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Abstract. Recurrence of small image patches across different scales of a natu-
ral image has been previously used for solving ill-posed problems (e.g., super-
resolution from a single image). In this paper we show how this multi-scale prop-
erty can also be used for “blind-deblurring”, namely, removal of an unknown blur
from a blurry image. While patches repeat ‘as is’ across scales in a sharp natu-
ral image, this cross-scale recurrence significantly diminishes in blurry images.
We exploit these deviations from ideal patch recurrence as a cue for recovering
the underlying (unknown) blur kernel. More specifically, we look for the blur
kernel k, such that if its effect is “undone” (if the blurry image is deconvolved
with k), the patch similarity across scales of the image will be maximized. We
report extensive experimental evaluations, which indicate that our approach com-
pares favorably to state-of-the-art blind deblurring methods, and in particular, is
more robust than them.

Keywords: Blind deblurring, blind deconvolution, blur kernel estimation, inter-
nal patch recurrence, fractal property, statistics of natural images.

1 Introduction

Photos often come out blurry due to camera shake, defocus or low-grade optics. Undo-
ing this undesired effect has attracted significant research efforts over the last decade.
In cases in which the blur is uniform (same across the entire image), the blurry image y
is often modeled as having been obtained from the desired sharp image x as

y=kxx+n, (H

where * denotes convolution, k is some blur kernel and n is noise.

Since both the blur & and the sharp image = are unknown, and since many differ-
ent pairs of  and k£ may result in the same blurry image y, blind deblurring heavily
relies on the availability of prior knowledge on x. Most existing algorithms rely, either
explicitly or implicitly, on the fact that images contain enough step edges. This assump-
tion is formulated in various ways. Some studies assume simple parametric probability
models, which promote sparsity of image gradients [5,17,12,13,10]. Others assume a
parametric form for the spectrum of the image [8], which decays polynomially with
frequency (corresponding to the Fourier transform of step edges). Finally, many ap-
proaches employ heuristic methods for detecting and/or enhancing edges in the blurry
image. These range from setting a threshold on the image gradients [9] to shock and
bilateral filtering [1,19,2].
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Gradient priors model interactions between pairs of pixels. In recent years, the ad-
vantage of using priors over larger neighborhoods (patches) has been recognized. Patch
priors model more complex structures and dependencies in larger neighborhoods. Such
priors have led to state-of-the-art results in various inverse problems [ | 6] including non-
blind deblurring [3,22,4] (namely, deblurring with a known blur kernel). Recently, Sun
et al. [18] used a patch prior learned from an external collection of sharp natural images
for blind deblurring (unknown blur kernel). This resulted in a significant improvement
in performance over all the previous blind deblurring methods [13,10,1,19,2].

In this paper, we present an approach for blind-deblurring, which is based on the
internal patch recurrence property within a single natural image. It was empirically
shown by [7,20] that almost any small image patch in a natural image (5 X Sor 7 X 7)
re-appears “as is” (without shrinking the patch) in smaller scaled-down versions of
the image (Fig. 1(a)). This observation was successfully used for various non-blind
inverse problems (where the degradation process is known), including single-image
super-resolution [7,6] and image-denoising [21].

The cross-scale recurrence property was also recently used in [14] for blind Super-
Resolution (SR). While, superficially, blind-deblurring can be thought of as a special
case of blind-SR with a magnification factor o = 1, there is a conceptual difference
between the two. The goal in blind-SR [14] is to recover an a-times larger image,
whose blur is a-times narrower than in the input image (thus imitating an optical zoom-
in). Consequently, as opposed to blind-deblurring, the optimal SR blur kernel kgg is
not the point spread function (PSF) of the camera. Rather, as shown in [14], it is given
in the Fourier domain by the following PSF ratio: Kgg(w) = PSF(w)/PSF(w/a),
where « is the SR magnification factor. Thus, for a magnification factor & = 1, the
optimal SR blur kernel of [14] reduces to Ksr(w) = 1, namely, a delta function in
the spatial domain. This is regardless of the blur in the input image. Therefore, the
blind-SR algorithm of [14] cannot be used for blind deblurring. Put differently, in blind-
deblurring we seek to recover the PSF, and not the ratio between two PSFs as in blind-
SR. Nevertheless, we show that the cross-scale patch recurrence property can still serve
as a strong prior for blind-deblurring, but requires a different strategy.

Our approach is conceptually simple. While patches repeat across scales in a sharp
natural image (Fig. 1(a)), this cross-scale recurrence significantly diminishes in blurry
images (Fig. 1(b)). We exploit these deviations from ideal patch recurrence as a cue
for recovering the underlying (unknown) blur kernel. This is done by seeking a blur
kernel k, such that if its effect is undone (if y is deconvolved by k), the patch similarity
across scales will be maximized. Moreover, while the blur is strong in the original
scale, the blur decreases at coarser scales of the image. Thus, sharper image patches
“naturally emerge” in coarser scales of the blurry image (e.g., Fig. 1(b)). The patches
in coarser image scales can thus serve as a good patch prior (sharper examples) for
deblurring the input scale. This allows recovery of the unknown blur kernel. We show
that blind deblurring based on the internal patch recurrence prior compares favorably
to all previous blind-deblurring approaches. We further show that this is a very stable
prior, in the sense that it rarely diverges on any input image (unlike other priors).

The rest of this paper is organized as follows. Section 2 provides an overview of our
approach and explains the intuition underlying the optimization process. Section 3 is
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Fig. 1. The cross-scale patch recurrence is strong in sharp images and weak in blurry images.
(a) Small patches (e.g., 5 x 5, 7 x 7) tend to recur across scales in an “ideal” (sharp) natural
image x. Namely, if we down-scale = by a factor of «, then for most patches in x, there exist
almost identical patches in the down-scaled image x®. (b) In contrast, in a blurry image y = xxk,
this is no longer true. The similarity between patches in y and in its down-scaled version y is
significantly reduced. Patches in the down-scaled version y tend to be a-times sharper than their
corresponding patches in y. Thus, down-scaling generates a pool of sharper patches, which can
be used as a prior for removing the blur in y.

devoted to an in-depth explanation of our algorithm. Finally, in Section 4, we demon-
strate and compare the performance of our algorithm to other state-of-the art methods.

2 Overview of the Approach

We start with a high-level overview of our approach, focusing on the intuition behind
the proposed method. We defer the detailed definitions and derivations to Section 3.

While patches repeat across scales in a sharp natural image under ideal downscal-
ing (Fig. 1(a)), this cross-scale recurrence significantly diminishes in blurry images
(Fig. 1(b)). We thus seek a blur kernel k, such that if its effect is undone (if y is decon-
volved by k), the patch similarity across scales will be maximized. More specifically,
we look for an image Z and a blur kernel k such that on the one hand, 7 satisfies the
patch recurrence property (namely, strong similarity between patches across scales of
#), and, on the other hand, k & is close to the blurry image y. This is done by solving
the optimization problem

argmin ||y — & * &% +A1 p(&, %) +Aa || k]|, )
P —— —— —~—
data term image prior kernel
prior

where £ is an a-times smaller version of &. The second term p(Z, £“) measures the
degree of dissimilarity between patches in Z and their Nearest Neighbor patches (NNs)
in . The third term is a regularizer on the kernel k.
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Note that as opposed to blind-SR [14], where the optimal SR kernel is the one which
maximizes patch similarity across scales of the input image, here we seek a different
kernel — the kernel k that (when undone) maximizes patch similarity across scales of
the unknown output image.

Our optimization problem (2) may be interpreted as a joint MAP estimation of x
and k (coined MAP,, ;. in [12]), which was shown by [12] to lead to wrong (trivial)
results. However, as opposed to the simple prior used in [12], under which the MAP,, ;.
strategy indeed favors blurry reconstructions, our prior p(&, %) avoids such solutions.
This is because small patches in a sharp #, have similar patches (NNs) in its down-
scaled version 2% (see Fig. 1(a)). Therefore, for a sharp Z, the penalty p(Z, £%) is small.
On the other hand, patches in a blurry &, are less similar to patches in its down-scaled
2 (Fig. 1(b)). Therefore, for a blurry image Z, the penalty p(&, £%) is large.

The objective (2) is not convex (see the definition of p(Z, %) in Sec. 3.2), and has no
closed-form solution. We solve it using an alternating iterative minimization procedure
comprising of three steps in each iteration, as described in Algorithm 1 below. The
iterative process is initialized with the blur kernel k being a delta function, and Z is
initially the blurry input image y.

Input: Blurry image y

Output: Blur kernel k

Initialize k = § and & = Ys

fort=1,...,Tdo
1. Image Prior Update: Down-scale image & by a factor of « to obtain £ (Sec. 3.1).
2. Deblurring: Minimize (2) w.r.t Z, holding k and 2* fixed (Sec. 3.2).
3. Kernel Update: Minimize (2) w.r.t I%, holding & and ¢ fixed (Sec. 3.3).

end

Algorithm 1: Kernel estimation.

At first sight, our iterative approach may seem similar to other methods, such as
[1,19,18], which iterate between an z-step (updating & with k fixed) and a k-step (updat-
ing k with 2 fixed). However, close inspection reveals that our z-step is fundamentally
different. Rather than using a fixed generic prior on natural images, we use an evolving
image-specific prior based on patches extracted from the down-scaled (sharper) version
of the previous image extimate Z. Since our estimate & gets sharper from iteration to
iteration, the prior also changes from iteration to iteration.

Step 1: The purpose of Step 1 of the algorithm is to produce an image £, which serves
as a pool of sharper patches. Intuitively, if we shrink a blurry image & by a factor of a,
then the result £ contains a-times less the amount of blur. For example, if we scale-
down Z by a factor of a = 2, then an edge smeared over 10 pixels in & would appear
smeared over only 5 pixels in £%. However, the image £ is also a-times smaller. In
Section 3.1 we prove that, despite the fact that £ is smaller, the pool of small patches
(e.g., 5 x b) extracted from £ is roughly the same as the pool of small patches extracted
from the larger image &, only a-times sharper. This is due to the recurrence of small
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patterns at various sizes in the continuous scene (see Section 3.1).

Step 2: Step 1 resulted in an image £®, which provides a pool of patches that are
a-times sharper than those in the image estimate &. These patches are used in Step 2 as
examples for how patches in & should look like if we were to sharpen them by a factor
of a. To construct a new a-times sharper &, we minimize (2) with respect to & while
holding k and 2 fixed. Disregarding the last term in (2), which does not depend on z,
this amounts to solving

argmin |y — & * &|° + A\ p(#, 2%). 3)

This is in fact the deblurring of y by the current kernel estimate k, where the prior is
represented by the patches in 2. In practice, this step tries to assemble a new sharper &
from the sharper patches in £, as shown in Fig. 2(d). For example, in the first iteration
(in which k= d), this process results in an image &, which is close to y, but at the same
time its patches are similar to the a-times sharper patches in 2. Therefore, intuitively,
the image %, recovered in the first iteration contains a-times less the amount of blur
than y. At the second iteration, the image %5 is a-times sharper than 1, and thus a?-
times sharper than y. The image 2 at the /-th iteration is o times sharper than y, and
intuitively tends to x for large £.

Step 3: Finally, we update the kernel estimate k, by computing the blur between the
current deblurred estimate Z and the input image y. Thus, in the ¢-th iteration, we re-
cover the kernel k; such that y = k¢ * #,. Since for large enough ¢, &, converges to x,
the kernel estimate k, converges to k. This is the final output of our algorithm.

To speed up the convergence, as well as to avoid getting stuck in a local minimum,
the above process is performed coarse-to-fine in a pyramid data structure.

3 Detailed Description of the Algorithm

We now explain in detail each step of Alg. 1.

3.1 Step 1: Generating Sharper Patches by Down-Scaling by a Factor «

The purpose of Step 1 of Alg. 1 is to produce from the current image estimate, Z, a pool
of patches that are less blurry. We now formally explain why shrinking a blurry image y
by a factor of o, generates an a-times smaller image y“, which contains approximately
the same pool of patches as in (the larger) image y, only a-times sharper.

Glasner et al. [7] showed that most patches in a sharp natural image, recur mul-
tiple times in its scaled-down version'. As further noted in [14], the source of this
patch recurrence is the repetitions of small patterns at various sizes in the continuous

! For example, according to [7], approximately 90% of the 5 x 5 patches in a sharp natural
image, recur “as is” 10 or more times in the image scaled-down to 3/4 of the size (o = 4/3).
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Continuous Scene

(a)

Fig. 2. Enforcing the cross-scale patch prior in each iteration. (a) A small pattern recurs in the
continuous scene at multiple sizes (blur stars). (b) At the ¢-th iteration, the image estimate ¢
corresponds to the convolution of the scene with the kernel estimate k. Thus the two patterns in
the scene appear as two blurry patches ¢ and r in the image Z,. (c) In the down-scaled version
Z¢, the child patch of r contains the same structure as the patch ¢ in &¢, only a-times sharper.
(d) We construct a sharper image 2,1 such that each of its patches is constrained to be similar
to its sharper version in £y (e.g., the new version of g in Z¢41 should be similar to the sharper
patch r* in 7).

scene. Consider a small pattern f(&) in the continuous scene which recurs elsewhere as
f(&/a), i.e., o times larger (represented by blue stars in Fig 2(a)). Ignoring sampling
issues for the moment, these two patterns are convolved with the blur of the camera
k(€), and appear in the observed image as the patches ¢ and r (Fig. 2(b)):

o =K+ 1O, =k f(E). @
Now, if we shrink the blurry image by a factor of «, then the patch r becomes

r(§) = r(ag) = a- k(ag) * £(£). Q)

In other words, 7 () corresponds to the same continuous structure, f(£), but convolved
with the a-times narrower kernel « - k(«€), rather than with k(&). This implies that the
patch r© in the smaller image is exactly an a-times sharper version of the patch ¢ in the
original blurry image, as visualized in Fig 2(c).

The above shows that shrinking an image by a factor of a produces a pool of patches
of the same size that are a-times sharper. In Step 2 of the algorithm we use this pool of
sharper patches as a nonparametric prior for the purpose of sharpening the blurry image
by a factor of « (see Sec. 3.2). Thus, at the first iteration of the algorithm, we recover an
image of the scene blurred with the narrower kernel « - k(«€). In the second iteration,
we further reduce the blur to o - k(a2¢), and so on. As visualized in Fig. 3(a) by the red
solid curves, the residual blur in the sequence of recovered images becomes narrower
and narrower and eventually converges to limy_, o, af - k(a’€) = §(€).

However, the analysis so far assumed continuous signals, whereas in practice we
work with discrete images. Had the image Z; recovered in the ¢-th iteration corre-
sponded to point-wise samples of af - k(a’¢) * f(£), we would eventually tend to
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Fig.3. The residual blur in repeated sharpening iterations. Continuous-domain sharpening
(solid red curve) tends in the spatial domain (a) to limg_,oo af - k(a€) = 6(€) and in the
Frequency domain (b) to lim,—, ., K(w/a*) = K(0) = 1. Aliasing-aware sharpening (dashed
black curve) tends in the spatial domain (a) to sinc(£) and in the frequency domain (b) to rect(w).

point-wise samples of the continuous f(£), which would cause aliasing effects. Indeed,
as shown in Fig. 3(b) by the red solid curves, the Fourier transform of al . k(o/ﬁ ),
which is K (w/a’), converges to® limy_,o, K (w/a’) = K(0) = 1 for all w. Therefore,
eventually, all frequencies are retained prior to sampling.

To avoid undesired aliasing effects, we want the recovered Z, to correspond to
samples of the continuous scene f(&£) convolved with the band-limited blur kernel
K(w/a') - rect(w), where rect(w) = 1 for |w| < m (the Nyquist frequency?) and
is zero elsewhere. The logic here is to shrink the blur in the spatial domain (expand it in
the frequency domain), but not beyond the Nyquist frequency 7 (i.e., zero all frequen-
cies above 7). Indeed, as illustrated in Fig. 3(b) by the black dashed curves, the function
K(w/a*) -rect(w) tends to K (0) - rect(w) = rect(w), as £ tends to infinity. Therefore,
in this case, &, converges to samples of the continuous scene convolved with the ideal
low-pass filter sinc(&). This is illustrated in Fig. 3(a) by the black dashed curves.

To summarize, the down-scaling operation we perform on the blurry image
should be done so that patches in the resulting £ are discrete versions of the continu-
ous scene blurred with K (w/a’) - rect(w). In the Supplementary Material, as well as
in www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html, we pro-
vide a proof that if the camera blur K (w) is bandlimited to 7 (so that the blurry image
y does not suffer from aliasing), then down-sampling with a sinc kernel leads exactly to
the desired result. Therefore, in Step 1 of the algorithm, the down-scaling is performed
using a sinc kernel.

3.2 Step 2: Deblurring Using Internal Patch Recurrence

In Step 2 of the algorithm we minimize (2) with respect to £ while holding k and 2
fixed, which corresponds to solving Eq. (3). This step is in effect a deblurring of y by

* We assume that [ k(&)d¢ = 1, which implies that in the frequency domain, /& (0) = 1.
3 Assuming that the sampling period is 1, the Nyquist frequency is 7.
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the current kernel estimate, k. Note that k may still be far from the correct k, so that
the deblurred & we seek to construct is not yet a sharp image. This is in contrast to
standard non-blind deblurring methods, which rely on priors for sharp natural images
and seek to recover a sharp deconvolved image. Our deconvolved image %, which is
still partially blurry is obtained in (3) by using patches from the smaller image £* as a
prior. These patches contain “just the right” amount of residual blur, and therefore serve
as a good nonparametric prior for the current deblurring step.

Our approach for solving the “partial” deblurring problem (3) is very similar to the
non-blind deblurring method of Zoran and Weiss [22]. However, instead of using their
natural image prior (which was learned from an external database of sharp patches), our
prior is learned from the patches in £%. Problem (3) can be written in vector form as

arg min [|y — K[> + Mp(d, &%), (6)

where K is a matrix that corresponds to convolution with k. We start by giving a formal
definition of the function p(Z, £%). As in [22], we define p(&, £%) as minus the expected
log likelihood (EPLL) of patches in &. Namely, p(2,2%) = — 3, logp(Q;), where
Q; is a matrix that extracts the j-th patch from Z. However, as opposed to [22], here
we learn the probability p(Q;2) from the patches in 2. Specifically, letting R; de-
note the matrix which extracts the i-th patch from £, we approximate p(Q ;%) using
nonparametric density kernel estimation as

(Q;7) = CZGXP{ thllQ = “}, ™

where h is a bandwidth parameter and c is a constant independent of Z. This results in
the prior term

p(Z, %) Zlog (Zexp{ o) 1Q;% — 0‘||2}> . )

Having defined p(&,2%), we now proceed to derive an algorithm for minimizing
the objective (6). In Appendix B, we show that substituting (8) into (6) and setting the
gradient to zero, leads to the requirement that

(KTK + ,61) p=K y+ 82 )

Here, I is the identity matrix and 3 = \;M?/h?, where M is the patch size. z is
an image constructed by replacing each patch in & by a weighted average of its near-
est neighbor (NN) patches in ¢ (for full expressions see Appendix B). Equation (9)
cannot be solved in closed form since z depends nonlinearly on . Instead, we alternate
a few times between solving for & (using (9)) and for 2 (using (14)—(16) in Appendix B).

What this process boils down to is the following: In the first phase, we replace each
patch in the current image & by a weighted average of its NNs (using Lo distance) from
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the (sharper) image £ (see Fig. 2(d)). This phase actually enforces our prior, which is
that patches in the recovered image should be similar to patches in £%. The resulting
image z, however, does not necessarily conform to the data fidelity term, which requires
that when the reconstruction is blurred with lAc, it should be similar to y. Thus, in the
second phase, we plug z back into (9) and update £. We then repeat the NN search for
the patches in the updated 2, generate an updated z, etc. Alternating these phases a few
times, leads to an image & which satisfies both requirements. Namely, the patches of &
are similar to those in £, and its blurry version & * k resembles Y.

3.3 Step 3: Kernel Update

Step 3 in Alg. 1 corresponds to updating the kernel k, given the current estimate of the
image %. Disregarding the second term in (2), which does not depend on k, and requiring
that the kernel entries be nonnegative, our optimization problem can be written in vector
form as . X
argminHy—XkHZ—|—)\2||k:||2, (10)
k>0

where X is a matrix that corresponds to convolution with our current image estimate 2.

As explained above, the residual blur in the (-th iteration, is intuitively K (w/a’)
in the Fourier domain. Consequently, the kernel recovered in the ¢-th iteration, should
approximately correspond to K (w)/K (w/at). For large £, we have that K (w/a’) ~ 1
and the recovered kernel becomes close to the correct K (w). However, for small £, the
kernel K (w)/K (w/a) may still be very different from K (w) and, in particular, it can
have negative values in the spatial domain. Consequently, we impose the nonnegativity
constraint in (10) only during the last few iterations of Algorithm 1.

3.4 Implementation Details

To speed up the convergence of the algorithm we work in a coarse-to-fine manner. That
is, we apply Alg. | on each of the levels of an image pyramid constructed from the
blurry input image y. The recovered  and k at each pyramid level are interpolated to
constitute an initial guess for the next pyramid level. The pyramid is constructed with
scale-gaps of & = 4/3 using down-scaling with a sinc. The number of pyramid levels
is chosen such that, at the coarsest level, the blur is smaller than the size of the patches
used in the deblurring stage (5 x 5 patches in our implementation). Additional speed
up is obtained by using the fast approximate NN search of [15] in the deblurring step,
working with a single NN per patch.

For computational efficiency, we solve the large linear system of equations (9) in

the Fourier domain. Specifically, it is easy to verify that the matrix K g appearing in (9)
corresponds to convolution with a mirrored version of k, which is equivalent to multi-
plication by K*(w) in the frequency domain. It thus follows that solving for # while
fixing z can be implemented as

L RM@)Y () + 2)
=Rt “”
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Blurry Input  Levinetal. Xu&Jia Sun et al. Ours

Fig.4. Example deblurring results. The left column shows the blurry input image and the
ground-truth blur kernel. The other columns show the deblurring results obtained with the kernels
estimated by each of the tested methods. The recovered kernel is shown at the top-right corner of
each recovered image. The number on each image is its error ratio r. Please zoom-in on screen
to see the differences (see www.wisdom.weizmann.ac.il/~vision/BlindDeblur.

html for full sized images and more results).

We use FFTs with proper padding to avoid undesired border effects. This formulation
is about 50 times faster than e.g., using conjugate gradients to solve this least-squares
problem, as done in [22].

In our current implementation we apply 8 iterations of Alg. 1 per pyramid level. We
enforce the nonnegativity constraint in (10) starting from the 5th iteration. For gray-
values in the range [0, 255], we use 3 = 0.4 in the deblurring step (9) and Xy = 7.5% in
the kernel update step (10).

4 Experiments

We tested our algorithm on the large database introduced by Sun et al. [18]. This
database comprises 640 large natural images of diverse scenes (typically 1024 x 768),
which were obtained by synthetically blurring 80 high-quality images with the 8 blur
kernels from [12] and adding 1% white Gaussian noise. The kernels range in size from
13 x 13 to 27 x 27. We present qualitative and quantitative comparisons to the blind
deblurring algorithms of [1,19,13,2,10,18]. Specifically, we follow the protocol of [ 18],


www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html
www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html
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Fig. 5. Cumulative distribution of error ratios.

which used the kernel recovered by each method* to perform deblurring with the state-
of-the-art non-blind deblurring method of [22]. Since the blur kernel can only be re-
covered up to a global translation, we align the deblurred image with the ground-truth
image in order to compute the error. Following the setting of Sun ez al. [18], we do not
assume that the size of the kernel is known and thus always recover a 51 x 51 kernel.’

We measure the quality of a recovered blur kernel k, using the error ratio measure
(proposed in [12] and commonly used by others):

r= bk (12)

where 2 7 corresponds to deblurring with the recovered kernel k, and 2y, corresponds to
deblurring with the ground-truth kernel k. The smaller r is, the better the reconstruction.
In principle, if » = 1, we achieve “ground-truth performance” (i.e., performance of
nonblind deblurring with the ground-truth kernel). However, we empirically observe
that the deblurring results are still visually pleasing for error-ratios » < 5, when using
the non-blind deblurring of [22] (see Appendix A for a more detailed explanation).
Fig. 4 shows a few visual examples of the kernel estimates, the deblurring results,
and their corresponding error ratios r, obtained by us and by the best competing meth-
ods [13,19,18] on several images from the database of [18] (all deblurred using the
method of [22]). Complex textures with strong edges, such as the sea in the second
row, are better represented by the internal image-specific patch prior, than by any of
the other more generic priors (please zoom-in on screen to see fine image details). For
example, it seems that the sea regions do not conform to the assumption of sparsity of
image gradients of Levin er al.[13], and that patches within them do not find good NNs
in the external patch prior of Sun et al.[18]. The sea region, therefore, distracts most
blind deblurring methods, and leads to inaccurate kernel estimates. In contrast, the sea

* For [18], we report results with the “natural” patch prior, which performs slightly better than
their “synthetic” patch prior. For all other algorithms, we used the results posted by [18] (see
their paper for additional details).

3> When we provide our algorithm the correct kernel size, our results significantly improve.
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Table 1. Quantitative comparison of all methods over the entire database (640 blurry images)

Average performance| Worst-case performance Success rate
(mean error ratio) (highest error-ratio) (percent of images
with error ratio < 5)
Our 2.6 9.2 95.9%
Sun et al.[18] 24 23.2 93.4%
Xu & Jia [19] 3.6 65.7 86.1%
Levin et al.[13] 6.6 41.2 46.7%
Cho & Lee [1] 8.7 112.6 65.6%
Krishnan et al.[10] 11.6 133.7 25.1%
Cho et al.[2] 28.1 165.6 11.9%

is self-similar within the image, at least across small scale-gaps. Therefore, the internal
patch recurrence prior used by our method manages to produce more accurate kernel
estimates in such difficult cases.

The graph in Fig. 5 shows the cumulative distribution of error-ratios over the entire
database. The statistics indicate that our algorithm and the algorithm of Sun et al.[18],
which are the only patch-based methods, outperform all other approaches by a large
gap. The method of [18] is slightly more accurate than ours at very low error ratios.
Nevertheless, empirical inspection shows that the visual differences between results
with error-ratios smaller than 3 (when using the deblurring of [22]) are often indistin-
guishable. As can be seen, our method is more robust than all competing approaches, in
the sense that it rarely fails to recover the kernel with reasonable accuracy (10w 7,ax).
In fact, as we show in Fig. 6, even our worst result over the entire database (namely, the
recovered image with the highest error-ratio, rp.x = 9.2), is still slightly better than the
input blurry image, both visually and in terms of error. In contrast, the worst results of
the other methods obtain high errors and are significantly worse than the blurry inputs.

Table 1 further compares the performance of the various blind deblurring methods
using three quantitative measures: (i) the average performance, (ii) the worst-case per-
formance, and (iii) the success rate. The average performance corresponds to the mean
of the error-ratios attained for all images in the database®. As can be seen, our average
error-ratio is close to that of Sun ef al.[18] and lower than the rest of the competing
methods. Interestingly, only three methods attain an average error-ratio smaller than 5
(which can be considered as a threshold for good deblurring; see Appendix A): our
method, Sun et al. [18], Xu and Jia [19]. This suggests that the visual quality of the
remaining methods [1,13,2,10] is unsatisfactory on average.

The worst-case performance is the highest error-ratio over the entire database. It
measures the robustness of the methods. As can be seen in Table 1, our method is more
robust than all competing approaches, in the sense that it rarely fails to recover the
kernel with reasonable accuracy.

The success rate is the percent of images which obtained good-quality deblurring
(i.e., an error ratio below 5). As can be seen in Table 1, our method attains an error ratio

% Note that the geometric mean used by Sun ef al.[18] is not sensitive to a small number of
severe failures, which is why we prefer the standard (arithmetic) mean.
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Blurry Input Image Recovered Image
. +[165.6 30.4/

Choetal.

Sun et al.
Krishnan et al.

Xu & Jia
Cho & Lee

Levin et al

Fig. 6. Worst results. For each algorithm, the result with the highest error-ratio is shown along
with the recovered kernel and the corresponding error-ratio (number in yellow). The number in
blue is the ratio between the error of the (output) deblurred image and the error of the input
(blurry) image. Values below and above 1 indicate, respectively, improvement or degradation in
quality. As can be seen, our worst-case result is still better than the blurry input image while the
worst-case results of the competing methods are significantly worse than their input images. See
www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html for full sized images.

larger than 5 only 4.1% of the times, which correspond to 26 out of the 640 images in
the database. The worst of these 26 ‘failure cases’ can be seen in Fig. 6.

S Summary

In this paper we presented a blind deblurring method, which uses internal patch re-
currence as a cue for estimation of the blur kernel. Our key observation is that patch
recurrence across scales is strong in sharp images, but weak in blurry images. We seek
a blur kernel &, such that if “undone” (if the blurry image is deconvolved with k), the
patch similarity across scales will be maximized. Extensive empirical evaluations con-
firm that the internal patch recurrence property is a strong prior for image deblurring,
and exhibits higher robustness than other priors. We attribute this to the fact that each
image uses its own image-specific patch prior.

Acknowledgments. Thanks to Shahar Kovalski, Yuval Bahat and Maria Zontak. Funded
in part by the Israel Science Foundation, Israel Ministry of Science, Citigroup Founda-
tion and a Viterbi Fellowship (Technion).
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A Whatis “Good” Blind Deblurring?

The error-ratio measure r in Eq. (12) depends on the type of non-blind deblurring
method used. We use the state-of-the-art non-blind deblurring method of [22] (which
was also the setting used in [18]). We empirically observe that images recovered with
an error-ratio smaller than 5 are usually visually pleasing, while error-ratios above 5 are
often associated with distracting artifacts. Levin et al. [13] reported a threshold of 3 be-
tween good and bad visual results. However, their error ratios were computed with the
non-blind deblurring of [1 1]. Using a simulation study (see the Supplementary Material
and www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html for de-
tails), we computed the best linear fit between the two types of error ratios, and found
that an error ratio of 3 with [1 1] indeed corresponds to an error-ratio of approximately 5
with [22]. Thus, based on our observations and those of Levin et al. [13], we regard 5
as a threshold for good-quality deblurring when using the non-blind deblurring of [22].

B Derivation of Equation (9)

Assuming the patches are M x M, substituting (8) into (6) and setting the gradient to
zero, leads to the requirement that

AT - 1 R - T
K K+ﬁWZQjTQj i=K y+ Bz, (13)
J
were 3 = Ay M?/h? and
1
2= WZQJ.TZJ, (14)
J
with
Zj = Zwi’jRi:ﬁa (15)
and

exp {— 552 |Q;& — Ria®|*}
S exp { — 72 [1Q;& — Rin||?}

It is easy to verify that, up to border effects, multiplying a column-stacked image by
Zj QJTQj is equivalent to multiplying all pixels of the image by M?, or, in other
words, that Zj Q;‘.FQJ. = M?1I. Substituting this term into (13) leads to (9).

Note that z; in (15) can be interpreted as an approximation of the patch Q;Z, which
uses the patches {R;2*} from the small image £ as examples. In practice, most of
the weights w; ; are very small, so that each patch in £ is actually approximated by a
very small number of its NNs in % (for efficiency, we often use only a single NN —
see Section 3.4). The matrix Q]T takes a patch and places it at location j in an image.
Therefore, the image z in (14) can be thought of as an approximation of the image z,
where the prior is learned from the patches in <.

(16)

wj,j =
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