follows:

2 2
H=%+£2X+W(X,y;/1«,8), (10)

where € controls the steepness of the potential and u controls
the billiard geometry: in the four-disk case w controls the
distance of the diagonal orbit from tangency, whereas for the
pearly scatterers w controls the angle between the neighbor-
ing small disks. The potential W is a sum of exponentials as
follows:

Wcorner(q§8) = eXp(— QO_@> + 12 eXp<_ Qk(Q) ) ’
€ s e

(1

3
Wtangent(q;g) = E eXP(‘ QkT(q)> B (12)

k=0

where Q;(¢) (the pattern function of [12]) is the distance
between g=(x,y) € Dyj(h,u,e) and the disk T';, where
Duin(h, w,e) denotes Hill’s region. We consider sufficiently
small ¢ values so that there are no abrupt bifurcations at &
=1/2 [so the topology of Dyy(%, m,e) is fixed (see Fig. 5)].

A. Stable symmetric periodic orbit

The singular diagonal lines that correspond to singular
orbits (semiorbits) of the asymmetric four disks (pearly) bil-
liards, are expected to produce wedges of stability in the
(m,€) plane [14-16]. These wedges emanate from isolated
(/.L*,O) values, and the smooth flow has stable periodic orbits
for all parameter values in these wedges. Figure 6 shows
these wedges of stability for the one-corner case (found nu-
merically, see [11] for methods). Observe that for a fixed
there exist intervals of & values where the diagonal periodic
orbit is elliptic: the real part of the two eigenvalues of the
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= = = period doubling
saddle—center

0.5

-

FIG. 6. (Color online) Wedges of stability of the diagonal orbit
for the smooth one-corner case (n=2). The two shown wedges are
bounded between the saddle-center bifurcation curve (solid line)
and the period-doubling bifurcation curve (dashed line). The param-
eter values of Fig. 8 are taken along the dashed arrow line. The
solid arrow indicates a possible choice of a curve (u(e),e) along
which stability islands exist for arbitrary small & values.

Poincaré map lie in the interval [-1,1] [Figs. 7(A) and
8(A)]. In Figs. 7(B) and 8(B) we present phase portraits of
the Poincaré return maps near the diagonal orbits for selected
values of € (inside the stability wedges, close to their bound-
ary and bounded away from them). The stability islands of
these maps at (u,e) values in the wedges, the period-
doubling bifurcations, and the hyperbolic escape from the
vicinity of the diagonal for the unstable cases are clearly
observed for both the tangent and corner geometry.

120
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B. Scattering by steep potentials near the billiard singularities

The scattering function dependence on & near a singular
pearly Sinai scatterer (n=2 and ©=0.9) is shown in Figs.
9-11.

(1) The billiard scattering at ©=0.9 is chaotic and its in-
variant set appears to be uniformly hyperbolic [73] (Fig. 11,
bottom): the regions that exhibit self-similar behavior are
bounded away from the discontinuity point that is associated
with the corner. Thus, the billiard scattering function exhibits
the typical self-similar structure discussed in Sec. IT E 2.

(2) At €=0.01 the scattering function resembles the cha-
otic billiard scattering function and possesses the same type
of self-similarity (Fig. 11, top). We propose that this obser-
vation is closely related to the generalization of Theorem 1:
since the scattering near the invariant set is regular hyper-
bolic and ¢ is sufficiently small the invariant set persists, and
the self-similar structure of its local stable manifold persists
as well. On the other hand, in theorem 1 corners were not
allowed. Indeed, since the diagonal represents a possible
mechanism for a recurrent motion near the corner (a valid
corner polygon, see [16]), the invariant set of the smooth
flow has this additional new component—the diagonal orbit,
which, for this value of &, is hyperbolic. We see that the
scattering function of the smooth flow has an additional un-
resolved region of nonmonotonicity associated with this di-
agonal orbit, and thus, we expect that the smooth flow will
develop some nonhyperbolic behavior near this region. Fur-
thermore, interactions between the two components of the
invariant set are expected to appear, as described next.

(3) At £=0.066 54 the nonmonotone behavior associated
with the corner discontinuity appears to merge with the in-
variant set so one unresolved region disappears (Fig. 9).

=0.258
100 -
80 -
= 60 —
kol
o 40
e =003
20 7 7"
0 W ti—\l.‘i‘fd
_ =0.425 ¢_=0.
20 | | | 870152 , | | i =04
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
(A) e
£=0.152 £=0.425 £=0.44 £=0.449
0.66 0.66 0.66
0.72 0.65 0.65 N 0.65
0.71 0.64 . 0.64 A 0.64 .
> D_>- ../ e . P D->. -
0.7 0.63 : 0.63 . 0.63 .
7
069} =* 0.62 062t% .° 0.62
0.68 0.61 0.61 0.61
28 282 284 2.86 2.8 2.82 2.84 2.86 28 2.82 2.84 2.86 2.8 2.82 2.84 2.86
(B) y y y y

FIG. 7. (Color online) (A) The real part of \(€) for the tangent case at u=K=0.1. (B) The return maps near the diagonal to a section

(y,p_\.) with a fixed x and p,>0 for selected e values.
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FIG. 8. (Color online) (A) The real part of \ for the corner case
n=2, u=0.9. (B) The corresponding return maps for € values
shown in (A).

While self-similarity is still observed, its structure certainly
appears to be different than the billiard scattering function.
Here, we see that the bifurcations associated with the corner
influence the structure of the invariant set.

(4) For £=0.1403 (elliptic island) and £=0.1146 (period
doubling) the residence time functions 7(s;e) have signifi-
cant peaks (see Fig. 9) that are associated with sticky orbits.
The scattering functions for these values of &€ appear to have
a fractal dimension close to 2: at the center of Fig. 10 we
show that zooming in the unresolved regions produces sin-
gular curves with widespread singularities. Both findings are
typical to the scattering functions that appear when the in-
variant set has KAM tori [55].

(5) At £=0.1842, above the wedge of stability, the scat-
tering is regular as in scattering by two disks: the level sets
near the corner are so smooth that the invariant set consists
of only one hyperbolic periodic orbit.

(6) For £=0.4698 the invariant set for the energy level
h=1/2 is empty and the scattering function ®(s;e) is
smooth.

A similar behavior is observed in the tangent geometry, as
shown in Fig. 12; while increasing & leads to the merger of
unresolved intervals, by zooming in on the chaotic zones it
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FIG. 9. (Color online) Scattering function ®,(s;€) and escape
time T,(s;€) for the pearly case with n=2.

can be shown that the fractal dimension of the scattering
function at the stability wedges appears to approach two.

V. SUMMARY AND CONCLUSIONS

We propose that by utilizing the singular billiard limit, the
structure of the scattering function of a class of smooth
potentials—the billiardlike potentials—may be found. We
demonstrated the feasibility and implications of this ap-
proach on a class of two-dimensional dispersing billiards—
the regular and singular Sinai scatterers. For the regular scat-
terers we show that the scattering functions of the smooth
flow limit to that of the billiards’. For the singular Sinai
scatterers, we propose that the following scenario emerges:
Let ,u* denote a bifurcation value for which the billiard in-
variant set has a singularity (e.g., a tangent periodic orbit or
a corner polygon). Then, under some conditions on the po-
tential and the geometry [14,16], a stability wedge in the
(m,€) plane emanates from (,LL*,O), i.e., the smooth flow has
stable periodic orbit for all parameters in this wedge. For a

016207-10



CHAOTIC SCATTERING BY STEEP REPELLING POTENTIALS

€=0.1842
zoom 1

€=0.1403
zoom1

PHYSICAL REVIEW E 77, 016207 (2008)

£=0.06654
zoom 1

£=0.1146
zoom 1

)

0

0.03 0.04 0.05 0706 0.07 %1
oom 2

i \

0
-0.17 -046 -0.15 -0\14
zoom 2
2
-0.153

0
-0454
zoom 3
2

73
7}
1
£
0
-0.1536/-0.1535 -0.1534 -0.1533
zoom 4

2
¥, L oes v o
'] Py iy
TVANGS IS -~ IN
1 Foin e ns
35: W :",:5-,; Mf‘: t
0o 2

0
-4 -2

-0.152

P

4 6
x10°

0
-0.1535-0.1535-0.1535-0.1535-0.1535 s

N
1 . . &
3 N @ 1
0
0.066 0.06;7(072 oT:t 0 0.1920.1940.196
om 3 oom 3
5 2
" 3 3o e
&, 2 i o ! :
1 » y
¢ TV g
0
00725 0073 0.0735

"0.1?
s

<

-

"

0.1945

X ;

0
0.1945  0.1945

0
00735 00736 0.0736 01945

FIG. 10. (Color online) Self-similar (outer columns) and singular (middle columns) scattering functions: closeups of unresolved regions
of the scattering function ®,(s;€) for €=0.1842, 0.1403, 0.1146, and 0.066 54 are shown.

fixed u value intersecting this wedge, there exist an interval
of & values, [e7(u),e*(u)], at which the periodic orbit is
stable. Fixing such a “generic” u value close to ,u,*, where at
w the billiard invariant set is hyperbolic and nonsingular and
e~ (u) are small, the following sequence of bifurcations oc-
curs as ¢ is increased from 0*:

(1) For a sufficiently small & the hyperbolicity is pre-
served so the scattering function is self-similar, and its fractal
dimension approaches that of the billiard scattering function
at . Isolated discontinuities in the billiard scattering func-
tion may lead to additional singular components in the scat-
tering function of the smooth flow.

(2) Increasing & towards and through the interval
[e7(u),e"(w)] leads to a sequence of Hamiltonian bifurca-
tions of the hyperbolic periodic orbits that produces elliptic
orbits. These bifurcations appear in the scattering function as
the merge between several unresolved regions. For & values
inside the wedges of stability, the signature of nonhyperbolic
chaotic scattering shows up—the density of singularities is
large and does not appear to converge to a discrete set as
further magnifications are employed. We notice that the sta-
bility interval [e™(u),&*(u)] indicates the stability property
of a single periodic orbit. At least near the period-doubling
end of this interval there exist a cascade of other periodic
orbits that are stable, hence, the nonhyperbolic interval is
certainly larger than [ (u),e"(w)].

(3) Further small increase of & beyond the stability inter-
val may lead to the appearance of an additional interval of
hyperbolic scattering or to the appearance of another interval
of stability that stems from another stability wedge emanat-
ing from some other ,u**. Depending on how far the stability

wedges are located from each other, the scattering may be
either nonhyperbolic (with some KAM tori) or hyperbolic
with a fractal dimension that is smaller than the one appear-
ing for the billiard limit.

(4) A larger increase in & is problem specific and may
involve some topological changes of the corresponding Hill’s
region. In our examples, it finally leads to the reduction of
the invariant set to one unstable periodic orbit and then to the
destruction of the invariant set.

The above description suggests that by choosing a one
parameter family of steep potentials (u,&(u))— (u",0) such
that e(u) € (e™(u),e*(u)) for all u values (see Fig. 6), the
fractal dimension of the corresponding scattering function is
close to two for arbitrary small . On the other hand, we
have seen that for a fixed w# u", for sufficiently small €,
hyperbolic chaotic scattering is observed. Thus, we propose
that near ,u* the fractal dimension of the scattering function
can be controlled by varying &/(u—pu”).

From a mathematical point of view, Theorem 1 shows that
classes of smooth Hamiltonian systems having hyperbolic
repellors that can be fully characterized by symbolic dynam-
ics may be easily found: these are systems with steep poten-
tials that limit to regular Sinai scatterer—such scatterers have
nonsingular hyperbolic repellors (i.e., all orbits of the repel-
lors are bounded away from being tangent and from the cor-
ners). In this case the scattering properties of the steep
smooth flows and of the limiting billiards are similar and
robust: we expect the fractal dimension of the scattering
function of the smooth flow to limit to that of the billiard and
to change continuously with small smooth deformation of
the billiard’s geometry. Examples of such systems had pre-
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FIG. 11. (Color online) Similarity between the scattering func-
tions of the smooth flow and the billiard: closeup of unresolved
regions of ®,(s;e€) for €=0.01 and the billiard limit are shown.

viously appeared as prototypes for demonstrating hyperbolic
chaotic scattering, yet, utilizing the billiard limit allows one
to rigorously establish such results in their full generality
(without assuming specific geometry and for a large class of
potentials). Moreover, our approach suggests when the repel-
lors are expected to change their hyperbolic character due to
geometrical effects—exactly when singularities are encoun-
tered (low-energy effects, such as the abrupt bifurcation dis-
appear in our setting in the limit € —0).

Indeed, the framework of studying scattering by steep po-
tentials leads naturally to the exploration of billiard singu-
larities. In the two-dimensional case, this approach led us to
study corners; we observed two new mechanisms to increase
the complexity of the billiards scattering function—one by
increasing the number of corners and the other by making
some of the corners sharper. These preliminary observations
suggest that one should study in more detail the signature of
different types of corners on the billiard scattering function
and on the corresponding scattering by steep smooth poten-
tials. Moreover, studying the role of singularities in higher
dimensional billiard scatterers and their smooth counterpart
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FIG. 12. (Color online) Scattering function ®(s;e) for the tan-
gent case at u=0.1.

is an exciting natural extension of this approach (e.g., the
corner singularity may create islands of effective stability in
the corresponding smooth Hamiltonians in arbitrarily high
dimensions [13]).
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APPENDIX: CLOSENESS THEORY

Let us first recall the conditions W(g;e) needs to satisfy
so that the regular trajectories of a billiard will be shadowed
by trajectories of the smooth flow ([12] applied to D

interior

=S,y \D for some A>0).

Condition 1. For any fixed (independent of £) R and a
compact region K C D the potential W(q; &) diminishes along
with all its derivatives as € —0 as follows:
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1im5_>()||W(q;8)|q6](”Cr+l =0. (Al)

The growth of the potential near the boundary for suffi-
ciently small & values is treated as in [14]. We assume that
the level sets of W may be realized by some finite function
near the boundary. Namely, let NV (I'™) denote the fixed (inde-
pendent of &) neighborhood of the corner set and N(I';) de-
note the fixed neighborhood of the smooth boundary

component I';; define ZV5=N(F ,-)\N(F*) (we assume that

ﬁiﬂﬁj:® when i # j). Assume that for all small £=0 there
exists a pattern function

Q(g:e): UN; — R',

which is C"*! with respect to g in each of the neighborhoods

]\~/,~ and it depends continuously on & (in the C™*! topology, so
it has, along with all derivatives, a proper limit as ¢ —0).

Further assume that in each of the neighborhoods 1\7,- the
following is fulfilled.

Condition Il(a). The billiard boundary is composed of
level surfaces of Q(q;0) as follows:

0(q;e= 0)|‘1€Ff“"~’i = ;= constant. (A2)

In the neighborhood N, ; of the boundary component I'; [so
Q(q;e) is close to Q;l, define a barrier function W{(Q;e),
which is C"™*! in Q, continuous in & and does not depend
explicitly on ¢, and assume that there exists g, such that

Condition II(b). For all & € (0,&,] the potential level sets

in ﬁ,- are identical to the pattern function level sets and thus

W(g;e)|gei, = WiQ(g:8) - Q;38), (A3)

and
Condition Il(c). For all £ € (0,g,], VW does not vanish in
the finite neighborhoods of the boundary surfaces, ]V,-, thus

VOlsei, # 0, (A4)

and for all Q(q;8)|qeﬁi,

4 W(Q-0Q;8) # 0
- i - l';s .

dQ
Now, the rapid growth of the potential across the bound-
ary may be described in terms of the barrier functions alone.
Note that by Eq. (A4), the pattern function Q is monotone

(A5)

across I’ iﬂﬁi, so either Q> Q; corresponds to the points
near I'; inside K and Q <(Q; corresponds to the outside, or
vice versa. To fix the notation, we will adopt the first con-
vention.

Condition III. There exists a constant (may be infinite)
&;>0 such that as € — +0 the barrier function increases from
zero to &; across the boundary I'; as follows:

O» i
lim W(Q;s):{ =0

e—+0 gi’ 0= Qi . (A6)

Let
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E= min &, (A7)

i=1,...7

By Eq. (A5), for small &, Q could be considered as a
function of W and & near the boundary: Q=0Q;+Q;(W;e).
Condition IV states that for small ¢ a finite change in W
corresponds to a small change in Q:

Condition 1V. As ¢ — +0, for any fixed W, and W, such
that 0 <W; <W, <¢, for each boundary component I';, the
function Q,(W;e) tends to zero uniformly on the interval
[W;,W,] along with all its (r+1) derivatives.

In [12] it was shown that not only can we establish that
the regular hyperbolic orbits of the billiard flow and the
smooth flow are close, we can even find the order of the
correction terms. To obtain these error estimates, near each
boundary component I';, two boundary layers of width
7,(e) = 8(e) are defined. The thicker boundary layer is cho-
sen so that W(g;e) and its r+1 derivatives are smaller than
m")(8;e) in Df —the region D stripped of the boundary
layers of width &(e) and some fixed regions near the corner
set. The thinner boundary layer is chosen so that Q(}) and
its r+1 derivatives are smaller than Ml(,r)(v,-;s) in it, where
v;=W[0;+ 7,(¢)] (so the thin boundary layer has the poten-
tial level sets in the range [v;,h]). D, the auxiliary billiard
region, is defined to be D stripped of the thin boundary lay-
ers of widths 7,(¢) and some fixed regions near the corner
set. Table 3.3.1 in [12] summarizes the optimized choice of
n(e), 8e), m(8;e), M(v;;¢) so that the difference be-
tween the trajectories of the smooth flow and of the billiard
flow in D? is smallest in the C" norm for some typical po-
tentials. For example, for the exponential potential, a bound-
ary layer width of order O(g|In &|) may be chosen so that

the auxiliary billiard regular trajectories are OCr(r{s‘g) close to
the corresponding smooth flow trajectories. Moreover, for
regular reflections a Poincaré map ®¢ of the smooth flow is
defined by the cross section

S.={p=(q.p): q € ID*, {p.n(q)) > 0},

and for regular orbits—orbits that intersect JD® at an angle
bounded away from zero, this map is C" close to the auxil-
iary billiard map B® in D?. As the billiard map B? is close to
the original billiard map B, we obtain the closeness of the
Poincaré map ®° to B as well (the map B?, rather than B, is
used as the zeroth-order approximation for an explicit
asymptotic expansion for ®¢). Taking a fixed A>0 so that
the section g € Si consists of interior points of the billiard
flow in D, we combine these results of [12] and the formu-
lation of Sec. II to establish the following theorem:
Theorem 3. Consider a Hamiltonian system with a poten-
tial W(g,e) satisfying Conditions I-IV in the domain
D=S1eion\p where D is a Sinai scatterer and A > 0. Choose
w(e),8e), and r=1 such that v(e),de),m"(g),M"(e)
—0 as e —0. Let P’(¢) denote a regular hyperbolic orbit for
the billiard flow in D. Then, for any k€ (0,£), for suffi-
ciently small &, the smooth Hamiltonian flow has a
uniquely defined hyperbolic orbit P%(#) which stays
Oc(v+m™+M™) close to P’(¢) for all ¢ outside of the col-
lision intervals (finitely many of them in any finite interval of

(A8)
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time) of length O(|8| +M")). Away from the collision inter-
vals, the local Poincaré map near P° is Ocr(v+m")+M")
close to the local Poincaré map near P’(f). Moreover, for all
hyperbolic orbits, the stable and unstable manifolds of P?
approximate Oc(v+m"”+M")) closely the stable and un-
stable manifolds of P(7) on any compact, forward-invariant
or, respectively, backward-invariant piece bounded away
from the singularity set in the billiard’s phase space.

Proof. See Theorem 5 of [12] where this theorem is
proved for periodic orbits. Here we simply use the note of
[12] that the same results and proof apply to any regular
hyperbolic orbit, with the same error estimates as for the
hyperbolic periodic orbit case (by regular hyperbolic orbit,
we mean that this orbit is bounded away from the singularity
set). [ |

Using the existence of a Poincaré map ®° that is close to
the billiard map away from tangent reflections, it is easy to
establish that regular hyperbolic sets appear also for the
smooth flow as stated in Theorem 1. Indeed, consider the
billiard partition which is used to construct A. By assump-
tion on the regularity of D, each component is mapped to its
image by a regular reflection (namely, there are no tangent
reflections). It follows that for sufficiently small e, the image
of the partition components under the Poincaré map ®¢,
which is well defined for all orbits in these components since
they all have nontangent reflections, is close, in the C” topol-
ogy, to the image of the components under the auxiliary bil-
liard map (i.e., both the topology of the invariant set and the
hyperbolicty properties that are governed by the first deriva-
tives of the billiard map are inherited by the Poincaré map of
the smooth flow). It follows that the invariant sets of A and
A® are conjugated by the same symbolic dynamics and that
their Lyapunov exponents and cone structure are C" close as
well. Similar arguments hold for the more general setting as
long as the hyperbolic invariant set of the billiard is regular
and isolated from all singularities. Let us now examine how
these results translate to the properties of the scattering map.

Corollary 1. Under the same conditions of Theorem 3, if
(Sin(bin> @in: R), @;y) is a nontrivial regular value [respec-
tively, (Sin, @in) € 2 has a finite number of collisions, one
tangent and all the rest regular] of the billiard scattering map
S, then there exists a nearby initial condition (s, ¢f,), limit-
ing to (si,, i) as € — 0, such that the smooth scattering map
§¢ is C" close (respectively, is C° close) to S at (s, @in)-
Furthermore, for the regular case, away from the short colli-
sion intervals of length O(|8|+M"), the orbit of (sf,, ¢%) is
O(v+mW+MW)-close to the corresponding orbit of the bil-
liard flow.
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Proof. Note that S(R) is, by its definition in Sec. II, a local
Poincaré map near a regular hyperblic orbit, and, since
A>0 it corresponds to a legitimate Poincaré section inside
D and bounded away from the collision intervals. Recall that
the scatterers are assumed to be dispersing so if (si,, @;,) is a
regular orbit it is necessarily hyperbolic. Hence the results
for a nontrivial regular value follow from theorem 3. The
results regarding the tangent orbit follow from the same con-
struction, and, from the proof in [12,14] regarding the C°
closeness of the billiard map and the smooth flow near tan-
gent collisions. |

Taking only two circular obstacles, as in the first example
of [47], supplies a clear demonstration of these persistent
results in the simple nonchaotic setting (not shown for brav-
ity). Figures 12 and 3 demonstrate these closeness results in
the chaotic case for sufficiently small & (nonuniformly in the
distance from the singular Sinai scatterers).

Finally, we note that we did not analyze the far field be-
havior of the scattering functions, behavior which depends
on the rate of decay of the potential. In principle, to obtain
similar results uniformly in E, so that impact coordinates
may be used in the smooth case, one needs to impose suffi-
ciently rapid decay rate of the potential at large ¢ values. We
propose that imposing the following condition should suf-
fice:

Condition V. There exists an R, such that for all |¢| =R,
there exists @>0 (R and « are independent of &) and a
function A(e) which limits to 0 as £—0, such that for all
ee(0, Smax)

Ale)

g

[W(g;e)| = (A9)

in the C"*! topology.

Indeed, using this condition, it can be shown, by succes-
sive approximation method of the integral form of the
Hamiltonian flow (2), that the asymptotic velocities
(Pi(£x), py(= o)) and thus the corresponding asymptotic
directions ¢, ., may be defined on Si (see, e.g. [16] for a
similar construction near corners). While Eq. (A9) is not suf-
ficient to guarantee that an asymptotic direction s;, exists, it
is still possible to define asymptotic impact parameter 7, as

in [16]. Then the mapping from S(R..) where R..>>R to S(R)
is smooth and the properties of the smooth scattering map at

S(R) are inherited by the smooth scattering map at S(R..).
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