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We study transport in the two-dimensional phase space of C r diffeomorphisms 
(r ~ 1) of two manifolds between regions of the phase space bounded by pieces 
of the stable and unstable manifolds of hyperbolic fixed points. The mechanism 
for the transport is associated with the dynamics of homoclinic and heteroclinic 
tangles, and the study of this dynamics leads to a general formulation for the 
transport rates in terms of distributions of small regions in phase space ("lobes"). 
It is shown how the method applies to three geometrical configurations, one of 
which corresponds to the geometry associated with the Kelvin-Stuart Cat's Eye 
flow undergoing a time-periodic perturbation. In this case the formulae imply, 
for example, that the evolution of only two lobes determines the mass transport 
from the upper to the lower half plane of the fluid flow. As opposed to previous 
studies this formulation takes into account the effect of re-entrainment of the lobes, 
i.e., the implications of the lobes leaving and re-entering the specified regions on 
the transport rates. The  formulation is developed for both area-preserving and 
non-area-preserving two-dimensional diffeomorphisms and does not require the 
map to be near-integrable. The techniques involved in applying this formulation 
are discussed including the possible use of the generating function for computing 
the distributions of the Iobes in phase space, as well as the use of Poincar6 maps, 
which enable one to study the transport in continuous time systems using the above 
formalism. In particular, we demonstrate how the right choice of the Poincar6 
section can reduce the labor of transport rate calculations. 

1. Introduction 

The study of transport phenomena is important in a variety of diverse fields. 
Webster's New International Dictionary defines the word transport as follows: 

To convey; esp., to carry or convey f r o m  one place or 
station to another, as by boat or rail; tO transfer; as to 
transport goods or troops. 
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Thus, in any physical situation where transport is Of importance, there are three 
points that first need to be clarified. In the context of the above defiuition they 
are: 

1) The mechanisms for conveyance or transference. 
2) The places or stations to and from which things are transported. 
3) The quantity that is being conveyed or transferred. 

In this paper we study transport in the two-dimensional phase space of C r diffeo- 
morphisms (r ~ 1) of two manifolds. The places or stations to and from which 
things are transported will consist of regions of the phase space bounded by pieces 
of the stable and unstable manifolds of hyperbolic fixed points, the mechanism 
for transport will be the dynamics of the diffeomorphism in the heteroclinic 
and/or homoclinic tangles created by the intersections of the stable and unstable 
manifolds, and the quantity that is being transported will be area elements of the 
phase space. 

As examples of how this framework might arise in applications we offer the 
following two situations. First, consider the simple pendulum. It is well known 
that the phase space of this system possesses a pair of homoclinic orbits that 
separate the librational motions of the pendulum from the rotational motions. 
When the system is subjected to a periodic excitation, the homoclinic orbits break 
up and, with the destruction of this invariant separatrix, a mechanism is created 
whereby orbits may start out librating and subsequently make a transition to 
rotatiolaal motion (or vice versa). Through a standard procedure (see GUCKEN- 
HEIMER • HOLMES [19831 or WIGGINS [1988]) the study of this system can be reduced 
to the study of an associated two-dimensional Poincar6 map (see Section 6) and, 
therefore, our methods can be brought to bear on this problem. In particular, our 
techniques allow us to compute the probability of the system going from libration 
to rotation or vice versa based on the geometry of the homoclinic tangle. This 
allows us to give a statistical description of the dynamics in a region of phase 
space where the dynamics are chaotic. 

Another example in which our methods have potentially far reaching appli- 
cations is in the field of fluid mechanics. Let v(x, t), x ~ R 2, be a solution of the 
two-dimensional Navier-Stokes equations that is periodic in time. Then the ordi- 
nary differential equation describing the motion of fluid particles in the flow is 
given by 

Jr = v(x, t ) .  

As in the above example, the temporal periodicity allows us to reduce the study 
of this system to the study of an associated two-dimensional Poincar6 map where, 
in this example, the "phase space" is actually the physical space occupied by the 
fluid. As a result, our methods can be utilized to study questions of mixing and 
transport in fluid dynamics in situations where it is the convective nature of the 
flow (and not molecular diffusion) that is influencing these questions (see ROM- 
KEDAR, LEONARD, d~ WIGGINS [1989]). 

Transport phenomena in two-dimensional area-preserving maps have been 
studied extensively in the last few years. After it was recognized that regular and 
chaotic motions can coexist in such a dynamical system, extensive numerical ex- 
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periments were performed to investigate the influence of the chaotic regions on the 
transport rates (CHIRIKOV [1979], KARNEY [1983]). The main theme in these works 
has been to quantify the change in the transport rates: as a result of the destruction 
of KAM tori and the appearance ,of cantori as the parameters vary. 

BENSIMON & KADANOFF [1984] and MACKAY, MEISS, & PERCIVAL [1984] made 
the first analytical attempts to quantify these transport rates. BENSIMON & KADA- 
NOFF showed that the flux rates between different regions separated by the stable 
and unstable manifolds of periodic orbits are related to the generating function 
of the map evaluated along orbits homoclinic to these orbits, and MACKAY and 
co-authors showed that the flux rates between different regions separated by can- 
tori are related to the generating function of the map evaluated along orbits homo- 
clinic to the cantorus (the cantori are invariant sets that resemble invariant circles 
in the sense that they have irrational rotation numbers but they have the structure 
of a Cantor set). Subsequently, MACKAY, MEISS, & PERCIVAL applied these ideas 
to resonance bands [1987] and MACKAY & MEISS to continuous time systems [1986]. 
However, their methods did not take into account the entire geometry of the 
homoclinic tangle and, therefore, they were only able to follow points for one 
iteration across a broken separatrix. Our work shows that a consideration of the 
global geometry of the homoclinic tangle is essential, and this consideration enables 
us to compute long time transport rates. Incorporating their ideas into our frame- 
work (when the diffeomorphism is also area-preserving and a twist map) seems 
promising and is discussed in Section 6. 

A statistical approach to transport phenomena in area-preserving maps, 
presented in detail in LICHTENBERG & LIEBERMAN [1983], attempts to quantify 
the transport rates by modeling the transport mechanisms using statistical pro- 
cesses such as a Markov process. This results in a diffusion equation for the density 
distribution in phase space. Based on the mechanism described by BENSIMON & 
KADANOFF [1984] and MACKAY, MEISS, & PERCIVAL [1984], MEISS & OTT [1986] 
developed an approximate statistical model for transport based on a Markov tree. 
Our method could be used along similar lines to improve this model. 

In this paper we concentrate on investigating transport as governed by inter- 
sections of stable and unstable manifolds of hyperbolic fixed points of maps. 
Being invariant curves, these manifolds supply natural boundaries for regions in 
phase space. These regions may be the resonance bands of an area-preserving map 
but may also represent any other region with boundaries consisting of stable and 
unstable manifolds. Note that the study presented here is based on the geometry 
of the manifolds only and does not require the system to be near-integrable or 
area-preserving. 

The observation that boundaries consisting of segments of stable and unstable 
manifolds allow transport across them in a very specific manner, through exchange 
of "lobes", was made by various people (see BENSIMON & KADANOFF [1984] or 
MACKAY, MEISS, & PERCIVAL [1984] for an account). The new observation present- 
ed in this paper is that following the evolution of these lobes, and using the in- 
variance of the manifolds in the process, supplies a method for computing exact 
transport rates between regions for all times, both in area-preserving and non- 
area-preserving C ~ diffeomorphisms (r ~ 1) of two manifolds. This work suggests 
that the appropriate statistical model should be developed for the dispersion of 
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only a few "lobes" in phase space, since all of the transport rates are completely 
determined by the transport rates of these lobes. 

Let us remark that chaotic dynamics in the sense of Smale horseshoes are asso- 
ciated with the homoclinie and heteroclinic tangles that we are considering as 
mechanisms for transport. It is important to note that the lobes are complementary 
to the invariant set of the horseshoe. Heuristically, the lobes contain what is "thrown 
out" of the horseshoe. This brings up an important point. The chaotic invariant 
sets associated with horseshoes have measure zero. So, naively, one might expect 
their importance in the dynamics of a system to be negligible. However, it is well 
known (see, e.g., GUCKENHEIMER & HOL~mS [1983] for a discussion) that this 
invariant set may exhibit a marked influence on a neighboring set of orbits of posi- 
tive measure. The methods that we develop in this paper provide us with a way of 
quantifying this influence. Moreover, they show that when viewed in the proper 
manner, there is a great deal of order associated with chaos. 

The paper is organized as follows, In Section 2 we state the necessary defini- 
tions and the general principles that are discussed throughout the paper; ill Section 3 
we demonstrate these principles and compute transport quantities for three ex- 
amples; in Section 4 we state the precise assumptions and theorems for the trans, 
port rates in area-preserving maps; in Section 5 we show how these concepts are 
generalized to non-area-preserving maps; in Section 6 we discuss some aspects of 
the application of the proposed methods for computing the transport rates; and 
in Section 7 we demonstrate the method by performing a numerical investigation 
of the transport rates for the periodically forced undamped Duffing equation. 

2. General Principles 

Consider a two-dimensional phase space on which an area- and orientation- 
preserving diffeomorphism F is defined (e.g., F is a Poincar6 map of a time- 
dependent flow). Let Pi, i =  1 . . . .  , N ,  denote hyperbolic fixed points of 
Fwith their associated 2N branches of stable and 2N branches of unstable mani- 
folds. We denote the stable manifold of the hyperbolic fixed point Pi by W~i and 
its unstable manifold by W~i. (Note that each manifold has two branches. 

When a differentiation between these branches is needed we will label each branch.) 
,The phase space can be divided into disjoint regions using pieces of the stable and 
unstable manifolds of hyperbolic fixed points. We investigate the transport between 
such regions, where the precise manner in which these regions ar e defined is dis- 
cussed later. The mechanisms for transport between the regions are associated with 
the intersections of the stable and unstable manifolds and the tangling of the 
manifolds resulting from these intersections. POINCAR~ [1892] was the first to 
recognize that an intersection of the stable and unstable manifolds leads to very 
complicated geometrical structures, structures which EASTON [1985] investigated 
and tried to classify with success for a special class of maps. We use the properties 
of the tangling to investigate the transport, borrowing some ideas from EASTON'S 
notation for the geometrical structures involved in the tangling of the mani- 
folds. 
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Fig. 2.1. The definition of the pip and the lobe 
(qo, q~, and q2 are pips; q3 is not a pip; Lo and L~ are lobes) 

We start with a few definitions and then explain the mechanism for transport 
and the dynamics associated with the tangling. Finally, we state a few properties 
of area-preserving and orientation-preserving diffeomorphisms and their stable 
and unstable manifolds. 

Definition 2.1. A point qo in phase space is called a heteroelinlc point if it belongs 
to both a stable and an unstable manifold, namely, qo E Wvi/5 W~ for some 
Pt and pj. The point qo is called homoellnic if i = j. 

Definition 2.2. Consider a heteroclinic (or homoclinic) point qo C W~, i {5 W~j 
and let S[pi, qo] denote the segment of W~i from Pi to qo and U[pj, qo] denote the 

segment of 14~. from p~ to qo. Then qo is called a primary intersection point t ip)  
if S[pi, qo] and Ufpj, qo] intersect only in qo (and possibly at Pi if i = j ) .  See 
Figure 2.1. 

Definition 2.3. Let qo and qt be two adjacent pips, i.e. there are no pips on 
U[qo, q~] and S[qo, q~], the segments of W~i and W~ that connect qo and ql- 

We refer to the region bounded by the segments U[qo, ql] and S[qo, q~] as a lobe. 
See Figure 2.1. 

2A. The Lobe Dynamics and the Transport Mechanism 

The transport across a boundary that consists of a segment of a stable manifold 
and a segment of an unstable manifold, both segments starting at hyperbolic fixed 
points and ending at a common pip (see Figure 2.2), is governed by the motion of 
lobes, which in turn can be inferred by the motion of the pips defining them. We 
therefore start by describing the dynamics associated with heteroclinic (homo- 
clinic) points in general and pips in particular, and then show how this determines 
the lobe motion. 

Note that the existence of a heteroclinic (homoclinic) point qo implies the exis- 
tence of infinitely many heteroclinic (homoclinic) points; by the invariance of the 
manifolds all forward and backward iterations of qo, the points Fkqo, must stay 
on both the stable and the unstable manifolds and, therefore, Fkqo are heteroclinic 
(homoclinic) points for all k. Now, let us consider the ease where qo is a pip. 
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qo 
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Fig. 2.2. Transport across a boundary 

It is easy to show that if qo is a pip so are Fkqo for all k (see EASTON [1985]). In 
general, the segments of the manifolds connecting qo to F -1 qo intersect each other 
in m pips (m ~ 0). The m pips, qi, i = 1 . . . . .  m, together with qo and F -1 qo 
define m q- 1 lobes; the motion of  these allows transport across the boundary. 
Note that because F preserves orientation, the interior of a closed curve is mapped 
to the interior of the curve's image, and the ordering of the heteroclinic (homo- 
clinic) points qi along the curve is preserved; hence, the lobe Lg defined by the 
segments S[qi, qi+l] and U[qi, qi+l] (where qm+l ~ - F - t  qo) is mapped to the lobe 
defined by F(S[qi, qi+l]) and F(U[qi, qi+~]) (see Figure 2.3), 

L2--, Lo-~ 

L3 

qo 

L~ 

/-FL3 
_/ ~ -FL4 

L FLo 
L FL2 

Fig. 2.3. The lobe motion 

To summarize, there are three key properties of the map F and its stable and 
unstable manifolds that one needs to bear in mind when dealing with the lobe 
dynamics: 

1) A stable manifold cannot intersect itself or any other stable manifold, nor 
can an unstable manifold intersect an unstable manifold. 

2) If  a stable manifold intersects an unstable manifold at a heteroclinic (or 
homoclinic) point, then these manifolds intersect each other infinitely many 
times. 

3) The interior of a closed curve is mapped to the interior of the curve!s image. 

It is important to notice that a lobe is always mapped to a lobe, and that all 
the lobes and tangling associated with the pip qo are images or preimages of the 
Li lobes, i = 0 . . . . .  rn. In Figure 2.3 we draw a possible situation in which rn = 3 
and there are only pips on the segment connecting qo and Fqo. Four lobes are 
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created between qo and F -~ qo denoted by Li, i = 0, . . . ,  3. Under F, the Lo and 
Lz lobes are mapped from the region above the boundary U[pl, qo] W S[p2, qo] 
to the region below it, while the L1 and La lobes are mapped from the lower region 
to the upper one. This is the mechanism for transport across the boundary. Note 
that the manifolds are stationary (they are invariant); hence, on each iteration the 
same phenomenon occurs: Lo and L2 are mapped downward while La and La 
move upward. Therefore, the lobes which are mapped downward at iteration n 
are necessarily the n -- 1 preimages of Lo and L2. 

Four  remarks are now in order. 

Remark 2.1. With no loss of generality we can always assume that there is an 
exchange of  exactly one lobe between neighboring regions (Raving a common 
boundary consisting of a segment of a stable and a segment of an unstable mani- 
fold starting at hyperbolic fixed points and ending at a common pip), since we can 
always define a generalized lobe that is the union of all the lobes moving from one 
region to the other under one iteration of the map, allowing it to be the empty 
set when m = 0 .  

Remark 2.2. In practice the number of lobes per iteration crossing from one side 
of a boundary to another may be of interest. In previous work we have shown that, 
when the splitting of the manifolds is a result of a perturbation and MELNIKOV'S 
technique can be employed, half the number of simple zeroes of the Melnikov 
function per period of the perturbation equals the number of lobes crossing from 
one side of the boundary to the other side on each iteration (see Ro~-KEDAR, 
L E O N A R D ,  • W I G G I N S  [1989]). 

Remark 2.3. With no loss of generality we can always assume that U[qo, F -1 qo] 
and S[qo, F -~ qo] intersect each other only in pips; namely, that the L i lobes do 
not intersect each other. If  they do, one can redefine the lobes to exclude the inter- 
section portion so that the new "lobes" do not intersect each other (see Figure 2.4). 
We will discuss this remark in more detail in the next section. 

J 

Lo 

q 

"" .. Y /:'t / 

/ 

Fig. 2.4. Redefining a lobe 

Remark 2.4. If the intersection of the manifolds at qo is topologically transverse, 
i.e., the intersection is either transverse or the tangency is of odd order, then, 
because Fpreserves orientation, there must be an odd number of pips with topolo- 
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gically transverse intersections on the segments of the stable and unstable mani- 
folds connecting qo and F -1 qo- In particular, in this case there is at least one lobe 
crossing from one region to the other in every iteration (i.e., m ~ 1). 

So far we have described the motion of lobes near a pip. We now define the 
notion of regions so that we can proceed in describing the transport between them 
as governed by the lobe motion. 

Definition 2.4. A region is a simply connected domain of phase space with bound- 
aries consisting of boundaries of the phase space and segments of stable and un- 
stable manifolds starting at hyperbolic fixed points and ending at either pips or 
at the boundary of the phase space (which can be infinity) (see Figure 2.5). 

/ 

q3. RI q4 II R 

R 4 qz 

Fig. 2.5. Phase space division into regions 

In the following section, we demonstrate for three simple configurations how 
the transport between regions is governed by the motion of lobes into and out of 
the regions. In these examples we illustrate the following basic rules: 

1) The transport between the regions is determined by the initial distribution 
of the relevant lobes in the regions (the relevant lobes are the lobes that move from 
one region to the other under F). 

2) The initial distribution of all the relevant lobes can be found by following 
the evolution of a finite collection of lobes that are images or preimages of all the 
relevant lobes. 

3. Three Examples 

Example 3.1. Suppose that the map F defined on R 2 has a hyperbolic fixed point 
p, and only one branch of the stable manifold, W~,+, and one branch of the un- 
stable manifold, W~+, are allowed to intersect each other (see Figure 3.1). This 
phase space represents, for example, the Poincar6 map of the motion of a particle 
in the presence of a nondegenerate cubic potential and a small forcing which is 
periodic in time. 

In this example, there are exactly three regions in the phase space that are sep- 
arated by the stable and unstable manifolds ofp. Since we assume that W~_ and 
W~,_ do not contain any homoclinic points, region R3, defined as the region bound- 
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ed by W~,_, W;,,_, and infinity, is separated from the rest of the phase space, and 
no transport can occur between Ra and the other regions (see Figure 3.1). We will 
therefore be concerned with the transport between the two regions R~ and R2, 
which are defined as follows. Let qo E W[,,+ A W~,+ be a pip, and denote the region 
bounded by the segments S+[p, qo] and U+[p, qo] by R~ and the complement to 
R~ and Ra by R2. The regions Rt and R2 can be defined in many different ways 
depending on which pip, qo, one chooses; however, the transport rates between 
RI and R2 will not depend on this choice (this is not true when more regions are 
involved, since, in general, transport rates do depend on both initial distributions 
and definition of boundaries). 

\ W  u _ \P' 

R3 
R2 

Fig. 3.1. The geometry of the regions for the first example 

The question we wish to address is as follows. If, initially, particles of species 
S~ are uniformly distributed in region Rt and particles of species $2 are uniformly 
distributed in region R2, what will be the distribution of $1 and $2 in regions 
R1 and Rz after n iterations of the map F? 

Denote the amount of species Si, i = 1, 2, that is contained in region R: imme- 
diately after n iterations of the map by Ti0(n), so that Ti, i(0) = #(Ri), the area of 
region R;. 

The flux of species S~ into region Rj on iteration n is the change in the amount 
of species Si in R: on iteration n; namely, Ti,j(n) -- Ti,/n -- 1). When F is area- 
preserving the flux is equal to the amount of species S i entering region R: at itera- 
tion n minus the amount of species Si leaving Rj at iteration n. We will see in Sec- 
tion 5 that when Fis not area-preserving one has to take into account the additional 
factor of the change in the area inside R:. 

Our goal is to determine Ti,j(n), i, j = 1, 2 for all n. Note, that Ti, i(O) = #(Ri), 
and Ti,:(0) = 0 for i 4= j. Note also that when #(Ri) is infinite (e.g., for i ----- 2, 3), 
Ti,i(n ) is infinite too, although the flux is well defined and finite. In these cases we 
will refer to the flux instead of to T~,i(n ) and denote it by the same notation as in 
the finite-area case, namely, Ti,i(n) -- T~.,i(n -- 1). 

Note that area preservation implies relations between the T~,/n); for example, 
conservation of Si implies 

2 

(~,j(n) -- ~,j(n -- 1)) = O, i =  1, 2, (3.1.1) 
j = l  
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while area preservation of Rj implies 

2 

(T/d(n) -- Ti,j(n -- 1)) - -0 ,  j = 1, 2. (3.1.2) 
i = l  

(3.1.1) and (3.1.2) constitute three independent equatlons for the four unknowns 
Ti,j(n) -- T / j (n  1); hence solving for one of the T/,j(n)'s provides the solution 
for all the o ther  Tij(n)'s. 

We now, first, demonstrate that the amount of species Si in the lobes (the lobe 
content) determines Tij(n), second, show how the content of the lobes is determined 
by the lobe intersections with each other, and third, show how the lobe dynamics 
can be used to determine the initial intersections of the lobes. Ultimately this 
demonstrates that the structure of the lobes and their motion determines T,.,j(n). 

Consider Figure 3.2. In this figure we illustrate the motion of particles of species 
Si (black) and $2 (white) under the map, where we assume (see Remark 2.1) that 
one lobe escapes and one lobe enters region R1 at each iteration. Denote the lobe 
that leaves region R1 and enters region Rz immediately after n iterations by 
L1,2(n), and the one that leaves R2 and enters R~ after n iterations byL2,1(n). From 
the discussion in the previous section it follows that L~,z(n) is mapped to LI,z(1) 
after n -- 1 iterates; however, at this point we ignore the dynamics and concentrate 
on the initial position of the lobes. The notation "Ll,2(n)" may seem a bit' strange 
since L~,2(n) may not be entirely contained in R~; however, the important point 
is that after n -- 1 iterations, i.e. just before crossing the boundary of R~, the 
(n -- 1) image of the lobe is entirely contained in Rx, We will discuss this point 
in more detail later on. Since the only route for particles to enter or leave regions 
R1 and Rz is through these lobes, their content determines the flux of the various 
species through Rt and R2. In other words, denoting by Lik,l(n) the part of lobe 

, L]ql(n ) LIL~,I(n)), we have: Lk t(n) containing particles of species Si (so that L~,l(n) -= 1 2 

T/,j(n) -- T,.j(n -- 1) = {flux of species Si into region Rj on iteration n}, 

= {amount of S,. in the lobes entering region Rj on iteration n} 

- -  {amount of Si in the lobes leaving region Rj on itera- 
tion n}, 

2 

= ~] {#(L~,j(n)) --lz(Lj, k(n))}. (3.1.3) 
k = l  
k # j  

Let us describe in more detail the geometry of the manifolds as shown in Figure 3.2. 
Note that tz(Ll, l(n)) = 0 for all n > 0 (there are no black particles in these lobes), 
and that/z(L~,z(1)) = #(L1,2(1)) (the whole lobe is black) but/z(Ll,2(2)) </z(L1,2(2)) 
(part of the lobe is white). (Note: the observation that L~,2(2) is the first lobe to 
have white particles is specific to the geometry described in Figure 3.2; in general, 
L1,2(kf) can be the first lobe to have white particles, with any kf > 1, and a discus- 
sion similar to that presented here for the case ky = 2 applies. In particular, the 
formulas derived for this example are independent of kf.) As an example of a conse- 
quence of equation (3.1.3), substituting i = j = 1, for n = 1, 2, in this equation 
shows that the amount of black species in region R1 decreases by the area of the 
lobe L1,2(1) after the first iteration and by/~(Ll,2(1)) after the second one. 
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Fig. 3.2 a-c. The species motion 

We now discuss how the content of the lobes depends on the lobe intersections 
associated with the chosen geometry. Since in this example all the L2,1(n) 
lobes are initially contained in region R2, L~,l(n)= 0 and LZ2,1(n)= L2,1(n) 
for all n. We have 

#(L~,a(n)) = O, tz(L~,,(n)) --/z(L2,,(n)). (3.1.4) 

Now we wish to describe L],2(n), i = 1, 2, in terms of the lobe intersections. 
Consider Figure 3.2a. Note that Ll,z(n) are contained mainly in R1 for small n. 
The parts that are not contained in R1 are contained in L2,~(k) for some k < n. 
For example, LI,2(1) is completely contained in R1 and therefore contains only $1 
particles, while L1,2(2) A/-~,1(1) is a non-empty set and therefore L1,2(2) contains 
#(L1,2(2) A/22,1(1)) white ($2) particles. Thus 

/z(L~,2(2)) = #(L~,2(2) ,'q L2,1(1)), 

~(LI,2(2)) =/z(Ll,z(2)) -- #(LZ,z(2)), 

and, in general, 

n--1 
L,~,2(n) = L/ (zl,2(n) r~ L~,I(~)), 

k = 1  

L],2(n) = Li,2(n) -- L2,2(n). 
(3.1.5) 
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In obtaining formula (3.1.5) we use the following properties: 
a) Particles belonging to L2,z(n) must be in R2 initially and must enter R1 

before iteration n; hence, they are contained in a lobe that leaves region R2 and 
enters region R~ before iteration n, namely, in an L2,~(k) lobe with k < n. 

b) L~,2(n ) C Li,2(n). 
c) All of  the L2A(k) lobes are completely contained in RE; hence, we are guar- 

anteed that the right-hand side of the first equation in (3.1.5) contains only particles 
of species S:. 

The observation that there is a correspondence between lobe intersections and 
lobe content, as manifested in equation (3.1.5) for this example, is one of the 
backbones of  this work. We prove in the next section that a similar formula 
holds in the general case. 

Using equations (3.1.3), (3.1.4), and (3.1.5), we can now write TL2(n ) in 
terms of the area of the intersections of the lobes LL2(n) and L2,1(k) for k < n 

T,,a(n) - -  T1,2(n - -  1) = #(LI,2(n)) -- t,(L~,l(n)) 

= #(Ll,E(n)) -- /z \~L1 (Ll,z(n) f~ L2,~(k)) . (3.1.6) 

Now we use the dynamics of the lobes to demonstrate that the measures of all 
these intersections can be obtained from, for example, the measure of the inter- 
sections between the lobe L1,2(1)and the n -- 1 forward iterations of L2,~(1). The 
rules that enable us to achieve this result are as follows. 

A1. By definition, after k -  1 iterations of the map, the lobe L2,1(k) is mapped to 
lobe L2,1(I); similarly, after k -- 1 iterations, lobe Li,2(k ) is mapped to La,2(1). 
A2. By area preservation, for any set A in phase space, #(A) = t , (Fk(A))  for all k. 
A3. The L2,1(k) lobes are disjoint; namely, L2,~(k) A L2,~(l) = 0 for k 4= 1. 

Using the first two rules, we obtain the following result: 

#(LLz(n ) f~ L2A(k)) = Iz(F -"+1 L1,2(1) #~ F -k+l Lz, l(1)) 

=/z(L1,2(1)/5 F n-k  L2,1(1)). (3.1.7) 

Therefore, using (3.1.5) and (3.1.7), we find 

n--1 (L1 ,2 (n )L2 ,1 (k ) ) )  n-1 I~(L~.2(n)) # 

n--1 

= ~] #(L~,2(1) • #L2,~(1)) ,  (3.1.8) 
/=1 

r =/z (g l ,a (n) )  --/z(L2,a(n)) = #(L,,2(1)) --/z(L2,2(n)) �9 

Here we used the third rule to conclude that the area of the union of the lobe 
intersections is equal to the sum of their areas. Substituting (3.1.8) into (3.1.6) and 
using /z(L2,1(n)) -----/z(L2,t(1)), we find 

n--I 
TLa(n ) -- T1,2(n - -  1) =/z(LI,2(1)) -- ~ /z(LL2(1) A TtL2,1(1)). 

l=1 
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Hence 

Ta,2(n) = T,,2(0) + /z(L1,2(1)) -- ~ #(L~,2(1){5 FtL2,1(1)) 
k = l  l = l  

n--1 

= nlz(Ll ,z(1)  ) - -  ~ (n - - / ) / z ( L l , z ( 1 )  f~ FtL2,1(1)), 
1=1 

and using (3.1.1) and (3.1.2), we find that all the other T~d(n ) can be obtained 
from the quantity above since 

Tl,z(n) -- T1,2(n - -  1) = --[Tl,i(n) -- Ti , l (n  - -  I)] 

-~ --[Tz,2(n)  - -  T2,2(n -- 1)] = T2,1(n) -- T2d(n - -  1). 

Hence the only quantities that one needs to compute to find T~,s(k ) for k ~ n are 
1) #(L1,2(1)), 
2) #(L1,2(1)f~ FIL2,1(1)) for l = 1 . . . . .  n -  1. 

To summarize Example 1, we distinguish between properties special to this case, 
which make it the "simplest" interesting problem, and properties that hold gener- 
ally. 

The following properties are special to Example 3.1: 
a) The L2,1(lc) lobes are all contained in R2, which also implies that once an 

La,z(k)  lobe leaves region R1 it cannot enter it again. 
b) The Ll , z ( k )  lobes cannot intersect each other nor can the L2,1(k) lobes inter- 

sect each other. 
c) The area of the intersections of all the lobes can be obtained from the area 

of intersections of the forward iterations of only one lobe with another lobe. 
Properties 1-5 are of a general nature. 

P1. With no loss of generality, one can always assume that only one lobe is ex- 
changed between neighboring regions. 
P2. The quantities T~j(n) are determined by the lobe content. 
P3. The lobe content is determined by the lobe intersections. 
P4. The lobe dynamics give a tool to compute the lobe intersections. 
PS. Area conservativon gives global results about the relations between the total 
transport rates between the different regions. 

R e m a r k  3.1.  We discuss here in more detail Remark 2.3. In this and all other 
examples, we assume that L2,1(1) f~ L1,2(1) = 0 (and hence L2,1(n) f~ L1,2(n) = 0 
for all n). However, in practice the situation may be different; for example, we 
expect that if the forcing of the particle in the cubic potential has large amplitude 
and slow time dependence this intersection will not be empty. If  L2,1(1) f~ LI,2(1) 
~: 0, then by the definition of the lobes, this intersection stays in the same region 
under an iteration of the map (see Figure 3.3). This is an inconvenicne, since it 
does not fit into our description of the flux mechanism where particles in LI,2(1) 
leave region R1 while particles in L2,1(1) enter it. We therefore redefine the lobes 
to exclude the intersection region and, using the redefined lobes, we proceed with 
the same formulae (see Figure 3.3). Thus we continue to assume that L2,t(1) #~ 
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LI,=(1) = 0, being aware of the need to redefine the lobes in case the usual lobe 
definition does not satisfy this condition. An alternative (and more complicated) 
approach would be to modify the formulas to include this possibility. 

\\\ Fq~ qz ~.~i.,i ) n E~('~)) 

L )o, 
�9 ~ - - ' -  ~'~CI) 

Fig. 3.3�9 Redefining a lobe. (The redefined lobes:/~1(1) = E1(1) - -  El(l)/5 D1(1) 
and, similarly,/)a(1) = 91(1) -- D~(1) • El(l)) 

Example 3.2. Suppose that the map F defined on R z has one hyperbolic fixed 
point p and that both branches of the stable and unstable manifolds are allowed 
to intersect each other (see Figure 3.4). This phase space represents, for example, 
the Poincar6 map of the Duffing equation with no damping and with a negative lin- 
ear stiffness term that models the motion of a magnetoelastic beam (see GUCK~N- 
I-I~IM~R & HOLMES [1983] for physical motivation and references). The motion near 
the right elliptical fixed point, in R1, corresponds to the beam vibrations with the 
tip pointing to the right magnet, while motion near the left elliptical point corre- 
sponds to the tip pointing to the left. 

R 3 

Wp_ 

_F  \ 1�88 

F1 n \ / N  2t": 

Fig. 3.4. The geometry of the regions for the second example 

In this example there are again three regions in the phase space, but this time 
all of the regions participate in the transport process. The regions are defined as 
follows (see Figure 3.4): let q+ E W~,+ A W~+ be a pip, and denote the region 
bounded by the segments S+[p, q+] and U+[p, q+] by R1; similarly, let qi-E 
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W~,_ #~ W;,_ be a pip, and denote the region bounded by the segments S -  [p, qi- ] 
and U-[q, q l ]  by Rz. Let R3 be the complement of RI and R2. 

As in the previous example, we wish to address the following question. If, 
initially, particles of species S,. are uniformly distributed in region R~ for i = 
1, 2, 3, what will be the distribution of S i in region Rj for i, j = 1, 2, 3 after n 
iterations of the map F? 

We again denote the amount of species Si, i = 1, 2, 3, that is contained in re- 
gion Rj just after n iterations of the map by T,.,/n), and our goal is to determine 
Tij(n), i , j  = 1, 2, 3, for all n. 

As an example of the use of these quantities, T1,2(n)//z(R1), is the fraction of 
particles that start in R1 and lie in R2 after n iterations of the map; hence it is 
equal to the probability that a magnetoelastic beam initially pointing to the right 
magnet will point to the left magnet after n periods of the forcing. 

First let us describe some consequences of the conservation of #(Rj) and Si 
(i.e., PS). Analytically, this is expressed by the following equations: 

3 
(T/,/n) -- Ti,/n -- 1)) = 0, i ---= 1, 2, 3, 

j = l  
3 (3.2.1)  

~] (T/d(n) -- Tid(n -- 1)) = 0, j = 1, 2, 3, 
i=1 

constituting five independent equations for the nine unknowns T~,j(n) -- Ti,j(n -- 1). 
I f  the map F has a symmetry under a 180 ~ rotation about the hyperbolic fixed 

point p so that regions R1 and R2 are actually identical, then the following three 
relations between the T~j(n)'s hold: 

r l ,2(n)  = r2,1(n), 

T1,3(n) = T2,3(n), (3.2.2) 

Z3,1(n ) = T3,2(n) ,  

and these relations, together with (3.2.1), constitute eight equations for the nine 
unknowns. Hence finding one Tij(n) is sufficient to obtain a complete solution 
for all the transport rates T,.j(n)'s. In Section 7 we demonstrate how to find the 
Poincar6 map symmetries from the ordinary differential equations for the un- 
damped Duffing equation. 

We now follow the same steps as in the previous example in order to obtain 
an expression for T~,j(n) in terms of the area of lobe intersections. Using P1 and 
Remark 2.3 we can assume that the flux mechanism between the regions is as 
described in Figure 3.4; namely, that one lobe, L3,j(n), enters and one lobe, Lj,3(n), 
leaves region R~, j = 1, 2, on iteration n. As before, we can write easily how the 
Ti,j(n)'s depend on the content of the lobes, 

3 
T/d(n ) -- T / j ( n -  1) = ~ {/z(L~,j(n)) --#(Lj ,  k(n))}, (3.2.3) 

where the superscript i for the lobes denotes the part of the lobe that contains 
particles of species Si, and L1,2(n) = L2,1(n) = Lia(n) = 0 for i = 1, 2, 3. Equa- 
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tion (3.2.3) is the manifestation of P2 for this example. To proceed, we want to 
represent the portion of a lobe containing a given species as an intersection of 
lobes. This is the manifestation of  P3 ,discussed earlier. Example 3.2 is more 
complicated than Example 3.1 at this stage, since lobes that leave one region 
can reenter the same region at a later time, and lobes from the same "family" 
may intersect each other; namely, Lj,k(n ) • Lj,g(m) is not necessarily empty for 
m 4= n. Before we write down the rules that relate the lobe content to their 
intersections, let us describe the geometry of some of the lobe intersections as 
illustrated in Figure 3.5. Consider the L3,1(n) lobes in Figure 3.5, and say we 
are interested in finding the portion of these lobes that are filled with particles 
of species $2, namely, L2,1(n). For n = 1, 2, 3, the lobes L3,~(n) are completely 
contained in region R3, and, therefore /z(L3Zj(n)) = 0 for n = 1, 2, 3 (Note: 
for illustration we need to take a specific configuration of lobe intersections, 
but the general formulae are independent of this choice. For example, we could 
have the first k lobes completely contained in R3 where k is any number greater 
than 1.) However, L3,1(4) has a portion that is contained in R2 and hence 
contains particles of species $2. Now this portion is also contained in lobe 
L2,3(1), a lobe which leaves R2 after one iteration. Geometrically, since Wp~,+ 
cannot intersect Wp~,_, the only route for the L3,1(n) lobes to invade region R2 
is through the L2,3(k) lobes, where k < n. An analytical justification for this 
statement is that, since n -- 1 iterations of F map L3,1(n) to L3,a(1), which is 
completely contained in R3, any portion of L3,1(n) that is contained in R2 must 
leave R2 before the n -  t iteration, and therefore must be contained in a 
L2,3(k) lobe with k<=n--1. Thus L~,a(n) is contained in the union of the lobes 

~ 3"i~3~ ,1 ( 4 ) # L 3 , 4 ( 2 )  

\ \ ~- La4(5) ~ R5 ~ L3 4(.,I ) 

, 2 . . . ~  ~.  

L3.t(51 N La,:~(2) N L3,2(4 } 
= L3,t(5) N L3,z(4) 

L3,4(4} N L2,3('1) 

Fig. 3.5. The lobe intersections 
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that leave R 2 before iteration: 

(n) Q [L3,~(n) L2,1 /5 
k 

o-1 ] 
~J L2,3(k) . (3.2.4) 
k=l  

The same argument applies to all the lobes; namely, any part of the lobe Lj, g(n) 
that is contained in a region Ri, i 4= j must be contained in a lobe that leaves 
region Ri before iteration n. 

Now we want to change the " ~ "  sign in (3.2.4) to an equality. For lobe L3,1(4 ) 
we can do this, since L3,1(4)/5 L2,3(1 ) is completely contained in RE. However, 
looking at Figure 3.5 we find it not hard to imagine that for large n and k, 
L3,1(n)/5 L2,3(k) may have portions that are not contained in Ra (for example, 
L3,1(5)/5 L2,3(2) in the figure) and, therefore, to obtain an " = "  sign in (3.2.4), 
we need to replace L2,3(k) by L~,3(k), the portion of L2,3(k) which is contained in R2: 

n--1 ] 
L32,1(/'/) = L3,1(H ) / 5  ~ ]  L2,3(k) . (3 .2 .5)  

k=l  

In other words, we need to subtract the portions of the lobe intersections that are 
not contained in R2. 

However, (3.2.5) is still not good enough, since we want to express L2,1(n) in 
terms of lobe intersections so that we can use the lobe dynamics, as in the first 
example, to obtain simplified expressions for the transport rates. Using tke same 
argumem that led to (3.2.4), we find that any portion of L~,l(n) that is contained 
in a L2,3(k) lobe but is not contained in R2 must also belong to the portion of a 
L3,2(m ) lobe that is not contained in R2, where m < k < n, i.e., 

n--1 n--1 3 k--1 
L32,1(n) = ~j (Ls,l(n)/5 L2,s(k)) -- ~j ~.j ~,J (L3,,(n)/5 L2,3(k)/5 L~,2(m)). 

k=l  k=l  i=1 m=l 
i~-2 

(3.2.6) 

Consider, for example, Figure 3.5. The portion of L3,~(5)/5 L2,3(2) that is not 
contained in R2 is contained in L3,2(1), so that 

L2,1(5) = L3,1(5)/5 L2,3(1) ~ L3,1(5)/5 L2,3(2) -- L3d(5)/5 L2,3(2)/5 L3,2(1 ) .  

Moreover, note that the only route for Z3j(5) to intersect L3,2(1) is through an 
L2;3(m) lobe where 1 < m < 5. Specifically, in this example, we have 

L3,1(5)/5 L2,3(2)/5 L~,2(1) = L3,1(5)/~ L~,2(1). 

In general, the only route for the La3(n) lobe to intersect the L3,z(m ) lobes is 
through the L2,3(k) lobes and, therefore, we can always replace the triple inter- 
section by the intersection of two lobes by 

n--I 3 k--1 3 n--1 
U ~ L3,1(/'/)/~ L2,3(k) /5  L~,2(m) = ~ 'kJ L3,1(H ) / ~  L~,2(FH), 

k=l  i=1 m=l i=1 m=l 
i+2 i@2 

(3.2.7) 
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Therefore, using (3.2.6) and (3.2.7), we obtain 

/A(L2,1(H)) = / i  ( ~ 1  (L3, I(H)/~ L2,3(k)) _/gg ~ (L3,1(H)/~ L~,2(m)) . (3.2.8) 
\k= l  i=l 

i4:2 

Now, for small n, we expect that L~,z(rn) = 0 for m < n; hence 

3 
~/L~,z(m) = L3,2(rn). 
i=l 
i4e2 

Moreover, for suck a small n the sets under the union siga in (3.2.8) are disjoint, 
in which case (3.2.8) becomes 

n--1 n--I 
2 /z(L3A ) = ~ /z(La,l(n )/5 L2,3(k)) -- ~ /z(L3j(n ) A L3,2(m)). (3.2.9) 

k=l rn=l 

The somewhat surprising result is that (3.2.9) is valid for all n, even when 
L~,2(m) 4 = 0 and the sets under the union in (3.2.8) are not disjoint. Loosely speak- 
ing, the interchange of union and measure that leads to (3.2.9) exactly com- 
pensates for disregarding the superscript i in that equation. Disregarding the 
superscript corresponds to the subtraction of the parts of L3j(n)which origi- 
nated in Rz and belonged to at least two sets of lobe intersections: L3,~(n)/3 
L2,3(k) and L3,t(n)/5 L3,2(m) for some m < k < n. However, the portion of 
L3,2(m ) that belongs to R2 must also belong to a lobe that leaves Rz before the 
m th iterate, i.e., to a L2,3(1) lobe with l < m, which shows that the area of this 
portion is added twice through the first sum in (3.2.9) and subtracted once 
through the second sum. We show in the general proof below that in fact this 
portion must belong to t q- 1 L2,3(k ) lobes and to t L3,2(m) lobes, where 
t ~ 1 ; hence, the effect of interchanging the union and area sign and ignoring 
the content of the L3,z(m ) lobes give exactly the right counting. Note that the 
circumstances above occur for n large enough that the lobes L2,3(k ) are no 
longer disjoint; namely, an L2,3(k) (k < n) lobe is so stretched that it gets out 
of region R2 through an L3,z(m) lobe, encircles region R1, and comes back to 
R 2 from the other side to intersect an L2,3(l) lobe with I < k. (It is muck too 
complicated to draw L2.3(k ) in this case. We suggest that tke reader stare at 
Figure 3.5 and construct the route L2,3(k) goes through.) 

The general formulation given in Section 4 gives us formulae like (3.2.9) for 
all of the families of lobes Lgj(n) and all of the species Si: 

3 3 n--1 
/z(L~,j(n)) = ~ 2 f~(L1,,j(n) n L,,s(m)) -- • Z tz(L~,j(n) #~ L,,i(m)), (3.2.10) 

s=l rn=l s=l m=l 

where the first sum on m is from 1 to n so that (3.2.10) also applies to the case 
k = i, in which Li,j(n) itself is contained mainly in Ri and therefore has to be 
added in through the first sum. 

This demonstrates P3 for this example. We next simplify (3.2.10) by using 
the lobe dynamics. This illustrates P4 discussed earlier. Tke rules for the lobe 
dynamics, which are equivalent to A1 and A2 of Example 3.1, are given by: 
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B1. By definition the lobe L~,j(n) is mapped to lobe L~o(1 ) after n - -  1 iterations, 
or in general FlLk,j(n) is mapped to Lko(n -- l) for n > I. 
B2. For any set A in phase space #(Fk(A)) = #(A) for all k. 

Using these two rtdes, we rewrite formula (3.2.9) to obtain 

2 = L3,1(1)/% F -k+l L2,3(1)) ~(L3,0 f2 #(F -"+' 
k=l 

n--I 
--  Z #(  F-n+l  L3,1(1)/~ F-m+ 

m=l 
1 L3,2(1)) 

#(L3,1(1 ) {-~ F n - k  L2,3(1)) -- n21 ~(L3,1(1 ) A F n-m L3,2(1)) 
k=l m=l 

n--1 
k /*(Fk-" L3,,(1) A L2,3(1)) -- Z t z (Fm-"L3, ' (1)  A L3,2(1)). 
k=l m=, 

(3.2.11) 

This shows that we need to find the n --  1 forward iterations of  L2,3(1) and 
L3,2(1 ) or the n -  1 backward iterations of L3,1(1) to determine L~,l(k ) for 
k = 1, . . . ,  n. Similarly, using (3.2.10), B1, and B2 we can write 

2 ~ n--I 
#(L,,3) = #(L,,3(n ) A L2,3(m)) - -  ~,, #(L1,3(n )/'~ L3,2(m)) 

m=l m=l 

n--I 
= k #(L1,3(l) n F n-m L2,3(1)) -- Z #(LL3(1) n f n-m L3,2(1)). 

m=l m=l 
(3.2.12) 

Therefore, using (3.2.3) for i = 2, j  = 1, we can compute T2,1(n), the amount of 
species Sz in region Rt after n iterations of the map, by computing the n -  1 
forward iterations of L2.3(1) and L3,2(1): 

T2,,(n) = T2,,(0) + ~ [~(LL(0 ) -/~(L~,~(0)] 
l=1 

k l--1 l--1 
= 0 @ {Y0/z(L3'I(1) A FmL2,3(1)) -- Z #(L3,1(1) A FmL3,2(I)) 

l=1 = m=l 
l--I l--1 

- -  m=O ~ #(L"3(1) & FmL2'3(1)) 4- m=IZ #(L1,3(1) A FmL3,2(1))} 

n--1 
= Z (n -- m) {/z(L3,1(1 )/'~ FmL2,3(1)) --/z(r3,~(1) f~ FmL3,2(1)) 

m~l 

--/z(L1,3(1 ) A FmL2,3(1)) -~- #(L1,3(1 ) A FraL3,2(1))}. (3.2.13) 

We can write the corresponding expressions for all the T~o(n)'s in a similar 
fashion, or compute three more Tt0(n)'s and use the conservation of/z(Rj) and 
S;, namely, equations (3.2.0,  to find all the T~j(n)'s. 
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If  the map F has a symmetry under a 180 ~ rotation we can use (3.2.1) and 
(3.2.2), which constitute eight equations for the nine unknowns, together with 
(3.2.9), to obtain a complete solution for all the transport rates T~j(n)'s from the 
intersections of  the n - -  1 forward iterations of L2,3(1 ) and L3,2(1 ) with L1,3(1 ) 
and L3,1(1 ). 

Example 3.3. Suppose that the map F, defined on the cylinder, denoted by T•  
(a, b) where T is the circle, has a hyperbolic fixed point p, and both branches of 
the stable and unstable manifolds are allowed to intersect each other, as in Fig- 
ure 3.6a. The interval (a, b) can be finite or infinite, and the boundaries a, b may 
depend on the T co-ordinate, x. It is easier to visualize the phase space embedded 
in R • (a, b), so that instead of  viewing x on a circle, we consider x E R and lift 
F to its universal cover, viewing it as a map from R •  (a, b) into R •  (a, b), 
which is periodic in the x variable (see Figure 3.6b). This phase portrait appears 
in many applications: for example, the t/1 resonance band of a two-dimen- 
sional area-preserving diffeomorphism; the Poincar6 map of a pendulum with 
time-periodic forcing, and the Poincar6 map, in the physical space, of a Kelvin- 
Stuart Cat's Eye fluid flow with perturbations periodic in time and space (see 
STUART [1971]). The way one chooses the boundary does not affect the for- 
mulation (the KAM tori and the phase space boundaries are two natural can- 
didates for the boundaries in many applications). 

fy=b(x) 

Rt 

W u 

ql ' ~ _  % s \ 

b R3 

Fig. 3.6 a and b. The geometry of the regions for the third example 

For  x E [0, 2~] there are three regions in phase space, and all of them parti- 
cipate in the transport, where the same picture repeats itself in all the strips 
x E  [2n~, 2(n + 1)~r) for all n. The regions are defined as follows (see 
Figure 3.6b): let q+ E W~.+/5 W~+ be a pip, and denote by R1 the region 
which is bounded from below by the segments S + [p, q+] and U+fp, + ql ], and 
from above by the curve y = b; similarly, let q~- E W[,,_ f~ IX/i_ be a pip, 
and denote the region bounded by the segments S+[p,q+], U+[_p,q+], 
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S-[p ,  q?], and U-[p,  q~] by R 2. Finally, denote the complement of R~ and 
R2 by R3. Again, we assume that, initially, particles of species Si are uniformly 
distributed in region Ri, i = 1, 2, 3, and we wish to determine T~j(n), the 
amounts of species Si, i = 1, 2, 3, that are contained in region R j  after n 
iterations of the map. 

As an example of the use of the transport quantities, T2,1(n)/#(R2) is the 
fraction of particles that start in R2 and end up in R1 after n iterations of the 
map. Or, more physically, it is the probability that a pendulum initially 
oscillating will begin rotating with positive velocity after n periods of the for- 
cing, or the probability that fluid starting inside a Cat's Eye will be transpor- 
ted to the upper half plane after n periods of the perturbation. 

As before, conservation of #(Rj) and Si (i.e., P5) implies 

3 

(T/,/n) -- T/j(n -- 1)) = 0, i = 1, 2, 3, 
j = l  

3 (3.3.1) 

~] (T~d(n) -- T/j(n -- 1)) = 0, j ----- 1, 2, 3; 
i = 1  

constituting five independent equations for the nine unknowns T~j(n) -- T~,j(n -- 1). 
If the map F has a symmetry under a 180 ~ rotation about the origin so that 

regions R~ and R3 are actually identical, then the following three relations between 
the Tid(n)'s hold: 

T1,3(n) = T3A(n), 

T2,1(n) = Tz,3(n), (3.3.2) 

TLE(n) ~-- Ta,z(n), 

and these relations, together with (3.3.1), constitute eight equations for the nine 
unknowns. Hence finding one T~,j(n) is sufficient to obtain a complete solution for 
all the transport rates. 

We now follow the same steps as in the previous example in order to obtain 
an expression for T,.j(n) in terms of the area of lobe intersections. Using P1 and 
Remark 2.3 we can assume that the flux mechanism between the regions is as de- 
scribed in Figure 3.6b; namely, that one lobe, L2j(n), enters and one lobe, L~,2(n), 
leaves region Rj, j = 1, 3, immediately after iteration n. As before, we can write 
easily how the Ti,j(n)'s depend on the content of the lobes: 

3 

T/, j (n)-  T , ; j (n-  1)----- ~ {#(L~,j(n))- #(Lj,~(n))}, (3.3.3) 
k = l  

where the superscript i for the lobes denotes the part of the lobe that contains 
particles of species Si, and 

Li,3(n) = La,l(n) = Li,~(n) = 0 for i = 1, 2, 3. (3.3.4) 

Equation (3.3.3) is the manifestation of P2 for this example. To proceed, we want 
to show how P3 is applied here. Tke reader has probably noticed that this 
example is very similar to Example 3.2 and, actually, the same formulae and 
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remarks apply. We illustrate this by reproducing (3.2.10) below (and using 
(3.3.4) in the process) for k ----- 1, j = 2, and i --~ 2, 3: 

t,~L~,z(n)) = 2 [#(L,,2(n) ,"h L2,,(rn)) q- #(L,,z(n) ~ L2,3(rn))] 
m = I  

n- -1  

--  ~.~ [ff(L,.z(n ) fh L,,2(m)) + #(L,.z(n) A L3.2(m))l, (3.3.5) 
m = l  

n - !  
ff(L~,2(n)) = ~ #(L,,2(n )/'h L3,2(m)) -- ~2 ff(L,,2(n) fh L2,3(m)). 

m ~ l  m = l  
(3.3.6) 

We now argue that (3.3.5) and (3.3.6) hold for this example based on the 
geometry of the lobes in Figure 3.7. And indeed, consider the L1,2(n) lobes in 
Figure 3.7; for n = 1, 2 these lobes are completely contained in R1 and 
therefore do not contain any $2 or Sa species. For n ~ 1 this is the case by 
definition. For n = 2, we learn from (3.3.5) that intersections of L1,2(2) with 
either L2,1(1) or L2,a(2) could contribute species $2 to L1,2(2), but, in this 
example, these intersections are empty. Therefore, by (3.3.5), #(L2,z(2), = 0, 
which is confirmed by looking at the figure. For n = 3 we observe that 
L1,2(3) contains particles of species $2, and these are all contained in the set 
L1,2(3)/~ L2~(1), the only non-empty set counted in (3.3.5) for n ---- 3. Finally, 
L~,2(4) intersects the lobes L2,1(1), L2,1(2), and L3.2(1), and equation (3.3.5) tells 
us that L2,2(4) is given by the area of the intersection of L1,2(4 ) with the first 
two lobes minus the area of the intersection with the third lobe. Looking at 
Figure 3.7 we see that, indeed, the last intersection is exactly the portion of 
LI,2(4) A L2,1(2) that does not belong to R2 and had to be subtracted. Moreover, 
this is exactly the portion of L1,2(4) that contains particles of species $3, and 
this is manifested by equation (3.3.6) for n = 4. 

R I R~ R I 

~ LI,2[4} 
[q,z(m 

~, ~ % , - ~  [ L 2 " 1 { 1  ) / /-- L 1 2['1 } 

, \ 
/ /  [ 

R~ R3 ~ . I  Rs . _ ~  L3 a[.,l } 

13 L24(2}R L32{4} ~L2d[~} 

Fig. 3.7. The lobe intersections 
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Note that #(Ll,2(n)) can be obtained either from (3.2.10), or from 

3 

#(f , . : ( . ) )  = Z 
i= I  

resulting in exactly the same expression. 
We can now simplify (3.3.5) and (3.3.6) by using the lobe dynamics as stated 

previously by P4 and the area preservation of F to express the lobe content in 
terms of intersections of forward iterations of two lobes with two other lobes. 
For example, to obtain L~,z(n), we need to find the n -  1 forward iterations of 
L2,3(1 ) and L3,2(1), since (3.3.6) implies 

n--1 n--1 

#(L~,2(n)) = ~2 re(L,,2(1 ) fh [mL3,2(1)) -- ~ #(L,,2(1) fh FmL2,3(1)). (3.3.7) 
m = 0  m = l  

Or, in general, (3.2.10) implies 

3 n--1 3 n--1 

#(L~,y(n)) ---- ~ ~ #(L~z(1 ) A FtL,,,(1)) -- ~ ~ #(Lk,/ l)  A FtL,,,(1)), 
s = l l = 0  s = l  1=1 

(3.3.8) 

which shows that we can immediately write 

n--1 n--1 

#(L~,l(n)) -= Z #(L2,,(1) A/=mL3,2(1)) -- '~  #@2,1(1) A/;raL2,3(1)). 
m = 0  m ~ l  

(3.3.9) 

Hence we can find T3,1(n), the portion of particles transported from the lower half 
plane to the upper half plane, in terms of the n -- 1 forward intersections 
of the lobes L2,3(1) and L3,:(1) with the lobes L~,z(1) and L2,~(I) (for more 
details, see equation (3.2.13)): 

T3,1(/,/) = T3,1(0 ) -]- ~ [#(L3,1(0) - -  #(L~,2(/)) ] 
i= i  

n - I  
= ~ (n -- m) {#(L2,,(1)/5 FmL3,2(1)) --/z(L2,1(1) A FmL/,3(1)) 

r r t= l  

--/z(L,,2(1) A F'nL3,2(1)) +/z(L,,2(1) ~ FmL2,3(1))}, (3.3.10) 

and, as before, we can compute the other T/z(n)'s using either (3.3.3) and (3.3.8) 
or the conservation laws and the symmetries (equation (3.3.1) and (3.3.2)). 

To conclude, we demonstrated that equation (3.2.t0) governs the transport in 
this geometry as well, which saved us the need of having to go through the 
same steps as in Example 3.2 in order to find how to express the content of 
the lobes in terms of the lobe intersections. Thus we made a major shortcut in 
showing that the consequences of P3 in this example are the same as in 
Example 3.2. This is essentially the role of the general formulation and its 
proof: to guarantee that, in any given geometry in which ,transport is governed 
by the motion of lobes, one can deduce from the lobe definitions (e.g., (3.3.4) 
in this example) and from the general formulae which lobes and which 
intersections are needed to find the transport rates. 
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Note that this example has the same geometry as a typical I/1 resonance band. 
One of the questions addressed in the study of transport in area-preserving maps 
is the influence of the resonance bands, called also island chains, on transport 
properties. The main reason for these studies is the observatiort that statistical 
approaches for predicting the transport rates are quite successful in the absence 
of islands but fail when they are present (see LICm:ENBERG & LI~BERMAN [1983]). 
KARNEY [1983] addressed the question of the "stickiness" of an island chain by 
numerically iterating a map which models the behavior near a resonance. He 
started the iteration with an initial condition outside the island and computed 
the trapping statistics fr of the orbit, defined to be proportional to the number 
of orbit segments which have a length t, the idea being that if a trajectory is 
trapped in a p/q resonance band it will circle the origin p times in q iterations 
and, therefore, the segment of length t = p/q will appear frequently. The trans- 
port rates supply an alternative way to define the stickness of an island chain; 
define the interior of the islands to be region R2, and the bounded regions 
above and below the chain that are tested for the "stickiness" to be R~ and 
Ra, respectively; then 

stickiness ~ Tl'z(n) -k T3,2(n) 
/z(R1) + / ~ ( R 3 )  " 

The average of the above quantity over n should be equal to the average of the 
trapping statistics over the regions R1 and R3. This suggests that an alternative 
way to examine the island chain stickiness is by computing Ti,2(n) and T3.2(n), where 
the trapping statistics may be used to approximate the lobe intersections by choos- 
ing initial conditions in the lobes/;2,3(1 ) and L3,2(1 ). 

4. General Formulation 

In this section we present the definition of the general problem addressed in 
this paper, and state the main theorems, which are the mathematical formulation 
of P2, P3, P4, and P5 for a general configuration. 

4.4. Assumptions and Notation 

Consider a two-dimensional phase space, on which an area-preserving and 
orientation-preserving diffeomorphism F is defined. Let Pi, i = 1, . . . ,  N, denote 
hyperbolic fixed points of the map with their associated 2N branches of stable 
and 2N branches of unstable manifolds. Let Rj, j = 1 . . . .  , N• denote the regions 
(see Definition 2.4) in phase space, and assume that the regions are well defined 
so that they are disjoint and their union covers all phase space. This assumption 
implies that when transport is permitted between neighboring regions, R~ and Rj, 
the boundary between them consists of a segment of a stable and a segment of an 
unstable manifold, and that the only mechanism for transport is the motion of 
lobes, as described previously for the three examples. With no loss of generality 
(see Remark 2.1, P1), we assume that across the boundaries that allow transport, 
only one lobe is exchanged every iteration. 
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Denote the lobe that leaves region Rk and enters region Rj after n iterations by 
Lkj(n). L~3(n) = O when transport is not permitted, namely, when Rk and Rj 
do not have a common boundary that consists of both stable and unstable seg- 
ments which intersect each other topologically transversely, or when k = j. 
With no loss of generality (see Remark 2.3 and Section 3), we assume that the 
lobe Lk,j(n) is well defined in the sense that, after n --  1 iterations, and just before 
the crossing cf  the boundary between regions Rk and Rj, the lobe is completely 
contained in region R~; after iteration n, just after the crossing, it is completely 
contained in region Rj (this condition is trivially satisfied when the lobe is the 
empty set). This is equivalent to requiring that 

Le.j(n)/5 Lt,,~(n ) = 0 whenever k + 1 or j @ m. (4.1) 

We assume that, initially, particles of  species Si are uniformly distributed in 
region Ri, and we are interested in the redistribution of the species throughout 
the different regions by the map F. 

Denote by T/3(n ) the amount of species Si in region Rj just after n itera- 
tions of  F. Denote by L~,j(n) the portion of lobe Lkd(n ) that is occupied by 
species Si. 

4B. General Theorems 

The first theorem connects the transport rate to the amount of species Si in 
the lobes and is the quantitative manifestation of  property P2. 

Theorem 4.1. Given the above assumptions, the following relation between the 
transport rates Ti,~(n) and the lobe contents L~,t(n) holds: 

NR 
T/,~(n) -- Ti, j(n --  1) = Y~ [#(L~j(n)) --#(Lj,  k(n)) ] . (4.2) 

k = l  

Proof. By the definitions of the lobes and T,.j(n), 

Ti3(n) --  T/'3(n -- 1) = / z  (Q~,k=I FnLik3(n))--Iz(Nk~-I FnL~'k(n))" 

Since F is an area-preserving map this implies 

T/3(n ) -- Tid(n) --  1) = / z  ~,j(n) --/z Lj,k( �9 
1 

(4.3) 

(4.4) 

By definition, L~3(n ) Q Lk,j(n) and, by assumption, (4.1) holds; hence, the union 
in (4.4) is of disjoint sets and, therefore, the area of  the union equals the sum of 
the areas, resulting in equation (4.2). [ ]  

The second theorem is the quantitative manifestation of  P3 and, as shown in 
the examples, involves more delicate questions regarding the correct counting 
of  areas, which is not a trivial task when the sets involved intersect each other 
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many times. Theorem 4.2 obviates the difficult task of understanding the 
geometry and correctly accounting for each individual configuration as in the 
examples. Since the proof of this theorem is lengthy and its details are not 
enlightening, we present here only the outline, and leave the details for the 
appendix. 

Theorem 4.2. Given the above assumptions, the following relation between the lobe 
contents L~,j(n) and the lobe intersections holds: 

NR NR n--1 

t~(Li~,j(n)) = ~ 2 tz(L~,j(n) f~ Li,~(m)) -- ~ ~_~ /z(Lk,j(n) f~ Ls,~(m)). (4.5) 
s = l  m=l  s = l m = l  

Outline of the proof. As demonstrated in the examples, for small n or for "sim- 
ple" geometries equation (4.5) is obtained by interchanging union and area signs 
of disjoint sets, while for the more complicated geometries the sets are not dis- 
joint, and one has to prove that interchanging the signs leaves the counting 
right. We break down the proof of Theorem 4.2 into two cases as described 
below, although Case 1 is contained in Case 2, we discuss it separately, since 
we believe that it gives more insight into the issues that are involved. 

We start by proving that the the following relation holds, 

NR n 

L~d(n ) = k.J ~J [Lkd(n ) /5  L~,~(m)]. (4.6) 
s = I  m = l  

Then we distinguish between the simple (Case 1) and the more complicated 
(Case 2) cases. 

Case l .  L~,i(m)=O for m =  1 , . . . , n  and s =  1 , . . . ,NR.  
Case 2. Lis,i(m) =~= 0 for some m, s, 1 ~ m ~ n and 1 ~ s ~ N R. 

Outline of the proof for Case 1. The proof of Case 1 consists in showing the follow- 
ing six steps: 

A1. If  i is regarded as fixed and m and s as variable, the sets L~,,(m) are disjoint. 
B1. The set L~,~(m) is given by 

NR m--1 

Z~,s(m) = Li, s(m) -- ~ ~J [Li,,(m) f~ L,,i(l)]. (4.7) 
r - -1  l = i  

El.  If  i is regarded as fixed and l and r as variable, the lobes L~,i(l) are disjoint. 
D1. If  i, r, and l are regarded as fixed and m and s as variable, the sets Li, s(m) A 
Lr, i(l) are disjoint for all m > L 
El.  The following identity holds: 

Li,,j(n) f~ L~,i(l) #~ ~,j' Li,s(m) = Lkd(n) P~ Lr,i(l). (4.8) 
-- m = l + l  

F1. Substitution of equations (4.7) and (4.8) into equation (4.6), reindexing, 
and use of At ,  C1, and DI to interchange the union and the area signs in the new 
equation gives (4.5). 
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Outline of the proof for Case 2. In this case we show, using elementary set theory, 
that equation (4.5) is correctly balanced; namely, if a "small" set A (note: "small" 
will be explained in detail in the appendix) is contained in L~,j(n), then/z(A) is 
added NA times through the first sum ia equation (4.5) and subtracted N A -- 1 
times through the second sum so that #(A) is counted exactly once. Similarly, 
if A is not contained in L~,j(n), its area is added and subtracted MA times through 
the first and second sum (respectively) to yield zero contribution to the right-hand 
side of (4.5). The number of times #(A) is counted depends on the number of lobes 
containing A and is essentially equal to the number of times A enters and leaves 
region Ri until iteration n. [ ]  

Theorem 4.2 supplies us with the relation between the lobe content and the 
lobe intersections. We now want to employ the relation between the lobe inter- 
sections and the lobe dynamics to transform equation (4.5) to a more useful form 
(i.e., express P4 for the general case). As seen in the examples, this step is trivial; 
all we need to use is the lobe dynamics rule, namely, that L~,j(n) is mapped under l 
iterations to Lga(n -- l) and the invariance of the area under iterations of F to 
obtain the following corollary. 

Corollary 4.3. The following relations between the lobe content and the lobe inter, 
sections hold, 

NR n--1 NR n--1 

tz(L~o(n)) = Y~ ~ #(Lk,j(l) • FlLi, s(1)) -- ~_a ~ #(Lkd(l) f~ FILs, i(l)), 
s = l l ~ O  s = l l = l  

(4.9 a) 

NR n--1 NR n--I 

= S ,  E #(F-IL ,AO L,,xa))  - -  S ,  L, ,AI) L A1)). 
s = l  l = 0  s ~ l  /=1  

(4.9b) 

The last theorem deals with the conservation laws and is the basis of P5. 

Theorem 4.4. The following 2NR conservation laws hold: 

NR 

(T/j(n) -- Tio(n -- 1)) = O, j = 1, . . . ,  NR, 
i = 1  

(4.10a) 

N R 

(T~o(n) -- T~o(n -- 1)) = 0, i = 1 ,  . . . .  NR, (4.10b) 
j = l  

and (4.10) constitute 2NR -- 1 independent equations for the (NR) z unknowns 
r ,j(n) - T a(n - -  1). 

Proof. The first equation states that the total flux of all species through region R i 
must be zero, since #(Rj) is conserved. The second equation states that the total 
flux of species S i through all the regions is zero, since the amount of Si in phase 
space is conserved. 
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It is easy to see that at least one equation of the 2NR equations in (4.10) is 
dependent on the others since the sum of the first NR equations minus the sum of 
the last NR equations is identically zero. To show that any 2NR -- 1 equations 
from (4.10) are independent, note that the first NR equations are clearly independent 
and so are the last NR equations. Excluding one of  the equations of  the first set, 
we find that every equation in the second set includes terms which are not  con- 
mined in any of  the other 2NR --  2 equations, and hence the 2NR --  1 equations 
are independent. [ ]  

Other quantities that may be of  interest are the portion of orbits that do not 
leave region Ri until iteration n, called Pi(n), and the portion of retrapped orbits 
for each region, namely, Ti, i ( n ) -  Pi(n). Pz(n)/#(R2) in Example 3.3, for 
example, is the probability that the pendulum will oscillate for at least n 
periods of the forcing, while [Tz,z(n) -- Pz(n)]/Tza(n) is the probability that a 
pendulum, going through an oscillatory motion before the first and after the 
n --  1 st periods of  the forcing are completed, has gone through other forms of 
motion in between the first and the n th  iterations. 

We express the Pi(n)'s in terms of  lobe intersections as follows: 

NR 

Pi(n) --  Pi(n --  1) = -- ~ {portion of  Li,.i(n) that belongs to R~ 
j = l  

and leaves it for the first time at iteration n} 

N R 

= --  ~] {/t(Lio(n)) --  portion of L~o(n ) that 

belongs to lobes which enter R~ before iteration n} 

= --  ~.~ {#(Lij(n)) -- /z  ~ (Led(n) fh Lk, i(m)) 
j = l  m 1 k = l  

- -  - - . 

j = l  m = l  k = I  

( 4 . 1 1 )  

In this case we cannot interchange the union and the area signs, since for large n 
the lobe intersections are not disjoint and, as opposed to (4.5), we do not have a 
second sum to balance this effect. However, in practice, finding the area of  the union 
is even easier than finding the sum of  the areas of  the lobe intersections; we 
showed that any set that is contained in two different lobes which enter region Ri 
must be also contained in a lobe which leaves that region in between the two 
entries. Hence, if one tests for intersections of F'LI,,,-(1) with Li,j(1) and disregards 
all portions of FmLk,j(1) that have left region Ri between iteration 1 and n, one gets 
exactly the area of  the union; in other words, once a portion of the lobe leaves 
region Ri, one need not keep track of its evolution. 
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5. Dissipative Systems 

In many applications the map F is not area-preserving (NAP); for example, 
when the continuous-time dynamical system has dissipation, the resulting Poin- 
card map is not an area-preserving map. Hence, a natural generalization of the 
previous analysis is to NAP maps. It turns out that, with some modifications, most 
of the analysis holds. 

Note that intersection of the manifolds in the NAP case has the same conse- 
quences regarding the tangling of the manifolds and the flux mechanism. The 
major difference is that the lobe area is not conserved under the evolution of the 
map; hence, one needs to be more careful when referring to the dynamics of the 
lobes. Another difference, which is relevant to the assumptions on the regions 
and geometry and not to the analysis, is that in NAP systems the presence of 
manifold intersections is less common than in conservative systems. In many 
cases the appearance of manifold intersections depends on the ratio between 
the amplitude of the forcing and the dissipation rate, where for sufficiently 
large dissipation there are no intersections of the manifolds (see GUCI(ENI-m~MER 
& HOLMES [1983]). In this section we point out how the previous formulation 
applies in the NAP case and supply modifications when necessary. 

5_4. Assumptions and Notation 

With the exception of F being a NAP map so that #(FA) ~ #(A) where A 
is a set in phase space, all the assumptions and notations are the same as in 
Section 4. 

5B. Theorems 

Following the same lines as in the previous section, we start by starting the 
relation between the transport rates and the lobe content. Note that in this case 
we need to specify at which iteration those quantities are related, since the area 
occupied by the species varies under the evolution of the map. The expression 
for the flux across the boundary is very similar to the one obtained for the 
area-preserving maps, but the formula for the transport rates Ti,~(n) is very 
different, the reason being that, in the NAP case, the area occupied by species 
S~ in region Rj changes under the action of the map due to two effects: 

1) Flux of species Si across the boundary of Rj at iteration n, denoted by 
ai,j(n). 

2) Change of the area occupied by species Si within the region Rj. 
The second effect is absent in the AP case. We start with stating the result for 
the flux ai,~(n). 

Theorem 5.1. Given the above assumptions, the following relation between the flux 
aij(n) and the lobes content L~,l(n) holds: 

NR 

ai,j(n) = ~ [#(F"L~j(n)) -- #(F"Lj, k(n)) ]. (5.1) 
k = l  
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Proof. By the definitions of the lobes and T/j(n), 

aid(n) = # ( ? l  FnL~,j(n)) -- tz Q~/N~ F'L~,k(n)) . (5.2) 

By definition, L~,j(n)C L~z(n) and, by assumption, (4.1) holds; hence, 

F~L~z(n) A F"L[z(n ) = 0 for all r 4= k, 

and, similarly, the F"Lj, k lobes are disjoint; hence the union in (5.2) is of disjoint 
sets, and the area of  the union equals the sum of the areas, resulting in equa- 
tion (5.1). [ ]  

Theorem 5.2. Given the above assumptions, the following relation between the 
i transport rate Ti,j(n) and the lobe content L~d(/) holds: 

Ng 
Tid(n) = Oi,j~(FnRj) @ ~ 2 [[~(FnL~,j(I)) - -  #(F'Lj,~(I))], 

k=l /=1 
(5.3) 

where Oi, j is the Kronecker delta. 

Proof. To express the change in Tij(n) we use recursively the effects of the flux and 
the change in area within Rj on the set Aij(n), defined as the set of  particles of 
species Si that are in region Rj immediately after iteration n, so that by definition 

T~,j(n) = tz( Ai3(n)) . (5.4) 

The recursion relation between the sets A~z(n ) is obtained directly from their 
definition and the definition of the lobes: 

Ai,j(n ) = {image of the portion of Aid(n -- 1) that stays in Rj} 

k) {flux of species Si into Rj on the n m iterate} 

NR ) NR 
n--1 i = F Ai, j (n- -  1) - -k . J  F L},k(n ) tJ k ] F"L~d(n ). 

k=l k=l 
(5.5) 

Using (5.5) and the same reasoning as in the proof of Theorem 5.1 to argue that 
the sets under the union sign are disjoint, we obtain 

NR NR 
#(Aiz(n)) = #(FAiz(n -- 1)) --  ~ Iz(F"Lj, g(n)) + Z [z(FnL~,j(n)) " (5.6) 

k=l  k=l  

Using (5.6) recursively n times together with (5.4) we obtain 

N R NR 
T~d(n) = tz(F"Ai,j(O)) -- Z 2 [z(enL~k(I)) @ Z 2 [z(enL~,j(1)) " (5.7) 

k=l l=1 k--I l=1 

Now, by the definition of A~,j(n), Ajz(0 ) = Rj and Ai,j(O)= 0 for i 4=j; hence, 
(5.3) is a direct result of (5.7). [ ]  
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For i @j,  (5.3) supplies an expression for the transport rates Ti,j(n) in terms 
of the lobe content. As in the area-preserving case, we can express the lobe content 
in terms of lobe intersections, leading to a computable expression for the T~j(n)'s. 
When i ---- j, we need to find tz(F"(Rj)). Luckily, we can express this quantity in 
terms of the other T~,/n)'s. 

Lemma 5.3. 

NR NR 
tz(FnRj) = #(Rj) -- Z Ti,j(rt) -~- Z Tj, i(n). 

i = l  i = l  
i+j i~Fj 

(5 .8 )  

Proof. By the definition of the sets Aij(n) the following relations hold, 

NR 
F"Rj = U Aj, i(n), 

i = i  

UR (5.9) 

Rj = V & j ( n ) ,  
i = I  

and since by definition the sets Ai, j(n) are disjoint (5.9) implies 

NR 

=  (F"Rj) - -  2 
i = 1  
i4~j 

NR (5.10) 
=  (Rj) - 

i = I  
i4-j  

Rearranging equation (5.10) and using (5.4) results in (5.8). [ ]  

We now show how to relate expressions like/z(F~L~k(/)) appearing in (5.1) and 
(5.3) to the lobe intersections. Note that in the proof of Theorem 4,2 we used only 
the lobe and the region definitions. Hence the theorem applies also for NAP 
maps; namely, the initial lobe content is given in terms of lobe intersections by 

NR l NR t--I 

#(L~3(l)) = • • Iz(L~,j(l)ALi,~(m)) -- • • tz(L~,j(l)/sL,,i(rn) ) . (5.11) 
s = l m = I  s=l m = l  

Using the lobe dynamics we can write 

NR l 
tz(L]~j(l)) = ~] ~ #(F- '+ ' rkd(1)/5 F-m+'Li,,(1)) 

s = l  m = l  

NR 1--1 

-- ~ ]~a tz(F-l+l(L~,j(1) t~ F-re+ILk, i(1)). (5.12) 
s = l  m = l  

The right-hand side of (5.12)is not a convenient expression to work with, since the 
n backward iterations of all the lobes appearing in the equation are needed. Fur- 
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thermore, we cannot alter it by shifting in F, as we did in the area-preserving case 
to obtain (4.9), since F is not area-preserving. Note that the flux and the 
transport rates are given in terms of the area of forward iterations of L~o(l ). 
It turns out that, since F is a diffeomorphism, we can just "operate" with F" 
on equation (5.12), resulting in an expression similar to (4.9a) for i,(F"L~o(l)). 

Theorem 5.4. Given the above assumptions, the following relation between the area 
o f  F~L~j(/) and the lobe intersections holds: 

NR l--1 

#(FnLi~o(1)) = Z ~ #(Fn-t+l(Lkd(1) A FmLi,~(1))) 
s = l  m=0 

lVR l-1 
-- 2 Z #(r"-l+l(Lko(1) f~ rmL~,i(1))) �9 (5.13) 

s = l  m = l  

Proof. Since F is a diffeomorphism, for all sets A, B in phase space we have 

A Q B e=> F~A Q FnB for all n; 
(5.14) 

A A B = O <=> P 'A  A F"B = O for all n. 

In addition, we showed in the proof of Theorem 4.2 that for a set A which is 
"small enough": 

1) If  A Q L~o(/), then 

(A Q Lkd(l) f~ Li,,t(mt), t = 1 , . . . ,  N A where N A ~ l} 
( 5 . 1 5 a )  L; ' {A (Lkd( l )  #~ ,i(mt), t = 1, . . . ,  NA -- 1 where NA ~ / } .  

2) If A f~ L~d(/) = 0, then 

{.4 Q Lkd(l) /5 Li,~t(m,) , t = 1 , . . . ,  MA where MA ~ l} 
(5.15b) 

<=> {A Q L~d(l)/5 L;, i(m),  t = 1, . . . ,  -VIA where MA ~ l}. 

Therefore, using (5.14) and (5.15) for a set D = F"A, we obtain 
1) If  D (F"(L~o(I) ), then 

{D Q F"(Lk,j(/)/~ L~,~t(mt) ), t = 1, . . . ,  NA where NA ~ l} 

<=> {D Q F"(L~,j(1) A ' -- = L~,i(mt)), t = 1, . . . ,  NA 1 where NA < / ) -  

2) If  D f~ F"L~3(1) = 0, then 

{D Q Fn(Lk,j(/)/5 Li, st(mt)), t = 1 . . . . .  MA where MA ~ l} 

r {D (F"(Lkd(l)  f~ L~,i(m~)), t = 1 . . . . .  MA where MA ~ l}, 

which shows that the following relation holds: 

NR l NR l--1 

#(F"L~,j(1)) = ~ ~_a I~[F"(L~d(I) t% Li, s(m))] -- ~ ~ #[F"(Lk,j(l) ~ Ls, i(m))]. 
s = l  m = l  s = l  m = l  
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Using F"(A  A B)  ---- F " A  A F " B  together with the lobe dynamics in the above 
expression results in (5.13). [ ]  

Note that in the area-preserving case we have the freedom to "operate" with 
F k with different k's for different sets in an equation, leading to expressions like 
(4.9b), while for the NAP case the same k must be used for the whole equation. 

Equation (5.1) together with (5.13) supply a convenient expression for the flux 
in terms of intersections of forward iterations of Li,~(1) and L~,i(1) with FLu,j(1), 
while (5.3) together with (5.13) supply the expression for the transport rates 
Tij(n ) in terms of forward iterations of these intersections. 

To obtain the equivalent equations for the conservation laws (4.10), we deduce 
first the following equations from (5.4) and (5.9): 

N R N R 

T/,/n) = ~ T/j(n -- 1) = #(Rj) ,  j -~-  1, . . . ,  NR ,  (5.16a) 
i=1 i=1 

N R  

~_~ T~j(n) = #(FnR~), i = 1 , . . . ,  NR.  (5.16b) 
j = l  

Equations (4.10a) and (5.16a) are identical and are actually a direct result from 
the definition of  the ~j(n) 's.  In general, the NR conservation laws of  (4.10b) do 
not have equivalent equations in the NAP case since there is no obvious relation 
between lz(F~Rz) and l z (Fn- lR i ) .  However, if the map F contracts (or expands) 
areas at a uniform rate 3 so that # ( F A )  = 3#(A) for any set A, then using 
(5.16b) one can write the following analog for the second NR conservation laws: 

N R  N R 

Ti,/n) = d "~, Tij(n -- 1), j = 1 . . . .  , NR, (5.17) 
j = l  j = l  

and the relation between (5.12) and (5.13) becomes trivial. This case appears in 
many applications, e.g., linearly damped oscillators. 

We find the equivalent quantities for the P~(n)'s in the same fashion that we 
fomad the transport rates for the NAP case. Define the set Bi(n) to be the set of  
particles of species St which have not left R~ until iteration, n so that 

e,(n) = ~(B,(n)).  (5.18) 

Then the following recursion relation between the B~(n)'s holds: 

Bi(n ) = {image of Bi(n - -  1) that is contained in Ri} 

= F(B~(n - -  1) -- F ~-1 {portion of Li, k(n) lobes that have not left R~}) 

N , [  N R , _ ,  ] 
= F(B~(n - -  1)) --  V fnL~,~(n) - -  k_,/ k.,/ f"(Le,  k(n) n L,,i(m)) . (5.19) 

k = l  s = l  m = l  

Therefore 

tz(B~(n)) = # (FBi (n  - -  1)) -- ~ F"L~,k(n)) - -  ~ t,J F " ( L ~ k ( n ) n  L ~ ( m )  , 
k = I  - -  m ~ I  " " 

(5.20) 
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where the first union sign can be interchanged with the area sign by the same 
argument as was used in the proof of Theorem 5.1, and the second union sign 
cannot be interchanged since the sets under it are not disjoint. Using (5.20) re- 
cursively n times, together with (5.18), we find 

k = l  l : 1  = = 

(5.21) 

where by definition Bi(O ) : Ri; hence the first term in (5.21) can be obtained 
using (5.8). Using the lobe dynamics we can simplify (5.21) further to obtain 

Pi(n) = p(F'~Ri) -- 2 2 (f"-t+tLi, k(1)) 
k = l  l=1 

L J F  (L,.k(1) F'%,,(1)) (5.22) 
' s = l  m = l  

The method used to evaluate this quantity is similar to the one in the area-pre- 
serving case with the additional complexity of having to iterate the lobe intersec- 
tions. 

Finally, we remark that these results may provide tools for understanding the 
structure of strange attracting sets of two-dimensional diffeomorphisms. Recall 
(see GUCKENHEIMER & HOLMES [1983]) that a strange attracting set is an attracting 
set that contains a transverse homoclinic orbit. The transverse homoclinic orbit 
gives rise to a lobe structure eaxctly as described in this paper (see ABRAHAM & 
SHAW [1982]) and is the chaotic heart of the strange attracting set. Our results 
imply that the only way an orbit may asymptotically approach the strange attract- 
ing set is through the lobes. Therefore, a detailed investigation of the lobe motion 
should reveal the structure of the strange attracting set. 

6. The Application 

In this section we explain how to apply the formulation developed above to 
a particular two-dimensional diffeomorphism. After discussing the application 
for maps, we conclude with a few notes about the construction of the Poincar6 
map, the tool that enables us to reduce the study of a two-dimensional time- 
periodic ordinary differential equation to a two-dimensional map. 

We now describe the steps one has to go through to apply the proposed method 
for computing the transport rates for a diffeomorphism F. With the exception 
of the last step, all of the steps are fairly easy to perform when one has some 
idea about the global behavior of the map (e.g., when the map is composed of a 
perturbation of an integrable system or after an extensive numerical investigation 
of the global structure of the map has been performed), and the techniques in- 
Volved can be found in several papers (for example, in LIN~ [1986], or MACKAY, 
MEISS, & PERCIVAL [1987]). Therefore, the main emphasis of our discussion 
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is on the last step, which involves the computation of the intersections of the rele- 
vant lobes. The steps are as follows: 

1) Find hyperbolic fixed points of the map. 
2) Find the segments of the stable and unstable manifolds of the hyperbolic 

fixed points up to the pips qi that determine the regions appropriately (the regions 
should be defined according to Definition 2.4 as well as the requirement that the 
regions be distinct and that their union cover the phase space). 

3) Find the segments S[qi, Fqi], and define the lobes according to Defi- 
nition 2.3 and Remarks 2.1 and 2.3. 

4) After labeling the regions, determine which of the regions do not have a 
common boundary allowing transport. This will show for which r, s the Lr,s(n) 
lobes are the empty sets for all n. 

5) Write the conservation laws (equation (4.10)) and the symmetry laws to 
find which of the T~,j(n) are needed in order to find all the interesting transport 
rates for the specific map. 

6) Write the relevant T~,j(n)'s in terms of the lobe intersections and find which 
lobes need to be iterated (equations (4.2) and (4.9)). At this stage, it is some- 
times beneficial to use conservation laws and symmetries in terms of the lobes 
themselves: 

NR NR 
tz(Lk,j(n)) = Z #(Lj,~(n)), Ic : 1 . . . . .  NR, 

=1 j = l  

NR (6.1) 

Z = j ,  k = 1 . . . .  , 
i = 1  

7) Find the intersections of the lobes that appear in the formulae for the rele- 
vant transport rates derived in Step 6. This step is much easier said than done. 
Note that after using the lobe dynamics the transport rates are expressed in 
terms of intersections of forward iterations of a few lobes, called the relevant 
lobes, with other Lr,~(1) lobes (for example, in Example 3.2, equation (3.2.13) 
shows that T2,~(n) can be found in terms of the intersection of the forward 
iterations of the two relevant lobes L2,3(1), L3,2(1), and the other lobes, Lr,~(1), 
r, s = 1, 3). We present three approaches for computing the intersections of 
the relevant lobes: 

a) The brute force method. Construct an array of grid points in the relevant 
lobes and obtain the area of their intersections with the other lobes by iterating the 
grid points and checking for their invasion of the other L~,s(1) lobes. 

b) The boundary method. Follow the boundary of the relevant lobes and cheek 
for the intersection of the relevant lobe boundaries with the L~,~(1) lobes. 

c) The generating function method. When F is an area-preserving and a twist 
map and is periodic in one co-ordinate (in some co-ordinate system), use the 
generating function of the map F to compute the area of the intersections. 

We now discuss in more detail the advantages and disadvantages of the three 
approaches. 
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The brute force method. The advantages of the brute force method are simplicity 
and robustness with respect to numerical round-off errors. Given the Lr,s(1 ) lobe 
boundaries that were found in Step 3, the algorithm for deciding whether a grid 
point is contained in such a lobe after iteration m is rather simple, and the area 
of the intersection of the m th iteration of  a relevant lobe with an Lr,~(1) lobe is 
approximated by the number of grid points found in an L~,~(1) lobe after 
iteration m times the area element associated with the grid points. Using a 
su/ficiently refined grid provides an accurate measurement of the area of the 
lobe intersections, since the numerical round-off errors can be thought of  as a 
distortion of  the grid which, on the average, should not affect the results (this 
was confirmed numerically for a geometry similar to the one of Example 1 in 
ROM-KEDAR, LEONARD, • WIGGINS [1988]). The third advantage of this method 
is that one has an a priori estimate of the amount of  computations involved 
which depends linearly on the number of grid points. 

I 
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Fig. 6.1 a and b. The action of "fast" and "slow" chaotic flows on a vertical line. 
a) "Fast" chaos, b) "Slow" chaos 

The deficiency of  this method is that it requires a vast amount of computation. 
Although it supplies a major reduction in computation when compared with a 
"grand scale brute force" calculation of the transport rates, i.e., the construction 
of  an array of  grid points covering the whole region of interest, it uses the same 
philosophy. 
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The boundary method. The second method involves the computation of the evo- 
lution of the lobe boundaries, namely, the computation of larger and larger seg- 
ments of the manifolds. It is a much more elegant approach then the previous one 
and, in addition, it supplies the manifold length, namely, the length of the inter- 
face between the different species, which is of interest in many applications. 
However, there are several severe problems with this method; first, the manifolds 
stretch exponentially fast in time, which makes them impossible to  follow with 
reasonable accuracy after rather short times (see ERANJIONE ~% OTTINO [1987]). 
Secondly, even if the manifolds could be followed, it would be a nontrivial task 
to distinguish between the interior and exterior of the lobe (a resolution of this 
problem can be found by an argument similar to the one presented for the next 
method) and, finally, this method is very sensitive to numerical round-off errors. 

The generating function method. The third approach appears to be the most ele- 
gant and promising, but its implementation raises serious technical difficulties. 
This approach is based on the work of MACKAY, MEISS, & PERCIVAL [1984] and 
the work of BENSNON & KADANOFF [1984] in which they show that for area- 
preserving twist maps the algebraic area enclosed by the segments S[ro, r~] and 
U[ro, r~] is given by sums of the generating function of the map, ~b, evaluated 
along the orbits or ro and rl. We will describe very briefly their results and point 
out the relation to our work. 

Note that this method applies only if the map F is a twist map in a co-ordinate 
system for which F is periodic in the first co-ordinate: 

F:(x,y)t->(x' ,y ') ,  xET ,  y E R  or T, 

Ox' 
-~y @ 0 for all x, y 

where (x, y) may represent a new co-ordinate system in which the twist condition 
is satisfied. The assumption that F is periodic in x is necessary for the rela- 
tions between the generating function and areas to hold, but one could gen- 
eralize the results to the nonperiodic case. Of the three examples that were 
presented in Section 3, the only candidate to which this method can be applied 
directly is the third example, in which F is periodic in x. In this example, 
thought of as the Poincar6 map of a pendulum, the twist condition is satisfied 
only in the "fast chaos" case, in which vertical lines are not convoluted too 
badly after one iteration of the map. See Figure 6.1 for an illustration of the 
different action of the slow and fast chaos systems on a vertical segment in 
this geometry (the terms "slow" and "fast" refer to the frequency of the 
forcing in the continuous-time system for which Example 3.3 represents the 
Poincar6 map, see ESCANDE [1987]). 

The generating function, ~, of an area-preserving twist map F satisfies 

O~(x, x') e~(x, x') y' : 
Y = Ox ' Ox' 

The algebraic area enclosed by S[ro, r~] and U[ro, rl] (so that ro, rl are hetero- 
clinic, or homoclinic, points which asymptote in forward and backward times 
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to the same fixed points) is the area enclosed underneath S[qo, ql] (and above 
some reference line) minus the area enclosed underneath U[qo, ql] (see 
Figure 6.2). It is given by 

d(ro, rl) = ~ ]  (O(Ftr~, Ft+Irl) - -  O(Ftro, Ft+lro)). (6.2) 
t ~ - - O 0  

For  a detailed explanation of this result and the role of  generating functions see 
BENSIMON & KADANOFF [1984] or MACKAY, MEISS, & PERCIVAL [1984]. 

/ - -  sir o , q] 
/ 

U [r~ q] - '  \ 

Fig. 6.2. The geometric and algebraic areas 
(The algebraic area = A' -t- C' -- B') 

L i j (4 )  - ' ~  
' ~, .. q,I ------" ~ 

-K 

Fig. 6.3. The ordering of the heteroclinic points 

Returning to the transport rates, we note that all of  the lobe intersections in 
(4.9) are sets that are bounded by segments of stable and unstable manifolds. 
Hence, if F can be written as a twist map in some co-ordinate system and the 
heteroclinic (or homoclinic) points which determine the lobe intersections are 
known, one can use the above formulation to determine the area of  the lobe 
intersections. 

The relation between the algebraic and geometric areas does not pose a major 
difficulty; consider Figure 6.3. Let ut, t = 1, . . . ,  2n denote all the heteroclinic 
(or homoclinic) points that are contained in both U[qo, ql] and F-kS[q2, qa], 
i.e., these are all of  the points that belong to the boundary of  the two lobes 
Lij(1) and Lo~(k), ordered according to their positions along the unstable mani- 
fold so that ul is the closest to q0 and u2, is the closest to ql along the unstable 
manifold (note that in the figure q2 = ql, qa = Fqo and l = j, m = i). Since 
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by the definition of the ut's the segments U[ut, ut+1], S[ut, ut+l] do not intersect 
each other (excluding the end points), the algebraic and geometric areas en- 
closed by these segments are the same up to a sign. In fact, we can write 

/~(Li's(1) #~ Lt'm(k)) = t=~ A(u2t-1, u2t) ; (6.3) 

because opposite signs of A(ut, ut+a) indicate areas that have opposite manifold 
orientation, the areas that have sign opposite to the sign of the sum in (6.3) 
are not contained in L~,j(1). The assumption that all the heteroclinic points 
contained in both U[qo, ql] and F-gS[ql, q2] are labeled implies that such 
areas (dotted in the figure) are added and subtracted the same amount of 
times; hence, their area does not contribute to the right-hand side of (6.3). 

The major difficulty with this method is the computation of the heteroclinic 
(or homodinic) points, a computation which must be done with accuracy sufficient 
to determine the area of the lobe intersections correctly. MACKAY, MEISS, & PER- 
CIVAL [1987] addressed this problem and suggested two methods; the first is essen- 
tially equivalent to the boundary method, since one needs to compute the 
manifolds and use a bisection method to find the heteroclinic points. The 
second method involves the use of periodic orbits to limit the heteroclinic 
(or homoclinic) orbits, where the periodic orbits themselves are found by 
minimization of sums of the generating function (called action). In particular, 
the second method is beneficial when the action is known explicitly and this 
is not the case when dealing with continuous-time systems. The minimization 
of the action in the continuous-time systems corresponds to the minimization 
of the integral of the Lagrangian among heteroclinic (or homoclinic) orbits 
(see MACKAY & MEISS [1986]). 

6A. Constructing the Poincard map 

Before we discuss some aspects of the computation of the transport rates for 
ordinary differential equations using the Poincar6 map, we establish the nota- 
tion. We assume familiarity with the concept of the Poincar6 map that is 
discussed in detail in GUCKE~E~V~ER & HOLMES [1983] or WIGGINS [1988]. 
When the dynamical system is given by a conservative two-dimensional system 
of ordinary differential equations with time-periodic vector field with period O 

~H(x, y, H(x, y, t ~- O) = H(x, y, t), (6.4) 

) -  Ox 

one can embed the system in a three-dimensional space so that it has the 
form of a time-independent three-dimensional vector field by introducing the 
phase of the vector field as a new dependent variable: 

O(t) =-2zrt/O rood 2zr, 
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Fig. 6.4 a and b. Lobe motion in different Poincar6 maps. 
a) View of the lobe motion in the continuous-time system. 

b) Two Poincar6 sections of Fig. 6.4a 

in which case (6.4) can be written as 

8H(x, y, O) 
5c= 

OH(x, y, O) 
33 = ~x ' (6.5) 

0 = 2~I0.  

A two-dimensional cross-section of the three-dimensional phase space of (6.5) is 
given by 

x ~ = {(x, y, o) [ o = ~ ~ (o, 2,~1}, 

and the Poincar6 map of X a into X ff is defined as 

Fe : 2 P - + Z  "~ , 
(6.6) 

(x(O), y(O)) ~-~ (x(O + 2~), y(O + 2~)). 
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Thus studying the flow by use of the Poincar6 map is equivalent to sampling 
particle trajectories at time intervals equal to the period of the vector field. 

Now we can apply the formulation described in the previous section to the 

Poincar6 map F~ defined on the cross section X ~. The transport rates found for 

FO are the physical transport rates between the regions, sampled at intervals of the 

vector field period. 
Four notes regarding the relations between the Poincar6 map and (6.4) are 

now in order 
1) In most cases we do not expect to find the Poincar6 map explicitly. Two 

alternative approaches for computing the orbit of an initial condition under F 0- 
are: 

a. Integrate the system (6.5) for the initial condition and starting at an initial 

phase if, sample the trajectory every period O. 
b. Construct a numerical version of the Poincar6 map by integrating (6.5) for 

one period (starting at the phase 0) for an array of grid points in Z ~, creating a 
table of the grid points and their images under one iteration of the map. Then, 
given an initial condition, find its image under the map by an appropriate 
extrapolation between the images of the closest grid points. 

2) In many cases one can choose the phase ff in such a way that the Poincar6 
map Fi has additional symmetries (see, for example, RoM-KBDAR, LEONARD, & 

WmONS [1988]). Such a choice of 0 reduces the amount of computation 
required for determining the manifolds and the transport rates. We demon- 
strate these reductions in the next section where we calculate the transport 
rates for the undamped Duffing equation. 

3) It is sometimes helpful to visualize how the motion of the lobes is manifested 
in terms of the continuous-time system (6.5). In Figure 6.4a we plot the mani- 
folds of the undamped During equation (Example 3.2) embedded in the three- 
dimensional space (x, y, 0), and in Figure 6.4b we plot the intersection of the 

manifolds with the the two Poincar~ sections X ?, 0 = 0, z~ (these sections have 
the additional symmetry of reflection about the x-axis combined with time 
reversal). One conclusion from this plot is that the difference in area between 
the regions R11~=o and R' 110=~ (see Figure 6.4b) is exactly the area of one lobe. 

This observation is particularly useful for obtaining an approximation for the 
lobe area when one has an approximation for the area of the R1's with an error 
term that is much smaller then the area of the lobe. An example for such a case 
is the forced pendulum where the forcing is of large amplitude and of a small 
frequency e (KAv•R [1988], ESCANDE [1987]). In this case, the Rl's boundaries 
are e-close to the boundaries of the equivalent regions of the unforced pendu- 
lums (the "frozen separatrices" in Escande's terminology), while the lobe area 
is of order one. The above observation was in fact inspired by numerical evi- 
dence, found by T. ~.APER, that the lobe area asymptotes to half the differ- 
ence between the areas enclosed by the "frozen separatrices", corresponding 
to the the phases 0 and z/e, as e-+ 0 (the half is needed since in this geom- 
etry two identical lobes entei region R~ after ~r/e, one from the upper and 
one from the lower half plane). 
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4) The generating function approach for the Poincar6 map is equivalent to 
the Lagrangian formulation for the continuous-time system. In particular, the 
flux in the continuous-time system is related to the integral of the Lagrangian 
evaluated along a heteroclinic (or homoclinic) orbits (see MACKAY & MEISS 
[1986]). 

7. An Example - -  The Undamped Dufling Equation 

The Duffing equation serves as a classical example of the complicated dynamics 
associated with nonlinear oscillators exhibiting phenomena like chaos and strange 
attractors. For  parameter values for which the equation is near integrable, ana- 
lytical methods such as averaging and Melnikov techniques have been used to 
understand the structure of this equation (see GUCKENHEIMER & HOLMES [1983] 
and references therein). In this section, we do not attempt to investigate the 
rich behavior associated with the Duffing equation but merely use it as an ex- 
ample to demonstrate our method. Hence we pick specific parameter values 
that supply us with a convenient geometry and, in particular, we choose the 
non-dissipative case in which additional symmetries are present. An interesting 
question that is beyond the scope of this paper is the relation between the 
lobe dynamics and the strange attractor in the dissipative case. 

The Duffing equation with a negative linear stiffness term is given by 

X @ r})C-- X @ X3 =~COS(COt) xE R; (7.1 a) 

the parameter values that we use are 

O -- 0.0, y ---- 0.5, co = 3.0, (7.1b) 

and from now on we will omit the dissipation term OSc from the equations. 
Equation (7.1), a second-order time-dependent differential equation, can be 

written in the form of a three-dimensional time-independent system as follows: 

5c----y ] 

j ~ = x - - x  a-~-)~cos(0) ! q = ( x , y ,  0) E R • 2 1 5  (7.2) 

0 = c o  1 
where T is a circle of length 2re and the analysis is done in Poincar6 sec- 
tions of (7.2). Note that (7.2) can be written as a Hamiltonian system (this is 
not true when 0 4 = 0); hence, its Poincar6 maps defined, as in (6.6), are area- 
preserving maps. 

The global structure of (712) can be inferred from the analysis of the integrable 
system one obtains when 7 = 0 in (7.2). The Poincar~ map is shown in 
Figure 7.1. Note that in the integrable case the origin is a hyperbolic fixed 
point, connected to itself by two homocfinic loops. These loops divide phase 
space, into three separate regions. For small 7 one can calculate the Melnikov 
function and prove that the stable and unstable manifolds of the perturbed 
fixed, point intersect each other transversely; hence, for y 4= 0 (with 0 = 0) 
(7.2) is non-integrable, and we expect to see geometrical structure similar to 
the one discussed in Example 3.2 of Section 3. 
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To begin our analysis we need to find the position of the perturbed fixed 
point and its stable and unstable manifolds. It turns out that even at this 
early stage the use of symmetry in the Poincar6 sections can reduce our cal- 
culations significantly, so we begin by describing the symmetries of the Poin- 
car6 maps. 

1 . 6  T , , , ~ , , - , , I  . . . .  t , ~ ,  , , ~ , , - ,  , i  . . . .  t . . . .  J ,  

1.2 

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 
X'-'~-,-.- 

Fig. 7.1. The unperturbed Duffing equation 

0.8 

0.t, 

I~ 
>" -0.4 

-0.8 

Poincard map symmetries. There are two types of symmetries of the Poincar6 
maps F0 that are of interest: 

1) Symmetries that relate orbits of different Poincar6 maps: given that 
X oo {( ~, Yn))~ = -  o~ is an orbit of F~ (i.e., there is a solution q(t) of (7.2) such that 

q(O q- 2zln/co) = (x,, y,, 0)), the symmetry action supplies an orbit {(:?m, Ym)}~- - -  
of the Poincar6 map F~. 

2) Symmetries that relate orbits of a Poincar6 map to orbits of the same map; 
given that {(x,, y,)}~ _ o~ is an orbit of F0 the symmetry action supplies an orbit 

{(X~m, Ym)}mee=- co o f  the same Poincar6 map FS. - 
The symmetries may depend on the phase 0, and different maps may have 

different numbers of symmetIies. 
For the undamped Duffing equation we find that there is one symmetry of 

the first kind, relating orbits of every Poincar6 map FO to orbits of the Poincar6 

map F~+,, and there are two symmetries of the second kind, one symmetry for 
the Poincar6 maps Fo and F ,  and the other for the maps F~ and F 3 ~  . 

Finding the Poincard map symmetries. To obtain the image of an initial condition 
(xo, Yo) under the map F0, one has to integrate (7.2)for one period 2z@o starting 

with the initial conditions (x, y, 0) = (Xo, Yo, 0), which is equivalent to solving 
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the system 

= x - x 3 + ~, cos (0 + 0), (7.3) 

with the initial condition (x, y, 0) = (Xo, Yo, 0) for one period. 
Hence, finding symmetries of the Poincar6 maps corresponds to finding sym- 

metries of (7.3), where for symmetries of the first kind 0 is variable and for the 
symmetries of the second kind it is fixed. 

It is easy to verify that (7.3) has the following symmetries: 
1. Symmetry of the first kind: 

x e--> --x, y ~ --y, 0 ~-> 0 -k z~ for all 0. 

This symmetry relates Poincar6 maps that are 180 ~ apart in 0 by a 180 ~ rotation 
about the origin. 

2. Symmetry of the second kind: 

x~->--x, y~-->y, t~-->--t for 0----- -T~z or 0 = -~-.3z~ 

This symmetry implies that the Poincar6 maps F .  and F3~ are symmetric with 
T T 

respect to reflection about the y-axis with a time reversal. Note that the 
notion of symmetry with time reversal is very useful since it relates stable 
and unstable manifolds! 

3. Symmetry of the second kind: 

x~--> x, y~--> --y, t~--> - - t  for 0 = 0 or 0 = ~r. 

This symmetry implies that the Poincar6 maps Fo and F= are symmetric with 
respect to reflection about the x-axis with time reversal. 

We begin the analysis of equation (7.2) according to the plan proposed in Sec- 
tion 6. In general, it is sufficient to investigate the dynamics of one Poinear~ 
map since all the P0incar6 maps are differentiably equivalent and, in partic- 
ular, the transport rates are identical in all of them. We choose a map that 
has as many symmetries as possible, so that for the undamped Duffing equa- 

tion the maps F 0, F~, F ,  and F3= are good candidates. We chose to work 
with Fo. 5 T 

Finding the fixed point of Fo. Since Fo is symmetric with respect to reflection 
about the x-axis with time reversal, the fixed point must lie on the x-axis. 
Hence, after obtaining an analytical first approximation to the fixed point 
location, we numerically bracket it on the x-axis (in the Poincar6 section 0 = 0) 
to get higher-order corrections for its location. 
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To get a first approximation for the fixed point location we construct an expan- 
sion in 7 about the origin: 

p(t) = (x(t), y(t), O(t)) ~- 7pl(t) q- FZp2(t) q- .... 

and then substitute it in (7.3) and impose periodicity to obtain 

x( t )  = 7 cos (o~t) - [ -  0(73), 
1 ~ o )  2 

7c~ sin (cot) 4- 0(?3), y(t) = 1 -k o~ 2 

O(t) = ~ot. 

In particular, we obtain that the fixed point of Fo is located at 

( 7 O, O) + 0(73). p(O) = (x(O), y(O), O) = 1 + ~ ' 

!.2 

0.8 

0.4 

0 

-O.Z., 

-0.8 

-1.2 

-1.6 

1.6 ~ - , ~ = ~ - ~ - ,  , .  , . , . , , .  , - m ~ = -  ~ - ~ - ~ - , = - ~ , ~ - ~ ~ - ~  ,~- 

> -  

i 0.4 

0 

-0.4 

-0.8 

-1.2 

0=0 R~ W~+ 0) 

a 

, L ~ I  , i , r i i , i _ i  F , r , i ~ i  , t , r 1 i , , 

1 . 6  , i  , i  , , ~ l  , i  , i  , i  , i  , J  , i  , i  , t , ~  , ~  

~=~ 
1.2 

0.8 wL{~:) 

O 

- 1 . 6  , r , i , i , r , p , I , i  , r , ) i ~ , i , i , i , r , 

-1.6 

O--f 
,s -'~ L3 7(1) 

W u ~ :  

s ~ Wp,.(T) 

b 
i , r , i , L , I ,  I I  ~ r I , I , I r I , r , i , l  r I r I ~ _ ]  

R3 

' -  1 
i r i i i i J ~ _ p  r i i T i i 

- 1 , 2 - 0 , 8  -0.4 0 0.4 0 .8  1.2 1 . 6 - 1 . 6 - 1 . 2 - 0 . 8 - 0 . 4  0 0.4 0.8 1.2 1.5 
X~ = X , - - - - - - , -  

Fig. 7.2 a-d. Lobe motion in different Poincar6 maps 
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For the parameter values y = 0.5, o) = 3.0 we find that the error term is much 
smaller than 7% and we obtain nmnerically that p(0) = (--0.0500097 + O(10-8), 
O, 0). 

Finding the stable and unstable manifolds of  p under Fo. At this step the use of the 
symmetries reduces the calculations by a factor of four. Since we expect the 
homoclinic connections to break up, four branches of the fixed point p need to 

be computed. Denote the four branches ofp at the Poincar6 section X~by W~+ (0), 

W~_(0), W~,+(0) and W~,_(~ (see Figure 7.2a). 
Note that the symmetries of the Poincar6 maps relate the different branches 

of the manifolds. 
1) Tile first symmetry shows that the " + "  branches of the stable and unstable 

manifolds of the Poincar4 map FO are mapped under rotation of 180 ~ to the " - - "  

branches of the stable and unstable manifolds (respectively)of FO+=; compare, 
for example, Figures 7.2a and 7.2c. 

2) The second symmetry shows that for 0 --= ~/2, 3~/2, the " + "  branches of 
the stable and unstable manifolds are mapped under reflection about the y-axis 
to the " - - "  branches of the unstable and stable manifolds (respectively); see 
Figure 7.2b or 7.2d. 

3) The third symmetry shows that for 0 = 0, ~, the " + "  and " - - "  branches 
of the stable manifold are mapped under reflection about the x-axis to the " + "  
and " - - "  branches (respectively) of the unstable manifold; see Figure 7.2a or 
7.2c. 
Combining these three observations, we can create all of the maps of Figure 7.2 

by computhag only one branch of the manifolds, say W~_(O) for 0 = 0, ~/2, 
~, 3~/2, which means in practice that we compute only one branch of the 
unstable manifold and sample the trajectories four times per period instead of 
only one time (as one usually does when computing the manifolds). 

1.6 

1.2 

0.8 

0.4 

i~ 
-0,4 

R3 

-0.8 

-1.2 1 
-1.6 ~ , ~ , ~ , ~ , l p l , l , l , ~ , ~ , r , q  , i , l , ~ ,  

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 
X- " 

Fig. 7.3. Definition of the regions 
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f tg Figure 7.2a, for example, is obtained as follows: a reflection o W~,_(0) about 
the x-axis gives W~,_(0), a lotation by 180 ~ of W)~,_(~) about  the origin gives 
W~+(0) ,and a reflection of  WT,+(0 ) about  the x-axis gives W,p,+(0). 

Defining the regions and finding the relevant lobes. The symmetries are useful in 
defining the regions and lobe; the first intersection of a branch of W~(0) with 
the axis of  symmetry is the natural choice for a pip. We therefore define R~ 
to be the region bounded by the segments of W~+(0) and Wp,+(0) starting 
at p and ending at the first intersection of these branches with the x-axis, 
denoted by ql. We define R2 similarly, and define R3 to be the complement 
of  R,  and R2 (see Figure 7.3). Note that if one prefers to define the regions 
using different pips, it is an easy task to find the relation between the trans- 
port rates for the two choices. 

As in Example 3.2 of Section 3, we note that the geometry of the regions 
implies that the lobes Ll,z(n ) and Lz, l(n) are the empty set for all n. 

To demonstrate the transport rate calculation, we will compute T1,2(n) and 
T2,1(n), which are given in terms of lobe intersections by 

r t - - 1  

7~2,1(n)  = E ( n  - m) (#(L3,1(1) • F~(L2,3(1)) -- ~(L3,1(1) A Fg(L~,2(1)) 
m = l  

- F,(LI,~(1)/5 Fy(L2,3(1)) +/~(Ll,~(1) C~ Fa"(L,,2(1))}, 
, - I  (7.4) 

TLE(n) = Z (n -- m) (/~(L3,2(1)/h Fg(L1,3(1)) -- #(L3,2(I)/5 F~n(L~,,(1)) 
m = 1  

- ~,(L~,~(1)/5 Fg(L,,~(1)) + #(L~,~(1)/5 rg(L~,,(1))).  

(See (3.2.13) and the general formulation.) Equation (7.4) shows that, to compute 
T:,l(n), we need to compute the areas of the four lobe intersections 

L3.1(1)/5 Fg(L2,3(1)), La,1(1)/5 F6"(L3,2(1)), 

L,,a(1)/5 Fg(L2,3(1)), L1,3(1) f~ F'~(L3,2(1)), 

for m = 1, . . . ,  n -- 1. Similarly, to compute T~,2(n), we need to compute the areas 
of the four lobe intersections 

L3,2(1)/5 F~'(L,,,(1)), L,,2(1 ) /5 Fg(Laa(1)), 

L2,a(1) #~ Fg(LI,x(1)), L2,3(1)/5 F~'(L3,~(I)), 

for m = 1, . . . ,  n -- 1. Therefore, the relevant lobes that we need to integrate 
are L2,3(1), L3,2(1), LI,3(1), and La,l(1). 

Computing the lobe intersections. Note that the symmetries supply relations be- 
tween the different lobe intersections; for example: 

1) By the symmetry with respect to reflection about  the y-axis with time 
reversal of the Poinear6 map F= (see Figure 7.2b) we obtain 

T 
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and since area is preserved, this implies that 

/.z(FgZL3,2(l)/~ L3,1(1)) = [Z(FomL1,3(1)/~ FoL2,3(I)) 

= p~(L1,3(1 )/'~ Fg+lL2,3(1)) ; 

hence two of the first four intersections that we need to find are related. 
2) By the symmetry with respect to reflection about the x-axis and with time 

reversal of the Poincar6 map Fo (see Figure 7.2a) we obtain 

/g(FgL2,3(1 ) /~  L3,1(1)) = [A(FomFoL3,2(I) I'~ FoL1,3(1)) 

= /* (FgL, ,3 (1 ) /5  L3,2(1)), 

supplying a relation between two other intersections. 
3) By the symmetry with respect to 180 ~ rotation between the Poincar6 maps 

Fo and F~ (see Figure 7.2a and 7.2c) we obtain 

[z(E~FoZ2,3(1 ) A Zl,3(1)) =/z(F~L1,3(1 ) f~ L2,3(1)) 

=/z(Fg'L~,3(1) A L2,3(1)). 

Using the same arguments for the different maps and symmetries, we obtain the 
following relations: 

/z(L3,2(1) f~ F~o LL3(1)) =/z(L3A(1)/5 F•L2,3(1)) = e l (m) ,  

/z(L3,2(1 ) A EgL3,1(1)) = ~(L2,3(1 ) A Fg-lrl,3(1)) 

=/z(rl,3(1) {5 FgL2,3(1)) 

= #@3,1(1) A Fg-IL3,2(1)) ~ ez(m - -  1), 

#@2,3(1) m FgL3,1(1)) =/z(L1,3(1 ) f~ FgL3,2(1)) ~ e3(m ) . 

Therefore, it is sufficient to integrate two lobes, say L2,3(1) and L3,2(1), and the 
transport rates Tl,~_(n) and T2,1(n) are given in terms of the ei's by 

n--1 

T2,1(n) = ~ (n - -  m)  [ej(m) -- ez(m) -- ez(m - -  1) + e3(m)], 
m ~ l  

(7.5) 
n - - i  

Tl,z(n) = ~ (n -- m) [el(m) -- e2(m - -  1) -- e2(m) + e3(m)], 
m ~ l  

so that actually T2,1(n) ---- Tin(n). 
We use the "brute force" method to compute the lobe intersections. The 

symmetry is used in the code; first we initialize the lobes L3,2(1) and FoL2,3(1) 
using the same grid construction reflected about the x-axis, then we perform 
the test for the trapping of the grid points in the lobes L3,1 and L~,3 in the 
Poincar6 section 0 = ~z, where these lobes are the exact reflection of La,2(1) 
and FoL2,3(1) about the y-axis. In this way we use only one calculation of a 
lobe boundary to initialize the grid points and perform the tests. 
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I 

> -  

1 .6  . ~  . i  . i . . . i  . ~  . , . t  . J  . l , i  , i  . J ~ ,  

Q=0 F~L2,3(1 ) 
1.2 
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~1 .6  I gOr  I I I  ~ )  h i 1  I r I r I I I I  ~ ~ I I 1  r I t T I I I  ~ 

-1,5 -1.2 -0.8 -0.4 0 
X 

0=0 F~Lz 3(1) 
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Fig. 7.4 g, h 

In Figure 7.4 we show the evolution of the lobe L2,3(1 ) under the map F0 for 
eight iterations where, as explained above, we start by distributing grid 
points in FoL2,3(1) to save the computation of another lobe boundary. We use 
a mesh size of 0.005, resulting in 3169 grid points in the lobe. We use a 
fourth-order Runge-Kutta scheme for the integration. The results of the com- 
putation of  the areas of  the lobe intersections, normalized by the lobe area, 
are given in Table 7.1, and the transport rates, normalized by the total flux 
through the regions until iteration n, i.e., n#(L1,3(1)), are given in Table 7.2. 
The mesh size we use is crude and, as seen in Figure 7.4, the rapid stretching 
separates the grid points to the extent that the lobe does not appear to be 
connected after six iterates of the map. Decreasing the grid mesh size to 
0.004 or decreasing the integration step size by a factor of two shows that 
one gets an error at the most significant digit after seven iterations of the 

Table 7.1. The Area of the Lobe Intersections 

n el(n)/tz(L1,3(1)) e2(n)/#(L1,3(1) ) e3(n)[lz(L1,3(1) ) 

1 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 
3 0.1918 0.0000 0.0000 
4 0.0362 0.0000 0.0000 
5 0.0047 0.0732 0.0000 
6 0.0006 0.0369 0.0000 
7 0.0902 0.0072 0.0000 
8 0.0268 0.0249 0.0274 
9 0.0059 0.0113 0.0236 

10 0.0022 0.0426 0.0072 
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map. This result shows that if one uses enough grid points and enough accu- 
racy in the integration scheme, the results will converge to the transport rates. 
It also demonstrates that "enough" can be rather large. A significant improvement 
in the accuracy of the computation can be achieved by using schemes that 
preserve areas in the Poincar6 map such as symplectic integration algorithms 
(see CHANNELL • SCOVEL [1988]). 

Table 7.2. The Transport Rates and the Flux 

n r l , 2 ( n ) / n . ( L 1 , 3 ( 1 ) )  
T~,2(n) - T ~ , d n  - 1) 

n./z(L1,3(1)) 

1 0.0000 0.0000 
2 0.0000 0.0000 
3 0.0000 0.0000 
4 0.0479 0.0479 
5 0.0840 0.0456 
6 0.0966 0.0266 
7 0.0899 0.0071 
8 0.0907 0.0120 
9 0.0938 0.0131 

10 0.0956 0.0111 

8. Summary and Conclusions 

We have shown that global transport through regions of phase space separated 
by pieces of stable and unstable manifolds of hyperbolic fixed points is governed 
by the evolution of a finite number of lobes. Moreover, we have given formulae 
for the transport rates that are valid for any geometrical configuration of 
regions that we choose. Using these formulae, we have described a method 
for computing the transport rates of any C r (r ~ 1) orientation-preserving 
diffeomorphism of a two-dimensional manifold that satisfies some basic as- 
sumptions (as stated in Section 4). In particular, we have described a method 
for computing the transport rates of any time-periodic two-dimensional ordi- 
nary differential equation in which the Poincar6 map satisfies these basic as- 
sumptions. In the process, we formulated the relation between symmetries of 
the non-autonomous ordinary the differential equations and symmetries of the 
Poincar6 maps and demonstrated the benefits of the use of  these symmetries 
for the undamped Duffing equation. 

The main drawback of the method is the lack of an efficient technique for 
computation of the area of the lobe intersections. We have suggested the use of 
a generating function as one possible solution. In general, we expect that approx- 
imations for the first few iterates and a statistical model for the long-time be- 
havior will replace our brute force method for computing these areas. The 
result that the evolution of only a finite number of lobes determines the trans- 
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port  rates suggests that statistical models for transport in phase space should 
consist of  a derivation of a probability distribution function for the areas of 
the lobe intersections. Given this function, the above formulae supply the 
trapping probabilities for a general initial condition in phase space. This ap- 
proach should result in a better approximation for the transport rates thaa 
the current models of MEISS 8r OTT [1986] and LICHTENBERG & LIEBERMAN 
[1983], in which the trapping probabilities are derived by treating points in 
the "stochastic region" as independent variables and ignoring the lobe struc- 
ture. Indeed, one of the major insights that our work gives is that points in the 
stochastic regions are strongly temporarily correlated. Moreover, the current 
models are developed for AP maps only, where our results work equally as 
well for the study of transport in NAP maps. This opens up a new domain of  
research in dissipative dynamical systems. For  example, a further investigation 
of the transport in NAP maps may lead to a better understanding of the 
strange attractors that appear in these systems, since orbits approaching strange 
attractors must do so through lobes. 

Finally, we remark that this work allows the detailed study of transport in 
many systems foi which previous methods were either too expensive or inac- 
curate. Further development of the techniques for evaluating the lobe intersec- 
tions will make this task even easier. 

Acknowledgment. This work was supported in part by Caltech's Program in Advanced 
Technologies sponsored by Aerojet General, General Motors, and TRW. V. R. acknowl- 
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Appendix 1: Proof of Theorem 4.2 

Before embarking on the proof  we prove the following five lemmas that are 
used in the proofs of  both Case 1 and Case 2 

Lemma AI.1. I f  a point p is contained in two diJferent lobes that leave region Rg 
at iteration n~ and n2, respectively, where n~ < nz -- 1, i e., for  some s~ and s2 
p E Li,~(n~) A Li,s,(n2), then p is also contained in a lobe that enters Ri at iteration 
m, where nl < m < n2, i.e., there exists an s3 such that p E L~,i(m). 

Lemma A1.2. I f  a point p is contained in two different lobes that enter region Ri 
at iteration nl and n2 respectively, where nt < n2 -- 1, i.e., for  some sl and s2 
p E Ls,~(nO t% L~,~(n2), then p is also contained in a lobe that leaves R~ at iteration 
m, where nl < m ~ n2, i.e., there exists.an s3 such that p E  Li,~(m). 

Lemma A1.3. I f  the intersections o f  two different lobes that enter region Ri at 
iteration nl and n2 respectively, where nl < n2 -- l, is non-empty, i.e., for  some 
s~ and Sz Ls~,i(nl) /3 Ls,,i(n2) =~ 0, then there exists a lobe that enters region Ri 
at iterations n2 --, nl and contains species Si. Specifically, it will foltow that L~:,~(n2 

- n O : #  O. 
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Lemma A1.4. The following relation holds for all k, j, r, iE {1, . . . ,  NR} and 
l = < l < n :  

NR 

LkA(n) #~ Lr, i(l) C ~J ~_J Li,~(m). (AI .1)  
s = l  m=l+ l  

Lemma A1.5. I f  p E L~A(l), then there exist r', l', such that p E Li/( l ' )  and l' < l. 

Proof  of  Lemma AI.1 .  

p E L,,s~(n,) -~ F~p r Ri/ 
p E Li,s~(nz) ~ F"~-lp E RiJ ~ FnlP E Ls3,i(n') where 1 ---< n '  --< (n2 - -  nl - -  1) 

p E F-"~Ls~,i(n ') = L~,i(m) where m = n'  H- nl ; hence nl < m < n2. [] 

Proof  of  Lemma A1.2. 

p E Lsl i(nl) ~ FmP E Ri] 
' 1 ~ F ~ p  ELi  ,~(n') where 1 --< n '  --< (n2 - -  nl - -  1) 

p E L~,i(n2) ~ F ~ - l p  ~ Ri " -- --  

p E F-~%i,~3(n ') = Li,~(m) where m = n'  § nl ; hence nl < m < n2. [ ]  

Proof of  Lemma A1.3. 

p E L~, i(nl) ~ Fn~p E Ri [ Li 
' E ~,i(n~ - -  n~) 

p E L~,~(n~) ~ F"~p E L~,~(n2 - -  n0J ~ F"~p 

Proof  of  Lemma A1.4. I f  Lk3(n ) A L,,i(l ) = 0, then the relat ion (AI.1)  is trivially 
satisfied. Let  us assume tha t  L~,j(n) A L,,~(l) # 0 and tha t  (AI.1)  is not  satisfied; 
namely,  there is a p such tha t  

p E Lk,~(n) #~ L,,g(l) (A1.2) 

but  

ug 

p(~ k,.J ~J L~,,(m). (A1.3) 
s = l  m = l + l  

F r o m  (A1.2) we obtain  

a )  Fnp E Rj, b) F"- lp  (~ Rj, c) F~v E R,. (A1.4) 

Since (A1.3) shows tha t  p cannot  leave region Ri after  i terat ion l, and  A1.4c  
shows tha t  F~o is indeed in Ri, we obtain 

Fl~p E R i for  l '  = l . . . .  , n. (A1.5) 
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Now, if i 4=j, A1.4a and A1.5 contradict each other, and i f . i  = j  A1.4b and 
A1.5 contradict each other, either Lk,j(n ) A L~,i(l) = ~ or 

NR 

p~L/ ~J L~,Xm). [] 
s= l  m = l + l  

i ProofofLemmaA1.5.  p ELf,j(/) implies that p E R~ and that Fmp.~ R~, where 
m = l if i @ j and m = l --  1 if i = j ,  which shows that p is contained in a 
lobe that leaves Ri until iteration m, namely, in a L~,r,(l') lobe with l' ~ l. [ ]  

We now start with the proof  of Theorem 4.2 as outlined in Section 4. 
We begin with the proof  of equation (4.6): 

N R 

Lik,j(n) = l ]  + [Lk,j(n)/5 L~,~(m)]. (4.6) 
s= l  m=l  

We prove first that the left-hand side of equation (4.6) is contained in the right- 
hand side of this equation. 

Let a point in phase space p be contained in the left-hand side of (4.6), p E L~,j(n). 
Then, by Lemma A1.5, there are an s and an m such that m ~ n and p E Li,~(m). 
Therefore, using p E Ri and p E L~,j(n), we obtain that there are m and s such 
that p CLk,j(n)~ L~,~(m) with m ~ n, hence, that the left-hand side is con- 
tained in the right-hand side. 

We complete the proof  by showing that the right-hand side is contained in the 
left-hand side. 

Proving that the right-hand side is contained in the left-hand side of (4.6) is 
trivial; if  a point p is contained in the union of the sets, then there exists an m and 
an s such that 

p E L~,j(n) n Li, s(m ); 

hence, p belongs to the portion of the lobe Li,,(m) that is contained in Ri, and in 
particular p E Ri. But, by (A1.4), p E Lk, j(n) and therefore, by definition, 
p C L~,j(n), which shows that the right-hand side is contained in the left-hand 
side of  equation (4.6). [ ]  

Proof of Case 1. Recall that in Case 1, by assumption 

L~,i(m) = O for all m, s such that 1 <= m <= n, 1 <-- s <-- NR. (A1.6) 

We prove that equation (4.5) is correct for this case by proving statements 
A1-E1 and then performing Step F1. 

A1. I f  i is regarded as fixed and m and s as variable, the sets Li,s(m) are disjoint. 

Proof of A1. We need to show that, for (sl, rn~) 4 = (s2, m2), the set A = 
L~.~l(ml) A L~,s~(m2) is the empty set for all sl, s2, rn~, m2 such that 1 --<_ sl, 
s2 ~ NR and 1 ~ ms, rn2 ~ n, and let us assume that m~ =< m2. We assume 
that A 4= 0 and show that this assumption leads to a contradiction of  either 
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the lobe definition (i.e., the assumption that a lobe Lk,j(l  ) is defined so that it 
is completely contained in Rg after iteration l -  1 and completely contained 
in Rj after iteration I cf. Remark 2.3) or (A1.6). 

If  A @ 0, then there exists a point p such that p E A, 

p E A ~ {p E Ri and p ELi, s~(mt) f~ Li,s,(m2)}. 

a) If  mt = m2, then, unless st = s2, p E Li,~,(rnt) f~ Li,~,(m2) contradicts the 
assumption on the well-definedness of the lobes, namely, equation (4.1). 

b) If  m t =  m2 -- 1, then p E Li,~(mt) A Li,~(m2) implies tha tp  leaves region 
R~ in two consecutive iterations, which contradicts the lobe definition. 

c) If  m~ < m2 --  1, then, by Lemma AI.1, p E Li,,,(mt) :h Lt,,~(m2) implies 
that there exist m and s such that p E L~,g(m) and mt < m < m2. But p E A also 
implies that p E Ri; hence, p E L~,~(m) for some 1 < m < n --  1 and 1 _~ s ~ NR 
which contradicts the assumption of  Case 1, namely, equation (A1.6). 

B1. The set Li,,(m ) is given by 
2vR m-i 

Li,~(m) -- Li,~(m) -- k.J k.J [Li,,(m) ~ L~,i(/)]. 
r = l  l = 1  

(4.7) 

Proof  of B1. We prove first that the left-hand side of (4.7) is contained the right- 
hand side: p E L~,~(m) ~ {p E Ri and p E Li,~(m)). However, by equation (A1.6), 
p E Ri imp!ies that p-~ Lr, i(/) for all 1 _< r _< NR and 1 <_ l _< m, and using 

NR m--1 
p E Li,~(m), we obtain that p E Lg,~(m) -- k J kJ [Li,~(rn) f~ Lr:(/)]. 

r = l  l = 1  

We complete the proof  by showing that the right-hand side is contained in 
the left-hand side, 

NR m--1 
p E Li,~(m) -- k J k.J [L~,~(rn) [1 Lr:(m)] 

r = l  l = 1  

{p E Li,,(m) and p.~ Lr, i(l ) for all 1 ~< l ~< m -- 1, 1 ~< r _< NR}. 

We show that the above statement implies that p E R~ and, since p is also con- 
tained in Li,s(m), this shows that the right-hand side is contained in the left- 
hand side. Since p (~ L~,i(l) for all 1 _< l ~< m -- 1 and all r, p does not enter 
Ri before iteration m; hence, if p is not initially in Ri, Fm-lp-6 Ri. However, 
by the lobe definition Fm-lLi,~(m)C Ri; hence, if p E Ri, then p E Li,~(m), 
which contradicts the assumption that p is contained in the right-hand side of 
(4.7). 

C1. Regarding i as fixed and l and r as variable, the lobes Lr,~(l ) are disjoint. 

Proof  of  C1. We need to show that, for (sl, ml) 4= (s2, m2), the set A = L~l,i(ml) 
f~ L~,i(m2) is the empty set for all st, s2, mr, m2 such that 1 ~ st, s2 ~ NR and 
l ~ m t ,  m 2 ~ n ,  and let us assume that t o t e m 2 .  We assume that A 4 = 0  
and show that this assumption leads to a contradiction of either the definition of 
the lobes or (A1.6). I f  A :4= O, then there exists a point p E Lsl,i(rnl) f~ L,~,i(rn2). 
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a) If  mt  : m2, then, unless sl : s2, p E L~,,~(rnl)/5 Ls2,i(m2) contradicts 
the assumption on the well-definedness of  the lobes, namely, equation (4.1). 

b) I f  rn~ = rna -- 1, then p E L~,,i(rn~) (~ L,,,i(rn2) implies that p enters region 
R~ in two consecutive iterations, which contradicts the lobe definition. 

c) If  rn~ < rnz --  1, then, by Lemma A1.3, Li~,i(rn2 --  rnl) 4 = O, which 
contradicts the assumption of Case 1, namely, equation (A1.6). 

D1. If  i, r and l are regarded as fixed and m and s as variable, the sets Li,~(m ) f~ 
L~,i(l) are disjoint for all m > I. 

Proof  of D1. Assume the sets are not disjoint, namely, that there is a p such 
that p E Li,~l(rnj)/% Li,~(rn2)/5 L~,i(/) and l < rnl < m2 -- 1 (as before, the cases 
rn~ ~ m2 or rn~ = m2 -- 1 are ruled out by the definition of  the lobes). There- 
fore, by Lemma AI.1, p E L~,i(rna) where mt < rn3 < m2, and specifically, 
ma > I. Therefore, if D1 is false, then p belongs to two different lobes that enter 
region R~, contradicting C1. 

El .  The following identity holds 

n 1 Lkd(n ) A Zr, i(l) 0 ~ Li,s(m ) -~- Zk,j(n ) /5 Zr, i(l ). (4.8) 
"s=2 m=l+l 

Proof  of E l .  This is a direct consequence of Lemma A1.4. 

FI. We now substitute equations (4.7) and (4.8) into equation (4.6), reindex, and 
use A1, C1 and D1 or interchange the union and the area signs in the new 
equation, which results in (4.5). 

"Operating" with the area symbol on equation (4.6) and using A1 1o 
interchange union and area symbo!s, we obtain 

NR 

S=I l n = l  

Substituting equation (4.7) into the above expression gives 

/~(L~,j(.)) = ~=, m=, ~ 
~.J ~ [Li,~(m) A Lr,i)](l 

r = l  l=2 

= Y~ 2 p(L~,j(n) ~ Li,~(m)) 
s=2 m=2 

NR ( N~m--2 ) 
- Y, ~ /~ Lk,An)• kJ kJ [L i , , (m)  C~ Lr,~(1)] �9 

s=2 m = l  r = l  l=2 
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Therefore, using C1 and D1 and reirMexing leads to 

s ~ l  m = l  

-- I~ ,j(n) f~ k J ~,J [Li,~(m) [h L~,i(/)] 
X s = I m = l  r = l  l = I  

NR 
= ~ ~ li(Lkd(n) f~ Li,~(m)) 

s = I  m = !  

NR n--I NR 

and, using equation (4.8) we obtain 

#(L~,j(n)) = Z ~ #(Lk,j(n) A Li,s(m)) - -  # V [Lk,j(n) i'~ Lr, i(l)] . 
s = l  m = l  X s = l  l = l  

Therefore, using C1 once more, we obtain equation (4.5) 

NR NR n-- 1 
tt(L~,i(n)) = ~a ~ #(L~d(n) f~ Li,~(m)) --  Z E #(Lk,j(n) /5 L,,i(l)). [] 

s = l m ~ l  s = l l = I  

Proof of Case 2. We show first that, if A C L~,,j(n), then #(A) is added NA times 
through the first sum in equation (4.4) and subtracted NA -- 1 times through 
the second sum. Then we show that, if A ~ Uk,j(n), tz(A) is added and sub- 
tracted MA times through the first and second sums, respectively. We assume 
that A is small enough that all the members of A are contained in the same 
lobes L~,~(m) where m ~ n, which implies that writing A C B, where B is an 
intersection set of such lobes, is equivalent to writing A f~ B @ 0. This implies 
that, after each iteration, A is completely contained in one region at least up to 
iteration n. To complete the proof note that any set A Q L~j(n) can be decom- 
posed into a finite number of small enough sets, since the number of intersec- 
tions of the L~,~(m) lobes (1 _< m ~ n) is finite for finite n. 

We start with a proposition that contains all the necessary ingredients for this 
part of the proof. 

Proposition A1.6. Let p E L~d(n). 

a) I f  p ~ Lk,j(n ) /5  L~,i(l) for all 1 <_ r <_ Ng and all 1 ~ l ~_ n, then there 
exist a unique r" and a unique l" such that p E Li,,,(l'). 

b) I f  pELk, j(n) AL~,~(/) where I ~ r ~ NR and l ~ l <-- n, then there 
exist/o, l~, ro, rl such that lo < l < Ii and p E Li,ro(lo) A Li, r~(ll). 

e) I f  p E Li,~t(lt) for t = 1 , . . . ,  Ni, where l~ < 12 < ... < llv i, then there 
exist I~, rt such that p E Lk,j(n) A ~ ' L~;,i(lt) and tt < l; < lt+j, t = 1 . . . . .  Ni -- 1. 
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Proof of Proposition A1.6. 
a) By Lemma A1.5 r', I' exist. To show they are unique, assume they are not, 

and use Lemma AI.1 and the assumption that p E R~ to show that this contradicts 
the assumption of Case a). 

b) Since, by definition, Lk,j(n) #~ L~,i(l) C Lk,j(n) A L~,i(1), Lemma A1.4 shows 
that p E Lkd(n) A L~,i(l) implies that there exist an r~ and an l~ such that l < l~ 
and p E Li,~(l~). 

Using Lemma A1.5 for the lobe L~,i(/) shows that there exist an ro and an lo 
such that lo < l and p E Li,~o(lo). 

c) By Lemma AI.1, p E Li,~t(lt) #~ Li,~t+1(lt+l) for t = 1 . . . . .  Nz -- 1, which, 
Z t t together with the asumption that p E R~, implies that p E L~a(l~) where It ~ l~ 

< lt+1, t = 1 . . . .  , n -- 1. Moreover, since p E L~,~(n) implies that p E R,. and 
that pE L~d(n), we obtain that pE Lg,j(n) A L~,g(I) for lt < lt <i lt+~, t = 
1 , . . . , n - -  1. [ ]  

We now show that equation (4.5) results in the right counting. We break up 
the proof into four cases. 

a. A Q L~d(n ) and N~-----1. 
b. A Q L~,/n) and NA > 1. 
c. A C L~d(n) and MA = O. 
d. A C L~,/n) and Ma > 0. 
Recall equation (4.5): 

N R  N R  n - -  1 

t~(L~j[n)) = Z 2 /~(Lx,j(n) A Lr -- Z Z ~(Lk,j(n) A r,,,(1)). 
s = l  m = l  s = l  I~1 

I II  

a. When A Q L~d(n) but A r Lkd(n) A L],i(l) for all 1 ~ r _~ NR and all 
1 ~ l ~ n, then, by Proposition A1.6, there exist a unique r '  and a unique l' 
such that A Q Li, r,(l'). Therefore #(A) is added exactly once through I. Note 
that #(A) is not subtracted through II;  since, by assumption, A C Ri, i fA  was 
contained in a set of H it would imply that A Q Lkd(n) #~ L[,i(1), contradicting 
the assumption of Case a. Hence, we proved that #(A) is added exactly o ice 
to the left-hand side of (4.5) in Case a. 

b. I f  A C L~d(n) and A Q Lk,j(n)/') Li~,i(l) where 1 ~ r ~ NR and 1 
l ~ n, then #(A) is added Na times through I and subtracted NA -- 1 times 
through H. We show first that, if #(A) is added NA times through I, it is sub- 
tracted at least NA -- 1 times through II and then complete the proof by 
showing that, if/z(A) is subtracted NA -- 1 times from II, then it is added at 
least NA times through I. 

1) If/z(A) is added NA times through I, then it belongs to NA Li, s(m) lobes, 
and therefore, by part c) of Proposition A1.6, A also belongs to NA -- 1 L~,~(I) 
lobes, and hence to Na -- 1 Lr, z(/) lobes, which shows that #(A) is subtracted 
at least NA -- 1 times through II. 

2) If/z(A) is subtracted NA -- 1 times through H, then A belongs to the 
NA -- 1 sets Lkd(n) f~ Lrtj(lt) where t = 1 . . . . .  NA -- 1 and ll < ... ~ INA--1. 
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Since, by assumption, A ( R i, this implies that A C L~j(n) ,'5 L~t,i(lt); hence, 

using part b) of Proposition A1.6 we conclude that there exist 10< 11 mad 
l~r 1 > lnA_ 1 such that A(Lk3 (n )AL i ,  r~(l~) for t = 0 ,  N A --  1. Using 

t Lemma A1.2 we find that there exist It, t =  1, . . . ,  N a -  2 such that 
A Q Lk,s(n) A Li,,~(l~) and It < it < lt+l. Altogether, we have shown that A is 

contained in at least Na sets of I. 
c. A C L~,j(n) and MA =O. 
1) I f  A ~ L~.j(n), then, trivially, A is not contained in any of the sets of I 

or II. 
2) If  A(Lk#(n)  but A(Le.~(rn) for  all l _ < s _ < N e ,  and 1 = < m ~ n ,  

then A is trivially not contained in the sets of I and, by Lemma A1.4, A 
cannot be contained in any of the 1I sets without contradicting the assump- 
tion that A C Lr 

d. A C Lik3(n) and MA > 0. We show that if A is contained in MA sets 
of I, then A is contained in at least MA sets of  H, and we complete the proof  
by showing the converse. 

1) If  A EL~,j(n)A Li,st(It) where t = 1 . . . . .  MA and l~ < ... < [MA , then, 

by Lemma AI.1, there exist l;, t = 1 . . . . .  MA -- 1 such that A ~ Lk,j(n)/5 
L r t s,t,i(lt) and l t<  It</t+l- Moreover, since we assume in this case that 

A g2 Ri and that A leaves Ri at iteration l~, A must be contained in a lobe 
that enters R~ before iteratim~ l~; namely, there exists an l 0 < l~ such that 
A (Lg. j (n)~  L~,i(lo) and, therefore, A is contained in at least Ma sets of  II. 

2) If  A E L~3(n) A L~t,i(lt) where t = 1 . . . . .  MA and ll < ... < lM A, then, 

by Lemma A1.2, there exist l~, t =  1 , . . . , M a -  1 such that A C L g j ( n ) A  
L ' i,dt(lt) and It < l't < lt+1. Moreover, by Lemma A1.4, A C Lk,i(n)/5 

L ! t ! ~Ma,i(l~A ) implies that there exists an l~r a such that A Q L~3(n ) A Li,s,MA(IMA ) 

and IMA > I i  a" Hence, A is contained in at least MA sets of I. [ ]  
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