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Abstract

We present a fairly simple and natural algorithm for �SAT� which

can be viewed as a particular instantiation of the well known k�opt

heuristic� We prove that for most formulas drawn from certain random

and semi�random distributions on satis�able formulas� the algorithm

�nds a satisfying assignment in polynomial time�

� Introduction

For the well known problem of �SAT� the input is a �CNF formula on n
Boolean variables� Each of the clauses of a �CNF formula is the disjunction
�logical or� on three literals� where a literal is either a variable or its negation�
A ��� assignment to the variables �and the complement to their negation�
is a satisfying assignment if in every clause at least one literal is assigned
the value �� The goal is to �nd a satisfying assignment� if one exists� The
problem �SAT is well known to be NP	hard�
In this paper we shall consider heuristics for �SAT� By a heuristic we mean

an e
cient �polynomial time� algorithm that is not guaranteed to produce
the correct result� but in some interesting cases it does� Factors of importance
in the design of heuristics include the resources that it consumes �in terms of
running time and space of the algorithm� and in terms of programming e�ort
needed in order to implement it�� and its quality in terms of how likely it is
to actually help and produce good results� We are not aware of universally
agreed upon criterions for evaluating the quality of heuristics� Evidence that
is typically given to show that a certain heuristic is good often includes
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reports of experimental results on benchmark instances� reports of results
achieved on inputs encountered in practice� and rigorous or semi	rigorous
analysis showing that if inputs are drawn from certain distributions then the
heuristic is likely to solve them�
In this work� we consider a version of the well known k	opt heuristic and

adapt it to �SAT� We rigorously prove that the resulting algorithm almost
always �nds a satisfying assignment for inputs drawn from some natural dis	
tribution on satis�able �CNF formulas� We make no claims regarding the
perfomance of the algorithm on instances that one encounters in practice� or
on well known benchmarks for �SAT� In fact� we suspect that our algorithm
is inferior to some other algorithms that were developed for �SAT� The main
goals of the current work are twofold� One is to show that a fairly natural
algorithm for �SAT can be rigorously analysed under some natural distribu	
tion� and proved to produce good results� The other is to highlight the use
of semirandom models �as explained in Section �� as a driving force in the
design and analysis of heuristics�
There is a huge body of work related to our current work� We mention

some of it� selectively� The k	opt heuristic is well known� see ��� for exam	
ple� Comparative results for various heuristics for �SAT can be found in ���
Analysis of an algorithm that works in a probabilistic model similar to the
one that we consider can be found in ��� �but see Section � for more infor	
mation�� Rigorous analysis of the performance of various heuristics on very
sparse random �CNF formulas appears in �� ��� ��� among others� Heuristics
for refuting �CNF formulas �showing that no satisfying assignments exist�
are considered in �� �� ���� among others�
This work is based on the MSc thesis of the second author� though the

presentation here di�ers from the presentation in the thesis� More detailed
proofs for some of the technical claims can be found in ����

� Planted assignment models

We consider the planted assignment model for generating random satis�able
�CNF formulas� The model is parameterized by n �the number of variables�
and d �the density�� One �rst selects a random assignment � to the variables�
Then one generates m � d �n clauses independently at random� Every clause
is generated by picking uniformly at random a set of three variables� and then
picking the polarity of the variables at random� subject to the constraint that
the clause is satis�ed by �� �Out of the �� � � ways of picking the polarity�
seven result in a clause satis�ed by �� and one of these seven possibilities is
chosen at random��
Typical formulas generated in the planted assignment model contain �sta	

tistical hints� pointing to the assignment �� For a variable xi� one expects
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a fraction of ��� � ��� of its ocurrences to be of the same polarity as its
polarity in �� Hence assigning a variable in agreement with the polarity of
most of its ocurrences is likely to also be in agreement with �� It is not hard
to show that the fraction of variables assigned incorrectly by this majority
vote procedure is almost surely exponentially small in the density d of the
formula� �For more details� see Section A���� In particular� when d � c logn
for a su
ciently large constant c� the majority vote recovers the original ��
We shall be interested in the case that d is a �large� constant but inde	

pendent of n� In this case� most variables are set in agreement with � by
the majority vote� but a small fraction of the variables are set with �ipped
polarity� When n is large enough� the majority vote assignment is unlikely
to satisfy the input formula� The challenge is to �nd a satisfying assignment
�not necessarily the original ���
Flaxman ��� �following an algorithmic pattern originating in �� ��� de	

scribes a polyomial time algorithm that almost surely �over the choice of in	
put formula� �nds a satisfying assignment in the planted assignment model�
The algorithm that we present in Section � works as well� Both algorithms
start with the majority vote assignment� �Flaxman considers a more gen	
eral distribution on formulas with planted assignments� in the sense that
not all seven options for the polarities within a clause are equally likely�
For the more general distribution Flaxman gets an initial assignment based
on statistics over pairs of variables� using spectral techniques� rather than
statistics over individual variables� using the majority vote� However� for the
distribution considered in the current paper the majority vote assignment
can safely replace the spectral based assignment in Flaxman�s algorithm� as
Flaxman himself points out�� The di�erence between our algorithm and that
of Flaxman is in how one modi�es the majority vote assignment so as to get a
satisfying assignment� We use an algorithm based on k	opt� to be described
in Section �� Flaxman uses a multi	phase procedure� He �rst unassigns some
of the variables that exhibit untypical statistical properties in terms of the
number and type of clauses in which they appear �exact de�nitions appear
in ����� The rest of the variables are assumed �and Flaxman justi�es this as	
sumption by analysis� to have values that agree with �� The input formula is
then simpli�ed by substituting in the values of these variables� and removing
satis�ed clauses� Then a residual formula remains on the set of unassigned
variables� Flaxman shows that the residual formula is most likely composed
of several variable	disjoint subformulas� and that each such subformula con	
tains at most logn variables� Then a satisfying assignment is found using
exhaustive search over assignments to each subformula separately�
Let us now explain how and why we arrived at our algorithm� The moti	

vation was the view that algorithms that are designed for random models are
often over�tted to the particular model� and are not robust to slight changes
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in the model� To test whether a particular algorithm is robust� it is suggested
to replace the random model by a semirandom model� �Semirandom models
were �rst introduced in ��� The presentation here follows the principles out	
lined in ���� In the semirandom model� an adversary can change the random
input in a way that may super�cially appear to be harmless� If the algorithm
fails to work in the semirandom model� this is an indication that it is not
robust� In this case one tries to modify the algorithm �or come up with a
completely di�erent algorithm� so that it does work� Hopefully� by this one
arrives at an algorithm that is not only more robust� but also more natural�
Examples of this approach appear in �� ��� ����
The semirandom model that we consider is the following� First a formula

is generated at random from the planted assignment model� Then an adver	
sary is allowed to add arbitrary clauses to the formula� provided that all three
variables in these clauses have exactly the same polarity that they have in ��
The order of the clauses is shu�ed at random so as to hide the information
of which clauses are the random clauses and which are the adversarial ones�
Intuitively� the addition of adversarial clauses should only help in �nding

a satisfying assignment� as all three variables in them correctly hint to their
polarity in �� In particular� the majority vote assignment can only bene�t
from the adversarial clauses� Nevertheless� Flaxman�s algorithm fails in this
semirandom model� A minor problem that the adversary can create for
Flaxman�s algorithm is to fool the unassignment phase by adding adversarial
clauses that make the statistics of many variables untypical �according to
Flaxman�s original de�nition�� This problem can be overcome with a more
careful de�nition of what it means for a variable to be typical� �Let us
note here that this modi�cation to Flaxman�s algorithm already achieves
part of the goals of introducing the semi	random model� because it forces
one to think more carefully on which statistical properties of the variables
are the relevant ones for the algorithm to work� and are not sensitive to
the addition of the adversarial clauses�� However� a more serious problem
is that when adversarial clauses are added� the residual formula need not
decompose into small disjoint subformulas� making the exhaustive search
approach inapplicable�
Our algorithm was designed so as to work also in the semirandom model

described above �and indeed it works�� Hence� in some exact sense� our
algorithm is more robust than Flaxman�s algorithm� Moreover� it is our
view �but this is of course debateable� that our algorithm is more natural
than Flaxman�s algorithm� and that its analysis is simpler �even though the
underlying principles for the analysis are similar��
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� The algorithm

Our algorithm is based on a version of the k	opt heuristic� Let us �rst explain
how one would apply the k	opt heuristic for solving max��SAT� The input to
the max	�SAT problem is a �CNF formula with n variables and m clauses�
The value of a feasible solution �namely� an assignment to the variables� is
the number of clauses that are satis�ed by it� The goal is to �nd a solution
of maximum value�
To apply the k	opt heuristic� one can imagine all feasible solutions as

vertices of a graph� where two vertices are joined by an edge if their cor	
responding assignments agree on all variables but one� We call this graph
the Hamming graph� The value of a vertex in the graph is the value of the
corresponding solution� The algorithm starts at an arbitrary vertex on this
graph� Then� in every step of the algorithm� it seeks to move to a vertex of
higher value� and of distance no more than k from the current vertex� Such a
move if performed is called an improving move� If more than one improving
move is possible in a certain step� then there is some arbitration mechanism
that chooses among the possible moves� When no improving move exists�
the algorithm is said to have reached a local optimum� The algorithm stops
and outputs the solution corresponding to the local optimum�
The above description left some aspects of the algorithm unspeci�ed� such

as which starting vertex to choose� which arbitration rule is used in case of
more than one possible move� and which values of k give a favorable tradeo�
between running time and quality of solution� These aspects are important
and have in�uence on the quality of solutions found and on the running time
of the algorithm� They will be addressed in the context of our algorithm for
�SAT�
Let us now present our k	opt for �SAT� We shall use the same Hamming

graph as the one used for max	�SAT� But for the issue of the values given to
vertices� or what we call the landscape� we shall make a perhaps nonstandard
choice� Strictly speaking� in the �SAT problem all nonsatisfying assignments
are equally bad as solutions� unlike the case in max	�SAT� Hence a naive
approach may give every satisfying assignment the value �� and every non	
satisfying assignment the value �� However� this gives a landscape that is
too ��at� for the k	opt heuristic to be of any value� To get greater variablity
in the landscape� hopefully creating a drift towards satisfying assignments�
one may associate with each vertex of the search graph the same value that
it would get in the max	�SAT problem� namely� the number of clauses that
it satis�es� We call this the max	�SAT landscape�
In the current paper� we use a di�erent landscape� We call our landscape

the set�based landscape� We give every vertex a value that is a subset in
f�� � � � � mg� rather than an integer in that range� Speci�cally� the value of
a vertex is the set of clauses that it satis�es� rather than the number of
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clauses that it satis�es� This induces a partial order among vertices� based
on set containment� A vertex has better value than another vertex if the set
of clauses satis�ed by the former vertex strictly contains the set of clauses
satis�ed by the latter vertex�
Let us point out a useful property of the set	based landscape in the con	

text of k	opt� Observe that the Hamming graph has degree n� and �nding
an improving move might involve examining

Pk
i��

�
n
i

�
vertices of the graph�

This cost may be prohibitingly large even for relatively small values of k�
However� for the set	based landscape we can do better�

Proposition � For the set�based landscape� it su�ces to inspect �kn vertices
in order to �nd an improving move �if one exists��

Proof� Given an assignment � to the variables� consider the following
search tree of depth k� The root of the tree has degree at most n� and every
internal vertex has degree at most �� Hence the total number of vertices
in the search tree is at most �kn� Every edge of the search tree is labeled
by a variable �according to some rule that will be described shortly�� No
variable appears twice on the same root	to	leaf path� or on two edges that are
incident with the same vertex� With every vertex v of the tree we associate an
assignment �v which is identical to the assignment �� except that all variables
on the path from the root to v are �ipped� The edges leading out of the root
are labeled by the variables that appear in clauses that are not satis�ed by ��
The edges leading out of a vertex v are labeled as follows� If �v satis�es all
clauses satis�ed by �� then we make v a leaf of the search tree� If there are
clauses satis�ed by � but not by �v� we pick one of them arbitrarily �denote
it by Cv�� and label the edges leading out of v by those variables from Cv that
are not already �ipped in �v� Note that there are at most two such variables�
because the variable of � that satis�ed Cv is necessarily already �ipped in �v�
This completes the description of the search tree� The algorithm inspects all
assignments �v in the search tree �say� in depth �rst search order�� and if one
of them is an improving assignment� this assignment is output� Clearly� the
distance of this assignment from � is at most k�
It remains to show that if there is an improving assignment �� at Hamming

distance at most k from �� then at least one of the �v appearing in the search
tree is an improving assignment �though not necessarily �� itself�� The point
is that there is a path starting in the root that at every move decreases the
Hamming distance to ��� We call such a path a correcting path� As the
depth of the search tree is k� then either �� is reached along this path� or an
improving assignment is found earlier� We now describe a correcting path
�there may be several such paths�� There is some clause C that is satis�ed
by �� but not by �� From the root� move along an edge labeled by a variable
that satis�es C in ��� For an internal vertex v of the tree reached by the
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correcting path� there is some clause Cv that is satis�ed by � but not by �v�
and is used in order to label the edges leading out of v� This clause must also
be satis�ed by ��� Follow an edge labeled by the variable that satis�es C in
��� �Note that this cannot be a variable that was already �ipped� because all
�ipped variables along the correcting path necessarily agree with ���� �

Hence for the set	based landscape� we can run k	opt in polynomial time
as long as k � O�logn��
The k	opt algorithm with the set	based landscape may hit a local �rather

than global� optimum rather quickly� In fact� for the same value of k� every
local optimum of the max	�SAT landscape is a local optimum for the set	
based landscape� but the converse in general does not hold� A careful choice
of the starting vertex may in some cases help the set	based algorithm avoid
hitting a local optimum� In the context of the random formulas that we
shall consider� the majority vote heuristic o�ers a good starting point� This
heuritic assigns a variable in agreement with the majority of its occurances as
a literal� Namely� if a variable appears more times positively than negated� it
is assigned the value true� and false otherwise� �Ties can be broken either at
random� or arbitrarily� or by some other heuristic rule� One can ensure that
at least half the tied variables are set correctly by considering two di�erent
starting vertices� one with all tied variables assigned positively� and the other
with all tied variables assigned negatively��
We can now give a complete description of our algorithm� To make it an

algorithm that never fails� we do not work with a �xed value of k� but rather
with the smallest value of k that makes it succeed�

�� Produce an initial assignment using the majority vote�

�� Initialize k � ��

�� Apply the k	opt heuristic with the set	based landscape on the Hamming
graph until a local optimum is reached�

�� If a satisfying assignment is reached� output this assignment�

�� Else� if k � n� output �the formula is not satis�able��

�� Else� increase the value of k by � and return to step ��

To implement one step of the k	opt heuristic we recommend to use depth
�rst search on the search tree described in Proposition �� We note that
the degree of the root of the search tree decreases in every step� because
for every variable that is ever �ipped by our k	opt algorithm� all its clauses
remain satis�ed for the remaining run of the algorithm� �For example� if
it was �ipped from positive to negative� then prior to the �ip all clauses in
which is appears positively were satis�ed� and hence are required to remain
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satis�ed� All clauses in which is appears negatively are satis�ed after the
�ip� and hence they too are required to remain satis�ed�� Hence the total
number of improving k	moves performed by the algorithm is at most n� The
running time of the algorithm is polynomial in n and m� and exponential
in the largest value of k reached by the algorithm� The space used by the
algorithm is linear in m and n� regardless of the value of k that is reached�

� On cores and propagation graphs

Here we present general principles for analysing our k	opt algorithm for
�SAT� for a �xed value of k� We assume here that the input formula F
has some satisfying assignment �� and the k	opt algorithm has an initial as	
signment �� We shall present su
cient conditions for k	opt to converge to
a satisfying assignment �though not necessarily to ��� The running time of
the algorithm is then at most �kpoly�n�� which is polynomial in n whenever
k � O�logn��
Moves of the k	opt heuristic �ip variables� The choice of which variables

are actually �ipped is not fully speci�ed in our algorithm� as this requires
an arbitration rule when there are several possible improving moves� and
we did not specify any particular arbitration rule� However� given an initial
assignment �� there are certain variables that will never be �ipped by k	opt�
regardless of the arbitration rule that is used� We say that these variables
are �xed by �� and the other variables are called the non�xed variables� As
a simple example �for simplicity� we consider here �SAT rather than �SAT��
assume that two of the clauses of the input formula are �x��x�� and �x�� �x���
Then if x� � � in �� the two clauses are satis�ed� and �ipping the value of
x� makes one of them not satis�ed� regardless of the value of x�� Hence in
our set	based landscape for k	opt� there is no improving move that involves
�ipping x�� regardless of the value of k� In this speci�c case� not �ipping x�
appears to be a desirable feature of the algorithm� because x� � � in every
satisfying assignment for F � However� in other cases� the existence of �xed
variables may prevent k	opt from reaching a satisfying assignment�
Given the set of variables �xed by � and their values in �� one can sub	

stitute these values in F and simplify the formula� by removing clauses that
are satis�ed by the �xed variables� and removing occurences of the �xed vari	
ables from the remaining clauses� We call this subformula �involving only
non�xed variables� the residual formula� Possibly� this formula is not satis	
�able� either because it already contains an empty clause� or more generally
because every assignment to the non�xed variables fails to satisfy it�

Proposition � A necessary condition for k�opt to �nd a satisfying assign�
ment starting with initial assignment � is that the residual formula �as de�
�ned above� is satis�able�
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The converse of Proposition � is not necessarily true� The residual formula
may be satis�able� and still the k	opt algorithm may fail to �nd a satisfying
assignment� For example� consider a residual formula composed of the three
clauses �x��� �x� � x�� and � �x� � �x��� and assume that in �� x� � x� � �
�hence only the third clause is satis�ed�� and that we are running the �	opt
algorithm� The residual formula has a satisfying assignment� namely x� � �
and x� � �� Moreover� this assignment is reachable by one �ip from ��
However� �	opt may choose at its �rst step to �ip x� �satisfying the last two
clauses�� and then it is stuck in a local optimum �every single �ip makes
one of the two last clauses not satis�ed�� Perhaps a more striking example
is the following� The residual formula contains the six clauses �x��� �x���
�x��� �x�� �x�� �x��� � �x�� x�� �x�� and � �x�� �x�� x��� and � has x� � x� � x� � �
�whereas x� � x� � x� � � is the only satisfying assignment�� For �	opt�
every variable can be �ipped on the �rst move �and hence indeed is non�xed��
but then a local optimum is reached and the �	opt algorithm fails to converge
to a satisfying assignment�
We now give a su
cient condition for k	opt to �nd a satisfying assign	

ment� regardless of the arbitrartion rule used� This condition involves the
construction of a certain directed graph� that we call the propagation graph�
The graph depends on the initial assignment �� and also on a satisfying
assignment �� Namely� for the same � there may be several di�erent prop	
agation graphs� depending on the choice of satisfying assignment �� We let
G��� denote the propogation graph constructed from ��� ��� The vertices of
G��� are the non�xed variables with respect to �� There is a directed edge
from vertex xi to vertex xj if there is a clause C in the residual formula with
the following properties�

�� xi appears in C in a polarity that disagrees with its polarity in the
satisfying assignment ��

�� xj appears in C in a polarity that agrees with its polarity in ��

For clarity� we state in more explicit terms the condition that C is a clause
of the residual formula� For C in F �with xi and xj non�xed�� this means
that the third variable in C is either a non�xed variable� or a �xed variable
with polarity that disagrees with its polarity in the initial assignment ��
This completes the description of the propagation graph� For vertex xi

in G���� let P �xi� be its propagation set� the set of vertices reachable from xi
via a directed path in the propagation graph�

Theorem � Given a formula F and an initial assignment �� the algorithm
k�opt always �nds a satisfying assignment �regardless of the arbitrartion rule�
if F has some satisfying assignment � with respect to which both the following
conditions hold�
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	� For every variable that is �xed with respect to �� its assignment in �
is identical to its assignment in ��


� For every vertex xi in the propagation graph G���� its propagation set
satis�es jP �xi�j � k � ��

Proof� Let �� be an arbitrary assignment reached after an arbitrary
number of moves of k	opt� starting at �� and assume that �� is not a satisfying
assignment� We show that an improving move exists at ��� Consider an
arbitrary clause C not satis�ed by ��� As this clause is satis�ed by �� there
must be a variable �say� xi� used by � to satisfy C� Consider the assignment
��� obtained by �ipping xi in �� so that it now agrees with its assignment
in �� The clause C is satis�ed by ���� but some other clauses that were
satis�ed by �� might become unsatis�ed due to the �ipping of xi� Let C

�

be such a clause� Then xi necessarily appears in C � with a polarity that
disagrees with its polarity in �� Moreover� � satis�es C �� so C � must contain
a variable xj with polarity that agrees with its polarity in �� This variable
cannot be one of the �xed variables with respect to �� because �� �� �� and
��� all agree on the values of the variables �xed with respect to �� and we
assumed that ��� does not satisfy C �� This implies that �xi� xj� is an edge
of the propagation graph G���� The k	opt algorithm may choose to �ip also
xj� and then C

� becomes satis�ed� and other clauses may become unsatis�ed�
The main point to notice is that all variable that are considered for �ipping
are reachable from xi in the propagation graph� Hence if k � � � jP �xi�j�
there is an improving k	opt move� �

Remark� The reader may wonder whether Theorem � can be strength	
ened as follows� Rather than require that jP �xi�j � k for every vertex�
require only that this holds for at least one vertex� and similarly for every
vertex induced subgraph of G���� In the special case of �	opt� this condition
is equivalent to requiring that G��� does not have any directed cycle� How	
ever� this does not quite work for our algorithm� Consider for example the
residual formula with the two clauses �x�� and � �x�� x��� with x� � x� � � in
�� The propagation graph has a single edge �x�� x�� and hence has no cycles�
but �	opt makes no progress� It can �ip x�� but will not do that because this
is not an improving move� but rather a neutral move that does not change
the set of satis�ed clauses� We may augment the k	opt heuristic by allowing
also neutral moves� but this has to be done with care as it introduces the
possibility of cycling�

To construct the graph G��� one needs to know which are the �xed vari	
ables with respect to �� It is often easier to base the analysis of k	opt only
on a subset of the �xed variables� rather than on all of them� A convenient
subset of this form is what we call a core�
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De�nition � A set S of variables are a k	core for formula F with respect
to assignment � if the following conditions hold�

	� The subformula FS induced on S �namely� the set of all clauses of F
for which all three variables belong to S� is satis�ed by ��


� Every other assignment for the varaibles of S that satis�es FS di�ers
from � in the values that it assigns to strictly more than k variables in
S�

Clearly� k	opt cannot �ip the value of a k	core variable� as this forces the
�ip of a total of more than k variables in order to get an improving move�
�Otherwise� the respective FS is not satis�ed� whereas it is satis�ed by ���
There may be many di�erent cores with respect to �� If the residual

formula with respect to � is satis�able� then the union of cores is also a core�
and there is a unique maximum core� In general� we shall be interested in
�nding some �su
ciently large� core� rather than the maximum core�
Given a formula F � an assignment � and a core S we may consider the

residual formula that remains after substituting in F the values of � for the
core variables� Given also a satisfying assignment �� we may construct a
propagation graph GS�� whose vertices are the noncore variables� and edges
are de�ned analogously to the case of G���� The proof of Theorem � then
extends to prove the following theorem�

Theorem � Given a formula F � an initial assignment � and a k�core S
with respect to �� the algorithm k�opt always �nds a satisfying assignment
�regardless of the arbitrartion rule� if F has some satisfying assignment �
with respect to which both the following conditions hold�

	� For every variable in S� its assignment in � is identical to its assign�
ment in ��


� For every vertex xi in the propagation graph GS��� its propagation set
satis�es jP �xi�j � k � ��

� Performance in planted assignment model

We show that the k	opt algorithm �nds a satisfying assignment in polynomial
time with high probability over the choice of input formula F � where the
input formula is chosen at random from the planted assignment model� and
when d �the density� is su
ciently large� �We need d � d� where d� is some
constant that we do not attempt to compute here�� We then show that the
proof extends in a straightforward way to the semirandom model� Our proof
involves an application of Theorem ��
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For the input formula F with a planted assignment� we use � to denote
the planted assignment� and maj to denote the assignment that one gets
from the majority vote�

Theorem � For d su�ciently large� there are some constants c�� c�� c� � �
�where d and the ci are independent of n�� such that with probability at least
� � n�c� over the choice of random formula F from the planted assignment
model� F has a set S that is a t�core for t � c�n with respect to maj � with
the following two properties�

	� All variables of S are assigned by maj the same value as they are as�
signed by the planted assignment ��


� For every variable xi �� S� its propagation set in the graph GS�� satis�es
jP �xi�j � c� logn�

The condition t � c�n implies that when n is su
ciently large� t �
c� logn� Theorem � together with Theorem � then imply that for large
enough clause density d� for most formulas F with a planted assignment�
our k	opt algorithm will �nd a satisfying assignment for F without need to
increase k beyond c� logn� Hence the running time of our algorithm will be
polynomial in n�
A proof for Theorem � can be extracted from the analysis presented by

Flaxman for his algorithm ���� Speci�cally� the set of variables that remain
assigned after Flaxman�s unassignment phase may serve as the t	core S�
Their assignment under maj agrees with the planted assignment �� As to
the unassigned variables� Flaxman considers a graph in which two unassigned
variables are connected if they appear in the same clause� and shows that
all its connected components are of size O�logn�� Every edge of our graph
GS�� is also an edge of Flaxman�s graph �for the same S�� implying that the
connected components of GS�� are of size at most O�logn� as well� But this
implies that also jP �xi�j � O�logn�� In Section A we sketch a self contained
proof of Theorem ��

��� The semirandom model

Recall that in our semi	random model� an adversary is allowed to add arbi	
trary �CNF clauses of its choice� provided that all three literals in a clause
are satis�ed by the planted assignment �� Flaxman�s algorithm appears not
to run in polynomial time in this semirandom model� Our algorithm does
run in polynomial time�

Theorem � For d su�ciently large� there are some constants c�� c� � �
�where d and the ci are both independent of n�� such that with probability
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at least � � n�c� over the choice of random formula F from the planted
assignment model� regardless of the clauses added by the adversary in the
semirandom model� our k�opt algorithm �nds a satisfying assignment while
maintaining k � c� logn�

Proof� If the adversary does not add any clauses� we have a t	core S
with respect to maj as speci�ed in Theorem �� For all variables of S their
assignment under maj agrees with their assignment under �� Moreover� the
graph GS�� does not have propagation sets larger than c� logn� Consider
now the addition of adversarial clauses� As all variables in these clauses are
assigned consistently with �� the majority vote for the semirandom formula
still agrees with � on S� Hence S remains a t	core� As to the graph GS��

associated with the semirandom formula� the adversary cannot add to it any
edges compared to the originalGS��� because with every directed edge �xi� xj�
one needs to associate a clause in which xi appears with a di�erent polarity
than its polarity in �� but the adversary is not allowed to add any clause
containing such a variable� Hence the size of the propagation sets cannot
grow� It follows from Theorem � that the k	opt algorithm �nds a satisfying
assignment in polynomial time� �

� Discussion

We presented a k	opt algorithm for �SAT using the set	based landscape�
The reason for using this landscape� rather than some other landscape such
as the max	�SAT landscape� is that using it we can prove polynomial time
convergence to a satisfying assignment in the planted assignment model� and
in a semirandom variant of it� We do not know whether k	opt with the
max	�SAT landscape has polynomial time convergence in the same model�
It is easy to design satis�able �CNF formulas on which our algorithm

fails �or rather� takes exponential time to �nd a satisfying assignment�� In
particular� the k	opt paradigm is not expected to work well on formulas
that have many local optima at large Hamming distance from the global
optimum� We have performed preliminary experiments with our algorithm
�in the implementation we followed some optimizations that are discussed
in Section B in the appendix� on random formulas� where the number of
variables ranged from n � �� up to n � ��� ���� In our experimentation
we considered clause densities of d � � and d � � �instead of the larger
clause densities that are assumed in Section ��� and formulas with or without
planted assignments� Our goal was to check whether the average value of k
reached by the algorithm appears to be a linear function of log� n� For the
planted assignment model� a plausible interpretation of our results is that
k � ���� log� n when d � �� and k � ��� logn when d � �� When there was
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no planted assignment �note that even a random formula without a planted
assignment is likely to be satis�able at these clause densities�� it appears as
if k � ���� log� n when d � �� For d � �� when n � ��� the average value
of k was around ��� and for n � ��� the value of k typically exceeded ��� at
which point we stopped the program �as its running time is exponential in
k��
We remark that the algorithm presented here is one of two algorithms

presented in ��� for the random and semirandom planted assignment mod	
els� The other algorithm started with a majority vote� continued with an
unassignment phase� followed with unit clause propagation� and ended with
a random walk	sat procedure� For details of this other algorithm and actual
experimental results �on formulas with hundreds of thousands of variables
and density ���� see ����
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A Proofs

Here we sketch the proof of Theorem �� Some of the missing details can be
found in ���� As noted in Section �� a proof can also be deduced from the
analysis in ����
It is convenient for the sake of the proof to consider a slight variation

on our random planted assignment model� Rather than select exactly dn
clauses at random� one starts with all � �

�
n
�

�
clauses that are satis�ed by

the planted assignment �� and picks into F each such clause independently
with probability p � �d��

�
n��
�

�
� The expected number of clauses in F is
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thus dn� and with very high probability the actual number of clauses di�ers
from the expectation only by low order terms� In our proofs� we shall switch
freely between the original model �that we call Fd� and the new model �that
we call Fp�� according to which model is more convenient for the particular
claim that we prove� Though there are minor technical di�erences between
the models� they can be shown to be of negligible signi�cance for our proofs�
As in previous sections� we use � to denote the planted assignment� and

maj to denote the assignment that one gets from the majority vote�

A�� The majority vote

We �rst show that maj agrees with � on almost all variables�

Proposition � For any individual variable xi� the probability that maj and
� disagree on it is ����d��

Proof� We prove this proposition in the Fp model� Assume w�l�o�g� that
xi appears positively in �� Let ti be a random variable counting the number
of positive occurances of the variable xi in the input formula F � and ni a
random variable counting the number of negative occurances� The majority
vote is wrong with respect to xi only if ni � ti� The total number of clauses
that contain xi positively and are satis�ed by � is exactly �

�
n��
�

�
� The total

number of clauses that contain xi negatively and are satis�ed by � is exactly
�
�
n��
�

�
� The expectations of ti and ni are Eti� � �p

�
n��
�

�
� ��d��� and

Eni� � �d��� Each of ti and ni is a binomial random variable and hence
strongly concentrated around its mean� In particular� Prti � ��d��� �
����d� and Prni � ��d��� � �

���d�� Hence Prni � ti� � �
���d�� �

Proposition 	 With high probability over the choice of input formula� the
initial assignment maj disagrees with the planted assignment � on at most
����d�n variables�

Proof� Proposition � together with the linearity of expectation im	
plies that the expected number of variables on which maj and � disagree
is ����d�n� It follows from Markov�s inequality �and �ddling with the con	
stants in the � notation� that with probability �� ����d� over the choice of
random formula from the planted assignment model� maj and � disagree on
at most ����d�n variables� This probability can be boosted up to �� ����n�

�where the constant in the � notation depends only on d� by considering the
martingale implied by the clause selection process in the Fd model� Details
are omitted �but can be found in ����� �

Let us note that maj itself is not likely to be a satisfying assignment for
F � A clause is not satis�ed by maj ifmaj disagrees with � on the assignment
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of the variables with which � satis�es the clause �and agrees with � on the
assignment of the variables with which � does not satisfy the clause�� This
is expected to happen for an ��O�d� fraction of the clauses�

A�� The clause�sharing graph

To prove Theorem � we need to �nd a core for maj and analyse the propa	
gation graph on the noncore variables� It is useful to consider �rst a certain
clause�sharing graph GF �or rather a multigraph� as we shall make no e�ort
to avoid parallel edges�� The vertices of the graph are the variables� and two
variables are connected by an edge if there is a clause in F that contains
both of them� As each clause contributes three edges to GF and the number
of clauses is dn� the average degree in GF is �d� In our analysis we shall
encounter various vertex induced subgraphs of GF � The constants in the
following lemma are to some extent arbitrary�

Lemma 
 For d su�ciently large �e�g�� d � ��� there is some constant c � �
�e�g�� c � ������ such that with high probability over the choice of F � every
vertex induced subgraph of GF with average degree at least d�� contains at
least cn vertices�

Proof� We prove the proposition in the Fp model� Let S be a set of
variables such that GF �S�� the subgraph induced on S� has average degree
at least d��� Then GF �S� contains at least djSj��� edges� implying that F
has at least f � djSj��� clauses that contain two variables from S� �If a
clause contains three variables from S it contributes three edges to GF �S��
and hence f may be in fact smaller� A rigorous proof should take this fact
into acount� but it turns out that this has only negligible e�ect on the �nal
outcome� and for simplicity� we ignore this issue here�� These f clauses are

chosen from at most g � �n
�
jSj
�

�
clauses� so the probability that GF �S� has

average degree at least d�� is at most
�
g
f

�
pf � Taking the union bound over

all sets S of all sizes up to cn� one gets that the probability of the proposition
failing is at most roughly

cnX
i�d�	

�
n

i

��
�ni���

di���

�
��d��n��di��
 �

cnX
i�d�	

�
n

i

�
���e � i�n�di��


which tends to � at a rate polynomial in n� when d is su
ciently large and
c su
ciently small� �

A�� The core

We shall identify here a particular t	core that is likely to exist for F �
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De�nition � For formula F � assignment � and set S of variables� we say
that variable xi supports clause Cj with respect to ��� S� �or with respect
to �� if S contains all variables� if all three variables in Cj are from S� Cj

contains xi� the occurence of xi in Cj is assigned to true under �� and the
two other literals in Cj are assigned to false under �� For a nonnegative
integer q� a variable is a q	supporter with respect to ��� S� if there are at
least q clause that it supports with respect to ��� S��

The notion of supporters will help us de�ne a core� We shall �rst consider
supporters with respect to the planted assignment �� and then with respect
to maj �

Proposition �� With high probability over the choice of F � all but a frac�
tion of ����d� of the variables are �d���supporters with respect to the planted
assignment ��

Proof� We �rst consider the Fp model� and all possible clauses� xi is a

supporter with respect to � of
�
n��
�

�
clauses� Each such clause is picked into

F with probability p � �d��
�
n��
�

�
� Hence xi is expected to support �d��

clauses� and has probability ����d� of supporting less than �d�� clauses� The
expected number of variables that are not �d��	supportes with respect to �
is ����d�n� The actual number is similar with very high probability� as can
be shown via a martingale argument over the clause exposure process in the
Fd model� Details are omitted� �

De�nition � A set S of variables is a supporting set with respect to maj
if every variable in S is a d���supporter with respect to �maj �S��

Proposition �� With high probability over the choice of F � its supporting
set with respect to maj is nonempty�

Proof� We consider the following procedure for identifying a supporting
set S� Initially� S contains all variables that are �d��	supporters with respect
to �� Then we remove from S all variables on which � and maj disagree�
Then iteratively� remove from S those variables that are not d��	supporters
with respect to �maj �S�� updating S after every removal� We shall show
that with high probability over the choice of F � the above process ends with
a nonempty S�
Let A be the set of variables that are not �d��	supporters with respect

to �� B the set of variables on which � and maj disagree� and C the set
of variables removed in the iterations� Then jSj � n � jAj � jBj � jCj�
Proposition �� implies that jAj � ����d�n� Proposition � implies that jBj �
����d�n� We show that with high probability� jCj � jAj  jBj� Assume to
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the contrary that at some stage C reached a cardinality of jAj  jBj� and
consider the subgraph of the clause	sharing graph induced on A

S
B
S
C� It

has at most �jCj vertices and least jCjd�� edges �and hence average degree
d��� because every variable in C supports �with respect to �� at least �d���
d�� clauses that involve variables from A

S
B
S
C� But then� by Lemma ��

�jCj � cn� which for su
ciently large d contradicts our choice of �jCj �
��jAj jBj� � ����d�n� �

The supporting set S found in the proof of Proposition �� has the follow	
ing two useful properties�

�� It satis�es jSj � ��� ����d��n�

�� The assignments � and maj agree on every variable in S�

This leads to the following�

Proposition �� The supporting set S can serve as a t�core for maj � with
t � ��n��

Proof� We have seen already that � and maj agree on S� hence the
subformula FS induced on S is satis�ed by maj � It remains to show that
every other assignment that satis�es FS di�ers from maj on ��n� variables
of S� Intuitively� this is true for the following reason� Flipping one variable
in S causes the d�� clauses that it supports in FS to be not satis�ed� This
requires �ipping of additional variables in S� and again� the clauses that these
variables support in FS become not satis�ed� This causes an �avalanche
e�ect� that stops only after ��n� variables are �ipped�
Formally� suppose a set T � S of variables were �ipped and FS remained

satis�ed� Each of the �ipped variables supports at least d�� clauses� and
in each such clause some additional variable must belong to T � Hence the
subgraph of the clause	sharing graph induced on T has minimum degree at
least d��� and Lemma � implies that jT j � cn� �

A�� The propagation sets

Let S be a core for maj as found by Proposition ��� We shall prove that the
propagation sets in the propogation graph GS�maj are all of size at most
logn�
Our intention is to prove the claim by using the following approach� Con	

sider an arbitrary set K of logn variables �say x�� � � � � xlog n� one of which �say
x�� is called the root variable� On this set of variables let us consider a di	
rected tree structure TK with x being at the root of the tree� and the other
variables of K serving each as either an internal vertex or a leaf of the tree�
We say that a �CNF formula F with planted assignment � induces TK if for
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every directed tree edge �xi� xj�� F contains a clause in which xi appears in
polarity disagreeing with � and xj appears in polarity agreeing with �� With
TK we associate two random events� TK � F is the event that F induces TK
�taking into account also ��� The other event is K � �S� where S is the core
set�

Proposition �� The propagation graph GS�maj contains a propagation set

of size logn only if for some TK as above� both events TK � F and K � �S
hold�

Proof� Assume that the propagation set of variable xi satis�es jP �xi�j �
logn� Remove variables from P �xi� �starting from those furthest away from
xi� until a set P

��xi� of exactly logn � � variables remains� Now let K �
xi
S
P ��xi�� and let TK be the directed tree in GS�maj that shows that P

��xi�
is in the propagation set for xi� Then by the de�nition of the propagation
graph� Tk is necessarily induced by F � and K � �S� �

Proposition �� Fixing K and TK� PrTK � F � � �O�d�n��logn� where the
probability is computed over the choice of � and F �

Proof� Consider a minimal set of clauses I that can induce TK �by
containing variables in K with the right pairing and polarity as required by
TK�� Note that jIj � jKj � � because of minimality� and jIj � �jKj � ����
because each clause gives at most two edges of TK � The following argument
can be performed separately for each possible value of l � jIj� For every
directed edge in TK� there are at most �n di�erent clauses that may possibly
induce it �depending on the identity of the third literal�� Hence there are

at most ��n�l
�
jKj��

l

�
� �O�n��l ways of choosing I� The probability that a

particular set I is in F �in the Fp model� is p
jIj � �O�d�n���l� The union

bound over all I now proves the proposition� �

Proposition �� Fixing K� PrK � �S� � ����d log n�� where the probability
is computed over the choice of � and F �

Proof� The size of �S is ����d�n� �For simplicity� we assume here that
this holds with certainty� More details will follow later�� Moreover� the set
of variables in �S is random �since all distributions in questions are invariant
under renaming of variables�� As jKj � logn� PrK � �S� � ����d log n�� �

For a speci�c TK � what is the probability that both events TK � F and
K � �S hold! If these events were independent� the probabilty would be at
most �O�d�n��logn � ����d log n�� Then we could consider all

�
n

log n

�
� � en

log n
�log n

possible sets K� multiplied by the number of possible trees on K �which is
less then �logn�log n�� and use the union bound to conclude that with high
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probability� there is no TK for which both events TK � F and K � �S hold�
Then by Proposition �� we would reach the desired conclusion that there are
no propagation sets larger than logn�
The main problem in the approach outlined above is that the events

K � �S and TK � F are not independent� and hence the probability that
they both happen is not the product of their individual probabilities� We
shall now explain how these dependencies can be handled� and in doing so�
also handle some other minor inaccuracies in the arguments given above�
The approach we follow is patterned after the approach used in �� ��� ����
though the details are a bit di�erent�
For a planted assignment � and a propagation tree Tk� let I be a minimal

set of clauses that may potentially induce TK� I contains at most K � �
clauses� and hence at least jKj�� variables of K appear at most � times in
I� Denote the set of these variables by K ��
In what follows� we condition the analysis on the event that the terms of

Lemma � indeed hold for the �CNF formula F � The conditioning is justi�ed
because this event happens with high probability�
We now use the following approach to decouple the dependency between

TK � F and K � �S� Fix the planted assignment �� and consider a set K of
variables� a propagation tree TK consistent with �� and a minimal set I of
clauses that can induce TK � Now think of F as being generated in the model
Fp in two stages� In the �rst stage� we generate F

� by including every eligible
clause �satis�ed by �� with probability p� except that the clauses of I are
not included in the process of generating F �� For F � we de�ne an inner core
S �� The inner core is obtained by providing some �padding� to the process
described in Proposition �� for generating a core� For the majority vote�
this padding means that a variable is set in maj to agree with the planted
assignment � only if the majority vote had a bias of more than � towards the
assignment in �� For the de�nition of supporting sets� the padding means
that each variable needs to support more than d�� clauses� but we do not
count clauses that contain two variables that appear in I� It is not hard
to see that all proofs of sections A�� and A�� go through even when this
padding is applied �though perhaps with some minor di�erences in the choice
of constants�� Moreover� the variables that appear in I are indistinguishable
in these proofs from the variables not I� because I contains only O�logn�
clauses� and in expectation would not contribute even a single clause to F �
Hence there is an inner core S � of size ��� ����d��n� and each variable of K �

�note that here we will be considering K � rather than K� is not is S � with
probability ����d�� Moreover� conditioned on Lemma �� the probability of
such an S � not existing is ����n�� where the hidden constant in ��n� depends
only on d� �The martingale arguments in Propositions � and �� have such
low error probability� Lemma � has higher error probability� and this is why
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we condition on it��
Now we reach the second stage for generating F � in which each clause of

I is placed in F with probability p� The main point is that now� regardless of
the outcome of the second stage� every variable of K � originally in the inner
core S � is necessarily a member of the core S for F � as the set of clauses I
can neither tilt the majority vote for such a variable� nor e�ect the number
of clauses it supports� �This claims follow from the padding that we had
for S ��� Hence we may in fact take the products of the probabilities of the
events K � � �S � and I � F as an upper bound on the probability that both
events K � �S and I � F happen� �An argument similar to Proposition ��
ties between the events I � F and TK � F �� Following the principles and
calculations as outlined above� we have�

Proposition �� With high probability� the propagation graph induced on the
noncore variables does not have a propagation set larger than logn�

The combination of Propositions �� and �� proves Theorem ��

B More discussions

Some notes about actual implementation of the algorithm� We chose an ini	
tial assignment based on the majority vote� This choice was motivated by the
particular random model that we used for generating input formulas� If the
algorithm is run on instances drawn from a di�erent distribution� one should
consider other methods of producing an initial assignment� For example� one
may start from a random initial assignment� or one that is derived using
spectral techniques as in �� ���� Another issue is how to arbitrate among
improving moves if several such moves are available� Here again� some prior
knowledge about the structure of the formula may help� A simple principle
that can be used is to sort the variables in decreasing order of con�dence in
their current assignment� and use this order when labeling the edges leading
out of the root of the search tree� This con�dence level can be computed
anew after every step� or more simply� only once following the choice of the
initial assignment� For example� in the case of an initial assignment based
on majority vote� the variables may be sorted in increasing order of the sta	
tistical con�dence in their majority vote�
A natural line of research to follow is to consider other semi	random

models� and see if the algorithm still works �or else� design an improved
algorithm�� Let us mention here a few semirandom models that we �nd
potentially interesting� In all of them� the adversary does not add clauses�
but only �ips the polarity of existing variables�
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�� Positive �ips The adversary may �ip the polarity of the occurence
of a variable that does not agree with the planted assignment � so that
it does agree with �� This can only help the initial majority vote� but
can greatly damage the core� A variable xi originally in the core can be
thrown out of the core by the adversary �ipping the polarity of other
variables in the clauses that xi supports� Hence our current analysis
for k	opt does not work� though potentially something else does work�

�� Negative �ips The adversary may �ip the polarity of the occurence
of a variable that does agree with the planted assignment � so that it
does not agree with �� provided that the clause remains satis�ed� This
might ruin the strong correlation between an initial majority vote and
the planted assignment �� On the other hand� all original variables
of the core remain in the core �w�r�t� to the original majority vote
assignment� prior to the adversary�s intervention�� Possibly� an initial
assignment based on spectral techniques may replace here the majority
vote assignment�

�� Arbitrary �ips Only the variables in each clause are chosen at ran	
dom� The polarity is chosen by an adversary� under the constraint that
all clauses are satis�ed by the planted assignment �� It is our belief
that currently known algorithmic techniques are not strong enough to
handle this semi	randommodel �except when the density is very small��
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