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Abstract. The Saliency Network proposed by Shashua and Ullman (1988) is a well-known approach to the
problem of extracting salient curves from images while performing gap completion. This paper analyzes the
Saliency Network. The Saliency Network is attractive for several reasons. First, the network generally prefers
long and smooth curves over short or wiggly ones. While computing saliencies, the network also fills in gaps with
smooth completions and tolerates noise. Finally, the network is locally connected, and its size is proportional to the
size of the image.

Nevertheless, our analysis reveals certain weaknesses with the method. In particular, we show cases in which the
most salient element does not lie on the perceptually most salient curve. Furthermore, in some cases the saliency
measure changes its preferences when curves are scaled uniformly. Also, we show that for certain fragmented
curves the measure prefers large gaps over a few small gaps of the same total size. In addition, we analyze the
time complexity required by the method. We show that the number of steps required for convergence in serial
implementations is quadratic in the size of the network, and in parallel implementations is linear in the size of the
network. We discuss problems due to coarse sampling of the range of possible orientations. Finally, we consider
the possibility of using the Saliency Network for grouping. We show that the Saliency Network recovers the most
salient curve efficiently, but it has problems with identifying any salient curve other than the most salient one.

1. Introduction

In line drawings, certain shapes attract our attention
more than others. For example, these shapes may be
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the ones that are smooth, long, and closed (see for ex-
ample Fig. 1). Shashua and Ullman (1988) proposed a
method, which attracted considerable attention, to ex-
tract such shapes from a line drawing. They defined a
function that evaluates the “saliency” of a curve. Their
function has the following properties. First, when all
other parameters are held constant, it monotonically in-
creases with the length of the evaluated curve. In addi-
tion, it decreases monotonically with theenergy(the to-
tal squared curvature) of the curve. Thirdly, the function
evaluates fragmented curves, in which case it penalizes
according to the amount of fragmentation. Finally, the
saliency measure is the sum of contributions from dif-
ferent sections of the curve, where these contributions
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Figure 1. A fragmented circle in the middle of noise. The global
shape of the circle is apparent.

decay with the sections’ accumulated energy and gap
length from the beginning of the curve. Using this
saliency function, Shashua and Ullman defined the
“saliency map” of an image to be an image in which the
intensity value of each pixel is proportional to the score
of the most salient curve emanating from that pixel.

A network of locally connected elements (the
Saliency Network) was proposed for computing the
saliency map. The Saliency Network’s computation
involves local interactions between image locations,
and its size is proportional to the size of the image.
The network implements a relaxation process that op-
timizes the saliency measure. As a consequence of the
optimization, the network can identify the most salient
curve in the image, which could be either open or
closed. Additionally, the method attempts to fill in gaps
smoothly while simultaneously overcoming noise.

Several studies implemented or extended the
Saliency Network. Shashua and Ullman (1990) devel-
oped a method for grouping which, based on the same
computation, groups together curve pieces that mutu-
ally prefer each other over other candidates. Their new
method, however, is not guaranteed to converge to the
optimal solution. Freeman (1992) used the Saliency
Network to detect salient curves and extract junctions
in the output of steerable filters. He reported that the
method had serious problems with discretization and
grouping, similar to some of the problems we describe
in Sections 5 and 6. In addition, Subirana-Vilanova
and Sung (1991, 1992) extended Shashua and Ullman’s
method to find skeletons of regions.

The problem of marking salient locations in im-
ages (“attention”) is also addressed in the work of Guy
and Medioni (1993). Using a different method from
Shashua and Ullman’s, Guy and Medioni also pro-
duce a saliency map from an edge image. In Guy and
Medioni’s scheme, each point in the image receives a
saliency value equal to a weighted sum of contribu-
tions from the individual edge elements. The weight

assigned to an element is based on a circular-arc com-
pletion between it and the image point; the weight de-
creases with the total curvature of the arc, preferring
straighter and shorter completions. Unlike Shashua and
Ullman, however, there is no attempt to optimize a mea-
sure of saliency over the set of image curves.

Identifying salient structures in images is one of
the objectives ofperceptual grouping. By perceptual
grouping, we refer to the (bottom-up) process of group-
ing together structures in the image that are likely
to belong to a single object. Other tasks in percep-
tual grouping are image segmentation and gap comple-
tion. For instance (Herault and Horaud, 1993; Jacobs,
1993; Martelli, 1976; Mohan and Nevatia, 1988, 1992;
Montanari, 1971; Parent and Zucker, 1989; Pavlidis
and Liow, 1990; Weiss, 1988; Williams and Hanson,
1994) extract contours from the image according to cer-
tain optimization criteria, (Ullman, 1976; Ruthowski,
1979; Brady et al., 1980; Horn, 1983; Bruckstein and
Netravali, 1990) compute optimal curves for filling in
gaps, and (Brady and Grimson, 1981; Webb and Pervin,
1984; Finkel and Sajda, 1992; Grossberg and Mingolla,
1987; Heitger and von der Heydt, 1993; Mumford,
1994; Williams and Jacobs, 1995) identify occluded
and subjective contours.

In this paper we provide an analysis of Shashua
and Ullman’s method. We examine both the measure
of saliency and the computational performance of the
Saliency Network. Motivated by both perceptual and
computational reasons, we identify below three criteria
which we believe a measure of saliency should satisfy.
We then analyze Shashua and Ullman’s measure with
respect to these properties. The criteria are:

Fidelity. For consistency with human perception, the
saliency map should highlight the locations in the
image that lie on curves that humans perceive as
salient. In particular, the most salient location in the
saliency map should lie on the curve that is most
salient perceptually. Thus, for example, in Fig. 1 the
most salient location in the saliency map should be
on the circle rather than on any of the surrounding
line segments. In addition, since the Saliency Net-
work provides the most salient curve as well as a
saliency map, this most salient curve coincides with
curve that is most salient perceptually.

Invariance. In different images, objects often appear
in different positions and orientations or in differ-
ent sizes. Since in Computer Vision systems the
positions, orientations, and sizes of the objects are
generally not known in advance, a saliency measure
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for curves should be insensitive to such variations—
in practice, it is sufficient for the measure to be in-
variant only over the ranges allowed in the set of
images being considered. In particular, the measure
should be invariant to 2D rigid transformations of the
curves. In addition, the measure should be consis-
tent over different scales. That is, given two curves
01 and02, if 01 is considered more salient than02,
then01 should remain more salient when the curves
are scaled uniformly.

Performance on Gaps.In Fig. 1, as the size of the gaps
between edge elements is increased, our perception
of the circle fades. We therefore expect the measure
of saliency to degrade with gaps. Furthermore, in
the presence of noise, edge contours are often frag-
mented and contain small, randomly situated gaps.
Consequently, we require a saliency measure to pe-
nalize large gaps more than few small gaps of the
same total size.

In our analysis, we found cases in which the Saliency
Network violates each of the above three properties.
On the issue of fidelity, the network indeed locates
the perceptually salient curves, so that long, smooth,
closed curves are preferred over short, wiggly, open
ones. Nonetheless, our analysis reveals cases in which
the most salient location in the saliency map is not
on the perceptually most salient curve. For example,
if there are short line segments touching a salient curve,
then often the short segments shall be judged more
salient than the closed curve. In this situation, the
most salient location in the network will not lie on
the closed curve, but it will draw its saliency from the
closed curve. This behavior is also significant compu-
tationally, because it is indicative of difficulties that can
occur in attempting to recover the contours of nearby
objects (this is discussed in Section 6 on grouping).

Since the saliency measure depends only on length
and curvature, it is invariant to rigid transformations.
We show, however, that at times the measure changes its
preferences when the curves are scaled uniformly. For
instance, consider a straight line and a circle of the same
length. For lengths less than a certain value, the line is
preferred over the circle, whereas for larger lengths this
preference reverses. Shashua and Ullman’s rankings of
curves, therefore, are not invariant to uniform scaling,
even in the range of scalings that are permissible in the
images they consider.

Finally, the saliency measure can be applied to frag-
mented curves, in which case it will attenuate with gap

length. However, our analysis indicates that, when
circles of both the same size and gap length are com-
pared, the measure prefers a circle with one long gap
over a circle with few small gaps of the same total size.

In addition to studying properties of the saliency
measure, we also examine the computational proper-
ties of the Saliency Network. In particular, we analyze
the convergence rate of the network and show that the
run-time complexity of the network in serial implemen-
tations is quadratic in the number of elements. We then
discuss problems due to coarse sampling of the range
of possible orientations. We show that, when the range
of possible orientations is sampled too coarsely, unde-
sirable effects may occur in which corners are preferred
over straight lines. With proper sampling the complex-
ity of the network becomes at least cubic in the size of
the image.

As mentioned above, we also consider the possi-
bility of using the Saliency Network for grouping.
We note that, in contrast to other existing methods
for grouping that search over the exponentially large
space of all possible image curves (e.g., Herault and
Horaud, 1993; Jacobs, 1993; Parent and Zucker, 1989;
Williams, 1994), the Saliency Network recovers the
most salient curve in time complexity that is polyno-
mial in the size of the image. However, the network
must take a single choice at every junction, and curves
lying near a salient curve tend to merge into the salient
curve because they can benefit from its saliency. As
a consequence, the network has problems with iden-
tifying salient curves other than the most salient one,
and has serious difficulties in extracting more than one
object contour in cluttered images.

The paper proceeds as follows. Section 2 contains
definitions. Section 3 includes an analysis of the dif-
ferent properties of the saliency measure. Section 4
analyzes the time complexity of the network computa-
tion. Section 5 analyzes the effects of sampling on the
computation. Finally, Section 6 discusses the issue of
using the output of the network for grouping.

2. Definitions

Shashua and Ullman defined their saliency measure as
follows. For every pixel in the image, there is a fixed
set of “orientation elements” connecting the pixel to
neighboring pixels (Fig. 2, left). Each orientation ele-
ment is called “actual” or “real” if it lies on an edge in
the underlying image, and otherwise it is called “vir-
tual” or “gap” (see Fig. 3). Given a curve0 composed
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Figure 2. Example of the connectivity of Shashua and Ullman’s Saliency Network, for the cases of sixteen and twenty-four orientation elements
per pixel. In the left pictures, the neighbors of a pixel(x, y) are{(x+1x, y+1y) | max(|1x| , |1y|) = 1e}, where1e= 2 for 16 elements per
pixel and1e= 3 for 24 elements per pixel. Given the pixel neighborhoods in the left pictures, the right pictures show examples of five-element
curves.

Figure 3. Left: Input image is a binary edge map. In the picture the
black squares represent edge pixels. Right: The Saliency Network is
defined on top of the edge map. The network is composed of locally
connected elements which are called “active” if they lie on edges and
“gaps” if they do not. In the right picture, the dashed line segments
between eight-connected pixels represent active elements, and the
remaining line segments represent gaps. For viewing purposes, every
element was set to have eight neighbors, although in Shashua and
Ullman’s implementation every element had sixteen neighbors, and
in our implementation every element had twenty-four neighbors.

of the N + 1 orientation elementspi , pi+1, ..., pi+N

(Fig. 2, right), the saliency of0 is defined by

8(0) =
i+N∑
j=i

σ jρi j Ci j , (1)

with

σ j =
{

1, if pj is actual

0, if pj is virtual

and

ρi j =
j∏

k=i

ρk = ρgi j ,

whereρi i = 1 and whereρ is some constant in the
range [0, 1).1 (Shashua and Ullman setρ to 0.7.) σ j

ensures that only actual elements will contribute to the
saliency measure.gi j is the number of gap elements
betweenpi andpj , andρi j reduces the contribution of
an element according to the total length of the gaps up
to that element. Further,

Ci j = e−Ki j ,

with

Ki j =
∫ pj

pi

κ2(s) ds,

whereκ(s) is the curvature at positions. Ki j reduces
the contribution of elements according to the accumu-
lated squared curvature from the beginning of the curve.

The saliency of an elementpi is defined to be the
maximum saliency over all curves emanating frompi :

8(i ) = max
0∈C(i )

8(0), (2)
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whereC(i ) denotes the set of curves emanating from
pi . Shashua and Ullman showed how to compute8(i )
on a network of locally connected elements. Denote by
8N(i ) the saliency of the most salient curve of length
N + 1 or less emanating frompi . The measure8N(i )
satisfies

8N(i ) = max
pj∈N (i )

F(i, j,8N−1( j )), (3)

whereN (i ) is the set of all neighboring elements ofpi ,
and whereF( ) is a function of8N−1( ) and constants
stored at elementspi and pj . Shashua and Ullman
referred to this type of measure as “extensible.”2 In the
Saliency Network,

F(i, j,8N−1( j )) = σi + ρi Ci j8N−1( j ), (4)

which gives

8N(i ) = σi + ρi max
pj∈N (i )

Ci j8N−1( j ). (5)

Note that this recurrence relation updates each ele-
ment’s saliency by taking a maximum over its neigh-
bors’ saliencies, but does not allow an element to retain
its current saliency. This observation raises the ques-
tion of whether the saliencies are optimal over all curves
that are less than or equal toN elements long or only
over curves that are exactlyN elements long. In fact
the former is true, which we now show. First, note that
the saliency measure in Eq. (1) is monotonically non-
decreasing with the number of elementsN on a curve.
Consequently, at iterationN+1 every element has the
option of choosing the same neighbor as it chose at
iteration N, and thus obtain a new saliency that is no
less than its current saliency. Therefore, it is sufficient
to not include an element’s current saliency when tak-
ing the maximum, because there will be at least one
neighbor through which the element can obtain a new
saliency that is as great as its own.

To make the saliency measure8 independent of the
particular implementation, we introduce a continuous
version of8. Given a curve0(s)of lengthl (0≤ s ≤ l ,
s denotes arc length), we define8 by

8(0) =
∫ l

0
σ(s)ρ(0, s)C(0, s)ds, (6)

where

σ(s) =
{

1, if 0(s) is actual

0, if 0(s) is virtual

ρ(s1, s2) = ρg(s1,s2)

C(s1, s2) = e−K (s1,s2),

whereg(s1, s2) is the total gap length of0 betweens1

ands2 andK (s1, s2) is the energy of the curve between
s1 ands2, which are defined by

g(s1, s2) =
∫ s2

s1

(1− σ(t))dt, (7)

K (s1, s2) =
∫ s2

s1

κ2(t)dt. (8)

A useful tool in computing saliencies is the fol-
lowing rule. Given a curve0 which is composed of
two smoothly concatenated sections,01 and02, the
saliency of0 is given by

8(0) = 8(01)+ ρg(01)e−K (01)8(02), (9)

whereg(01) is the total gap length andK (01) is the
energy of01.

Throughout the paper we will use this continuous
formulation to analyze the network. In addition, we
will present examples of the Saliency Network on sim-
ulated and real images. Our implementation replicates
Shashua and Ullman’s original discrete implementa-
tion, except that we increased the number of orien-
tation elements per pixel to obtain greater accuracy.
We used twenty-four orientation elements per pixel,
whereas Shashua and Ullman used sixteen elements
per pixel. Also we setρ = 0.7 as in the original im-
plementation.

3. Properties of the Saliency Measure

We begin our analysis by examining the saliency mea-
sure proposed by Shashua and Ullman. Section 3.1
below discusses the treatment of cycles. Section 3.2
analyzes the behavior of the measure when applied to
simple curves. Lastly, Section 3.3 analyzes the behav-
ior of the measure when applied to curves that include
gaps.
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3.1. Cycles

The measure of saliency proposed by Shashua and Ull-
man is a positive function that increases monotonically
with the lengths of the curves in the image. Closed
curves (cycles) are considered to have infinite length,
even though they form finite structures in the image.
Shashua and Ullman showed that their network is guar-
anteed to converge when applied to closed curves.
The reason it converges is that the contribution to the
saliency from remote elements attenuates geometri-
cally with the curvature accumulated from the begin-
ning of the curve. In cycles this generates a geometric
series that converges to a finite value.

Formally, given a closed curve0, denote by8 the
saliency of an element of0 that is obtained by starting
from that element and then proceeding once around the
curve. Denote byK the total squared curvature of the
cycle and byg the cycle’s total gap length. Then by
repeatedly applying Eq. (9) we obtain

8(0) = 8+ ρge−K8+ ρ2ge−2K8+ · · ·
= 8

1− ρge−K
. (10)

3.2. Straight Lines and Circles

In this section we compute the saliencies of a few sim-
ple curves. We then use these simple curves to examine
the issues of fidelity and invariance. In general, we will
only be interested in the measure of saliency obtained
for the most salient element of the curve. Through-
out this section we shall use the continuous definition
of the saliency measure (Eq. (6)). We consider only
curves with no gaps (we will analyze curves with gaps
in Section 3.3); henceσ(s) = 1 andρ(0, s) = 1 for all
s. Equation (6) therefore becomes

8(0) =
∫ l

0
C(0, s)ds, (11)

where

C(0, s) = e−
∫ s

0 κ
2(t)dt.

The examples below demonstrate some of the prob-
lems with Shashua and Ullman’s saliency measure. In
particular, we compare the saliency of a line segment of
lengthl to that of a circle of perimeterl . We show that
for small values ofl , the straight line is preferred over
the circle, and that this preference reverses for large

values ofl . The saliency function, therefore, ranks
curves differently when these curves are scaled uni-
formly. In another example, we analyze the results of
applying the saliency measure to a picture containing
a circle and short line segments connected to it. We see
that a short line segment increases its saliency value by
connecting to the circle. As a result of this increase, it
is not unusual for a short segment to become more
salient than a circle. The saliency of the short line seg-
ment in this case represents the saliency of the circle,
but the most salient element is in fact not part of the
circle.

We begin by deriving explicit formulas for the
saliency of straight lines and curves. For straight lines
C(0, s) = 1 for all s. Therefore, a straight line of
lengthl will obtain the score8(0) = l . The saliency
of a straight line, therefore, grows linearly with the
length of the line.

For a circle of radiusr , the curvature is constant,
κ = 1/r , and so for a circular arc of lengths,

C(0, s) = e−
∫ s

0
1

r 2 dt = e−
s

r 2 . (12)

The saliency attributed for the circular arc is

8(0, s) =
∫ s

0
C(0, t)dt =

∫ s

0
e−

t
r 2 dt

= r 2
(
1− e−

s
r 2
)
. (13)

At convergence (s = ∞), the saliency of the circle is
given by

8(0) = lim
s→∞ r 2

(
1− e−

s
r 2
) = r 2. (14)

The score of a circle, therefore, grows quadratically
with the radius (and thus also with the perimeter) of
the circle.

The fact that the saliency of a straight line grows
linearly with its length, whereas the saliency of a circle
grows quadratically with its perimeter, suggests that
the network may treat the two differently when they
are scaled. Consider a straight line of lengthl and a
circle of perimeterl = 2πr . These two entities will
have exactly the same saliency whenl = 0 and when
l = 4π2 ≈ 39.48. (The saliencies in the two cases
are 0 and 4π2, respectively.) When 0≤ l ≤ 4π2 the
line will be more salient than the circle, whereas when
l > 4π2 the circle will be more salient. Figure 4 shows
an example of three images, each of which contains a
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Figure 4. Lack of scale invariance in the Saliency Network. Top figures: three images that contain a straight line and a circle of roughly the
same length. Bottom figures: the most salient curves that were found in these images. Lengths are 27 (left), 39 (middle), and 84 (right). The
saliency values obtained for the circles are 15.39 (left), 33.60 (middle), and 132.05 (right), and for the lines are 27.06 (left), 39.00 (middle), and
84.00 (right).

straight line and a circle of the same length. Consis-
tent with our analysis, the Saliency Network found the
straight line to be more salient than the circle at shorter
lengths, and found the circle to be more salient at longer
lengths. (In these examples, the circles’ saliencies are
attenuated due to discretization effects. In the con-
tinuous case, the saliency of the circles are given by
(l/2π)2. Nevertheless, the lack of scale invariance is
evident even in the presence of these effects. These ef-
fects, however, increase the turning point at which the
circle becomes more salient than a line. Discretization
effects are discussed in Section 5.)

A different problem is encountered in the case of
a circle connected to short line segments. Consider
the picture in Fig. 5, left. The circle seems to be the
most perceptually salient curve in this image. Counter-

Figure 5. An example of a circle with a few short curves connecting
to it. The most salient element (for which8 = 136.63) was not on
the circle, although its saliency came mostly from the circle (the
saliency of the circle is 130.74). If short gaps were added between
the curves and the circle, the circle would become the most salient
curve in the image.

intuitively, the most salient element computed by the
network is on one of the line segments connected to
the circle, thus violating the fidelity requirement. The
reason is that a neighboring line segment may increase
its saliency by connecting to the circle, without affect-
ing the saliency of the circle. Consider, for example,
a circular arc of length 1 and curvatureκ connected
smoothly to a circle of radiusr (which corresponds to
a single element connected smoothly to the circle via
curvatureκ). Using Eq. (9) we obtain that the saliency
of the first element on the arc is

8e = 8(0)+ e−κ
2
8c, (15)

where 0 represents the circular arc and8c is the
saliency of the circle. Now, using Eq. (12) ,

8(0) =
∫ 1

0
C(0, s)ds= 1− e−κ

2

κ2
. (16)

Combining Eqs. (14)–(16), we obtain that

8e = 1− e−κ
2

κ2
+ e−κ

2
r 2. (17)

If we now compare the saliency of the element,8e, to
that of the circle8c = r 2 (Eq. (14)), we obtain that
8e > 8c when

1− e−κ
2

κ2
+ e−κ

2
r 2 > r 2, (18)
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so that

|κ| < κc, (19)

whereκc = 1/r . That is, the element will be more
salient than the circle if and only if it connects to the
circle at a curvature that is less than the curvature of
the circle. This is consistent with the network’s prefer-
ence for straight curves. Notice that if the element is
a line tangential to the curve (κ = 0) the element will
be more salient than the circle regardless of the circle’s
radius.

This phenomenon, that curves connecting to a circle
may increase their saliencies due to these connections
and actually beat the circle, is more likely to occur for
longer curves. Suppose a curve0 connects to a circle
C such that the total squared curvature of0, including
the connection point, isK . Then the saliency of the
element on0 that is most distant from the circle is
given by Eq. (15), whereκ2 is replaced byK , namely,

8e = 8(0)+ e−K8c. (20)

The longer0 is, the more likely it is to become more
salient than the circle. Suppose for example that0 is
a straight line of lengthl that connects to the circle via
curvatureκ. We have that8(0) = l and K = κ2,
which implies

8e = l + e−κ
2
8c. (21)

Now8e > 8c when

l + e−κ
2
r 2 > r 2. (22)

Substitutingr = 1/κc, this implies that

κ2
c >

1− e−κ
2

l
≈ κ2

l
, (23)

whenκ2 is small, or

κc >
|κ|√

l
. (24)

Clearly, the longer the line is, the more likely it is to
become more salient than the circle.

Figure 5, left, shows a picture of a circle with a few
short curves connected to it. When the Saliency Net-
work is applied to this picture, the most salient element
does not lie on the circle, although most of its saliency
is due to the circle. Indeed, if we disconnect these short
curves from the circle, then the circle becomes the most
salient structure in the image.

3.3. Curves with Gaps

One of the most important properties of Shashua and
Ullman’s saliency network is its ability to fill in gaps
while computing the saliencies. The network handles
gaps by using virtual elements, which compute the
saliencies of curves emanating from their locations
and transfer these saliencies to their neighboring el-
ements. Via these transfers, actual elements evaluate
the saliencies of curves that emanate from their loca-
tions and contain any number of gaps. The network
avoids curves with large gaps by attenuating the scores
of curves exponentially with gap size.

In this section we analyze the performance of the
saliency network in the presence of gaps. Due to the
saliency measure attenuating exponentially with gap
size, the network is capable of overcoming small gaps,
but is unlikely to overcome large ones. As an example,
consider the problem mentioned in Section 3.2, that a
short line segment in the neighborhood of a circle may
increase its saliency by connecting to the circle. One
consequence of the fast attenuation is that this problem
almost disappears when the segment is not physically
connected to the circle. On the other hand, we show
below that, due to the exponential decay, very long
structures (straight lines and circles) obtain very low
scores even when only a small fraction of the curves
are gaps.

Finally, we explore the question of whether the net-
work prefers fragmented curves (dashed lines) over
curves with single gaps of the same total size. At first
glance Shashua and Ullman’s saliency measure appears
indifferent to this property, because the total size of
gaps is taken into account, irrespective of the fragmen-
tation. In fact, for open curves there is no clear pref-
erence between a curve having many small gaps or a
few long gaps. For closed curves, however, we show
that a curve with a single large gap is preferred over the
same curve with several small gaps of the same total
size; this preference is inconsistent with our criterion
for performance on gaps (Section 1).

In computing the saliency of a fragmented curve,
gaps affect the total score in two ways (see Eq. (1)).
First, gap elements themselves do not contribute at all
to the total score (sinceσ j = 0 for virtual elements).
Secondly, the actual elements of the curve that lie on
the other side of a gap are attenuated by a factorρg,
whereg is the total gap length accumulated from the
beginning of the curve. Consider, for example, a curve
0 with one gap of lengthg. Denote the first part of
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the curve (before the gap) by01 and the second part
of the curve (after the gap) by02, and denote by
K (0,m) the total squared curvature of01 plus the gap.
The saliency of0 is given by (Eq. (9))

8(0) = 8(01)+ ρge−K (0,m)8(02) (25)

From this formula,01 contributes to the saliency of0
as if there were no gap, the gap elements contribute
nothing, and the contribution of02 is exponentially
attenuated byρg. Clearly, the longer the portion of
0 before the gap (01), the less the saliency of0 will
be attenuated. If the gap appears near the end of the
curve the saliency of0 is hardly attenuated. If the gap
appears at the beginning, the entire saliency of0 is at-
tenuated by the factorρg. Notice that since the network
evaluates open curves starting from both endpoints, if a
curve contains a relatively smooth section on one of its
sides and a relatively wiggly section on its other side,
then the highest score will be obtained when the gaps
are distributed along the wiggly side.

Consider now a straight line0 with gaps distributed
uniformly along the line. Letp (0 ≤ p ≤ 1) be the
fraction of the line containing the actual elements, and
let q = 1 − p be the fraction of the line which is
virtual. We can thus setσ(s) = p. The gap lengthg
of a line segment of lengthl is given byql. Since we
are dealing with a straight line,C(0, s) = 1 for all s.
Consequently, the expected saliency of a straight line
of lengthl with fractionq in uniform gaps is given by
(Eq. (6))

8(0) = p
∫ l

0
ρqs ds= p

q ln ρ

(
ρql − 1

)
. (26)

This score converges asl approaches infinity to

8∞ = − p

q ln ρ
. (27)

Thus, the saliency of an infinitely long straight line
with uniformly distributed gaps is always finite and, in
fact, proportional top/q. Note that, since the saliency
measure monotonically increases with the length of a
curve, the score of an infinitely long straight line with
uniform gaps provides an upper bound on the score of
any finitely long line segment with the same distribu-
tion of gaps.

Examples for the values assumed by8∞ as a func-
tion of p are given in Table 1. When 95% of the line
includes actual elements (5% gaps), the score is only

Table 1. 8 for a straight infinite line with uniform gaps as a
function of p (ρ = 0.7). Note that the score for infinite lines
gives an upper bound for the score of finite ones.

p 0.5 0.7 0.9 0.93 0.95 0.97 0.99 1

8 2.80 6.54 25.23 37.25 53.27 90.65 277.56∞

53.27, and when 90% of the line includes actual ele-
ments (10% gaps), the score drops to 25.23. This means
that a straight line of length 54 will be better than any
line that contains 5% gaps. Similarly, a straight line
of length 26 will always be better than an infinite line
with 10% gaps.

A similar analysis can be performed for a circle with
uniformly distributed gaps. Unlike the infinite straight
line, here the circle has finite size. Given a circle with
radiusr and fractionp actual elements andq = 1− p
virtual elements, we setσ(s) = p for all s, g(0, s) =
qs and, using Eq. (12),C(0, s) = e−s/r 2

. Thus, the
saliency of0 is given by

8(0) = p
∫ ∞

0
ρqse−

s
r 2 ds

= p
∫ ∞

0
e(q ln ρ− 1

r 2 )s ds, (28)

which, sinceq ln p < 0, simplifies to

8(0) = p
1
r 2 − q ln ρ

. (29)

Examples for the values assumed by8(0), for
ρ = 0.7, are given in Table 2. Similar to the case of
straight lines, the saliency of circles attenuates very fast
with gap size. For example, the saliency of a circle of
radius 16 that contains no gaps is 256. With 5% gaps

Table 2. The saliency values of circles with uni-
form gaps as a function ofp andr (for ρ = 0.7).

p
∖

r 1 2 4 8 16

0.5 0.42 1.17 2.07 2.58 2.74

0.7 0.63 1.96 4.13 5.71 6.31

0.9 0.87 3.15 9.17 17.55 22.74

0.93 0.91 3.38 10.63 22.91 32.21

0.95 0.93 3.55 11.82 28.39 43.70

0.97 0.96 3.72 13.25 36.85 66.41

0.99 0.99 3.90 14.98 51.58 132.48

1 1 4 16 64 256
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its saliency reduces to 43.70. This saliency (43.70)
is identical to the saliency of a gap-free circle of ra-
dius 6.61. Similarly, with 10% gaps the saliency of the
same circle reduces to 22.74, which corresponds to the
saliency of a gap-free circle of radius 4.77.

Next, we analyze the case of a short curve,0, that
lies near a circle such that the two are not touching.
Again, we shall ask whether such a curve may become
more salient than the circle by using the saliency of
the circle. Let8(0) denote the saliency of0, let g
be the gap length between0 and the circle, and letK
be the total squared curvature of0 plus the gap to the
circle. The saliency8e of the first element on0 is
given by

8e = 8(0)+ ρge−K8c. (30)

We obtain that8e > 8c (recall that8c = r 2) when

8(0)+ ρge−K r 2 > r 2, (31)

which implies that

1

r 2
8(0) > 1− ρge−K . (32)

Note that sinceρ < 1 the right-hand side grows larger
as the gap size increases. Consequently, the chance
of an element becoming more salient than a circle by
taking its saliency from the circle decreases with the
gap size. Suppose finally that0 is a straight line of
length l such that its continuation is tangential to the
circle, in which case8(0) = l , K = 0. The condition
(Eq. (32)) becomes

l

r 2
> 1− ρg. (33)

For l = 1 andρ = 0.7 we obtain that0 is almost never
more salient than the circle:

1

r 2
> 1− (0.7)g (34)

or

r <
1√

1− (0.7)g . (35)

From this equation,r must be extremely small to allow
an element to win with gaps: Forg = 1, we have
r < 1.826, and forg = 2, we haver < 1.400. As
l increases the likelihood of0 becoming more salient
increases.

The final issue we discuss is the saliency measure’s
preference for how gaps are distributed along a curve.
Elder and Zucker (1993) conducted experiments which
demonstrate that, when a fraction of the boundary of
an object is missing, humans’ recognition ability is
hindered more when the missing fraction is contained
all in one gap than when spread over several gaps. Such
a property is useful, for instance, in order to overcome
noise in the output of the edge detector. For any curve,
the saliency measure encourages gaps to be as far as
possible from the starting point. For an open curve
with a fixed total gap length, the best and worst cases
are when the curve has one large gap at the start (worst)
or end (best). Since the network evaluates the saliency
of curves from all possible starting points it prefers
that gaps are pushed as far as possible from the smooth
sections of the curve.

While for open curves there is no clear preference
for a single long gap versus a few short gaps, for closed
curves such a preference does exist. Consider a circle
0 with one large gap. Let01 be the open curve cor-
responding to the part of the circle that is actual, and
let02 be the gap. The most salient element on the cir-
cle will be the first element of01, since the saliency
measure prefers gaps to be as far as possible from the
start of the curve. So the most salient curve will go first
through01, then through02, and then loop back to01.
Let αr denote the length of gap02. Since only the
actual elements contribute to the saliency of a curve,
the saliency obtained by going once around the circle
is simply8(01). Using Eq. (10) the saliency of the
circle becomes

8(0) = 8(01)

1− ραr e
2π
r

. (36)

If the circle now contains, say, two gap sections of
the same total lengthαr , then the saliency obtained by
going once around the circle will be reduced. This is
because a gap will be closer to the start of the curve. As
a consequence, the numerator in Eq. (36) will become
smaller. The denominator, however, will remain un-
changed since the total gap length and curvature do not
change. This analysis clearly applies when the circle is
fragmented by more than two gaps. Consequently, the
saliency of the circle will become smaller as a result
of fragmentation. An example is given in Fig. 6. The
figures shows three circles of the same radius and with
the same total gap size. The network prefers the one
that contains one long gap over the ones in which the
gaps are fragmented. This behavior disagrees with our
performance-on-gaps criterion.
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Figure 6. Three circles of the same radius with the same total gap size. Using Shashua and Ullman’s network the saliency values are 46.85
(left), 27.93 (middle), and 23.27 (right).

4. Complexity and Convergence Analysis

In this section we analyze the complexity of Shashua
and Ullman’s saliency network. Denote the total num-
ber of pixels in the image byp and the number of
discrete orientation elements at every pixel byb. The
network haspb elements. At each iteration every el-
ement has to evaluate all the saliencies obtained from
elements connected to it. The complexity of each iter-
ation therefore ispb2. The question then is how many
iterations are required before the network converges.
Clearly, if we did not allow cycles the longest curve
may be of lengthp, and so the total complexity of the
computation would be at mostp2b2. But when cycles
are considered, we show below that the network con-
verges in a linear number of iterations, and so the total
complexity is indeedO(p2b2).

Given a cycle0, denote by8n the score obtained
after goingn times around the cycle, byK the energy
of 0, and byg the total gap size. Then from Eq. (10)
the saliency of0 is 8 = 81/(1 − ρge−K ). After
goingn times around the cycle, the accumulated score
becomes (this is the finite sum of the geometric series
in Eq. (10))

8n = 1− ρnge−nK

1− ρge−K
81. (37)

Define the relative error by

E = 8−8n

8
= ρnge−nK . (38)

We can now compute the number of cycles,n, needed
to achieve anE = ε error:

ln ε = n(g ln ρ − K ), (39)

implying that

n = ln ε

g ln ρ − K
. (40)

Assume0 is a circle of radiusr with no gaps. Then
K = 2π

r and

n = −r ln ε

2π
. (41)

The number of cycles around the circle isO(r ). As-
suming one iteration covers one unit of arc length, the
number of iterations for each cycle is 2πr . Thus, from
Eq. (41) the total number of iterations needed to achieve
anε error is

N = 2πrn = −r 2 ln ε. (42)

Consequently, the total number of iterations required is
O(r 2). As an example, the number of cycles required
to achieve 1% error (ε = 0.01, lnε ≈ −4.605) is
n ≈ 2.303r/π ≈ 0.733r , and therefore the number of
iterations isN ≈ 4.605r 2.

Figure 7 shows an image of a gap-free and a frag-
mented circle on a noisy background. As expected,
the Saliency Network chooses the gap-free circle as the
most salient curve. Using Eq. (42), we could predict the
number of iterations for the network to converge on the
gap-free circle: The radius of the circle isr ≈ 11.39,
and one iteration covers an arc length1s ≈ 2.983
(r and1s are discussed in the next section). For small

Figure 7. Running the Saliency Network on an image with gap-free
and fragmented circles and a background of 200 random line seg-
ments (at the left). The saliency map and most salient curve image
are shown in the center and right pictures, respectively. After 200
iterations, the maximum saliency was 130.8. The time to conver-
gence and the maximum saliency are independent of the number of
background elements.
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1s/r 2, to obtain 1% error Eq. (42) gives

N =
(

2πr

1s

)
n ≈ 4.605r 2

1s
≈ 200.4. (43)

We ran the Network for 200 iterations on the left im-
age in Fig. 7, and the maximum saliency converged to
130.8. This generally agrees (for a 1% relative error)
with r 2 = 129.8, as predicted by Eq. (14).

In Fig. 7, the input image has dimensions 128×128,
and the example was run on a network with 24 orienta-
tion elements per pixel. The 200 iterations took 54 min-
utes using C code on a Sun SPARCstation 5 with 32M
of memory. Note that the time taken for convergence
is independent of the number of background elements.
So the execution time must be the same if the gap-free
circle were alone in the image. To illustrate this point,
Fig. 13 shows an example of two circles, the larger
of which is the gap-free circle from Fig. 7. The input
image contains no clutter, but, nevertheless, as before
the Saliency Network took 55 minutes to converge. In
practical applications, it is possible for the Network to
converge much faster; when this happens, the saliency
values are severely attenuated and have converged to
the wrong measure, due to discretization effects dis-
cussed in the next section.

By taking the maximal possible circle in the image,
we account for the most number of iterations necessary,
which is O(r 2) = O(p), where p is the size of the
image (we could also obtain this same convergence on
an open curve by considering a curve that begins as the
maximal circle and then continues by spiraling slowly
inward). We can therefore conclude that the worst case
complexity of the network isO(p2b2), which is the
squared number of elements in the network.

5. Discrete Implementations

Our analysis of Shashua and Ullman’s method has con-
centrated on the theoretical, continuous version of their
saliency measure. Shashua and Ullman proposed to
compute this measure using a network of finitely many,
locally connected elements. In this section we analyze
the effect of computing the saliency measure on dis-
crete networks. We show in particular that the network
is extremely sensitive to the number of discrete orien-
tation elements allocated per pixel.

Shashua and Ullman’s network has the following
structure. Letp be the number of pixels in the image,
and letb be the number of orientation elements at each

pixel. (Shashua and Ullman setb= 16.) The network
containsp×bprocessors, a processor for every orienta-
tion element at every pixel in the image. A continuous
arc is assigned between every two elements that meet at
the same pixel in the underlying image. The local cur-
vatureκ corresponding to such an arc is approximated
using the formula

κ = 2 tanα2
1e

, (44)

whereα denotes the angle between the neighboring
elements and1e denotes the length of an orientation
element. This formula represents the curvature of a
circular arc that joins the midpoints of two elements of
the same length. As an example, the gap-free circle of
Fig. 7 was generated using a 24-sided regular polygon
with one element per side and with1e= 3. Thenα =
π/12, and Eq. (44) givesκ ≈ .08777. Therefore, the
radius of the circular-arc approximation isr = 1/κ ≈
11.39, which gives the arc length and total squared
curvature covered by one iteration to be1s = αr ≈
2.983 andK = α/r ≈ .02298, respectively.

Shashua and Ullman set1eto be constant, and hence
ignored the different sizes of elements of different ori-
entations. As a result, a horizontal or vertical line of
length l obtains the same saliency as a diagonal line
of lengthl

√
2. Shashua and Ullman’s implementation

therefore encourages curves that are aligned with the
main axes of the image.

A more critical issue is the number of orientation
elements in the network. Consider for example a nearly
horizontal straight line segment. Due to aliasing, the
line may be cut in the middle so that one part of the
line is raised up by one pixel (see Fig. 8). Let 2l be
the length of the line. The saliency of the first element
along the line is given by

8e = l + e−K + (l − 1)e−2K , (45)

whereK is the total squared curvature over the change
in orientationα corresponding to raising the line up by
one pixel (which is also the total squared curvature for
when the line returns to horizontal).

Consider now a pair of lines of lengthl meeting at a
corner such that they form the same orientation change
α. Since a corner forms only one turn the obtained
saliency will be

8c = l + le−K . (46)
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Figure 8. Discretization effect on a straight line. Left figure: the discretization of a straight line. Right figure: a corner. The saliency value
obtained for a perfectly horizontal line of length 20 is 20.00, the saliency value for a straight line of the same length is 18.41, and the saliency
value of a corner is 19.10.

Figure 9. Discretizing a circle with a regular polygon.

Consequently, we obtain the paradoxical result that the
corner is more salient than the nearly straight continu-
ation. Hence straight lines oriented such that they de-
viate slightly from horizontal will often be less salient
than corners. Freeman (1992) made a similar observa-
tion concerning this aliasing issue when he considered
applying the Saliency Network to grouping.

The discretization problem is carried over to other,
more complicated examples. Consider a circle of ra-
diusr . Whenr is sufficiently small, the circle can be
approximated by a regular polygon where each side
includes a single orientation element (Fig. 9). LetK
be the total squared curvature corresponding to a turn
α = 2π/n, wheren is the number of sides of the poly-
gon. The discrete saliency of such a regular polygon is
given by

8 = 1+ e−K + e−2K + · · ·
= 1

1− e−K
= 1

1− e−
1s
r 2

, (47)

where1s is the arc length of the circle that is covered
in one iteration. Returning again to the gap-free circle
in Fig. 7, for this circler = 11.39 and1s= 2.983 (see
above), and so under discretization its saliency is 132.1.
When1s/r 2 is small,

1

1− e−
1s
r 2

≈ r 2, (48)

The approximation in this equation improves asr in-
creases; this happens when the number of sides in the
polygonal approximation increases and as a result fits
a circle more closely. Whenr is big so that a good ap-
proximation by a regular polygon would require finer
orientation changes (less than 2π/b), a faithful dis-
cretization of the circle would involve many inflections
(that is, clockwise turns balanced by counter-clockwise
turns). These inflections would be penalized unduly by
the network.

To see how serious is this discretization effect, we
consider rearranging the ordering of the elements on
the circle’s polygonal approximation so as to maxi-
mize the saliency (this of course can considerably re-
duce the fidelity of the approximation). In particular,
we instead represent the circle by an (approximately)
regular polygon withb sides; each side now contains
more than one element. Although this representation
can have a much greater saliency than the original ap-
proximation, the new saliency will still not result in a
reasonable approximation to the continuous saliency
of the circle. This can be seen by the following obser-
vation. Equation (47) gives the saliency of a regular
polygon withn sides, each of unit length, in terms of
K , the total squared curvature assigned for a turn of
2π
n . The saliency of a similar regular polygon in which

every side is of lengthl is given by

8l = l

1− e−K
= l81. (49)

The saliency of a regularb-sided polygon, therefore,
increases linearly with the length of each side,l . Since
l is directly related to the radius of the circumscribed
circle, the saliency of the polygon also increases lin-
early with the radius of that circle. Since the continuous
saliency of a circle grows quadratically with the radius
of the circle (Eq. (14)), we obtain that, asr grows,
the saliency of the regular polygon will considerably
underestimate the saliency of the circle. In terms of
the original polygonal approximation to the circle, this
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means that for small radii, the saliency of the dis-
cretized circle will grow quadratically with its radius,
but then it will reach a radius after which the saliency
will grow at most linearly.

The results shown in this section establish that the
Saliency Network faces serious difficulties due to dis-
cretization of the range of orientations. A faithful im-
plementation of the continuous saliency measure would
require a very fine discretization. The number of orien-
tation elements needed to completely avoid the prob-
lems mentioned in this section is of the order of

√
p,

where p is the total number of pixels in the image.
With this number of orientation elements the overall
time complexity of the network (see Section 4) be-
comesO(p2b2) = O(p3).

6. Applications to Grouping

The Saliency Network is viewed by many people not
only as a mechanism for shifting attention to salient
structures, but also as a method for the initial group-
ing of contour fragments. The problems of identify-
ing salient structures and of grouping contours are not
identical. Saliency requires identifying contour ele-
ments that “stand out,” whereas grouping attempts to
gather contour elements together into curves, which
can require, for instance, making choices about how
a curve continues through junctions. The criteria of
length and straightness can separate a smooth object
from a background of short, broken curves (e.g., a disc
on a background of grass), but they may be inappropri-
ate for segmenting equally-smooth objects in cluttered
scenes, since long smooth curves often will traverse a
few objects. For example, Fig. 10 shows a case where
the Saliency Network successfully finds a curve that be-
longs to an object of interest, but Fig. 11 shows another
case where the most salient curve traverses more than
one object. Nevertheless, in many cases the salient
curves may lie on objects of interest, and so may be
useful for grouping.

The Saliency Network computes, for every element,
the saliency of the most salient curve emerging from
that element. For grouping, we would like to recover
the curves that made those locations salient. In fact,
we show in the appendix that, after the network con-
verges, the most salient curves can be extracted in the
following simple way, which was proposed by Shashua
and Ullman. To extract the optimal (most salient) curve
emerging from an element, during the computation one
has to store for every elementp a single pointerπ(p)

Figure 10. Shashua and Ullman’s saliency map for a cluttered
scene. The scene image (on the left) was smoothed with a Gaus-
sian of standard deviation 1 and then the gradient magnitude was
thresholded to get a binary image (second picture from the left).
This edge image was the input to the network. The third picture
displays Shashua and Ullman’s saliency map, and the fourth shows
the curve (71 elements) emanating from the most salient element,
for which8 = 263.5.

Figure 11. Shashua and Ullman’s saliency map for a cluttered
scene. From left to right, the first picture is the scene image and the
second is an edge image obtained from the scene image by thresh-
olding the gradient magnitude. The edge image was the input to the
network. The third picture displays Shashua and Ullman’s saliency
map, and the fourth shows the curve (51 elements) emanating from
the most salient element, for which8 = 210.1.
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Figure 12. The problem of leeching. Each element of a curve
chooses one neighboring element with which to combine. Conse-
quently the shared element must choose between the two shapes, and
so the best curves emerging frompi andpj will merge together. The
larger circle is the most salient curve, and, for all elementspj on the
larger circle,8(pj ) = R2. The elements on the smaller circle draw
their saliencies from the larger circle, and the saliencies decrease
as the elements get further from the junction element. For every
elementpi on the smaller circle,r 2 ≤ 8(pi ) ≤ R2.

which points to the second element on the optimal curve
emerging fromp. At the end of the computation, the
best curve fromp can be retrieved by tracing these
pointers starting fromp. To obtain the most salient
curve in the image, we would trace from the most
salient element. The appendix shows that this tracing
procedure follows from the property of extensibility.

The fact that the tracing procedure returns the op-
timal curves has serious implications for grouping.
When two curves share a common section (as in
Fig. 12), the elements on the common section must
decide between the two curves. So if two different ob-
jects are touching, then always the best curve through
one of the objects will merge into the other; this situa-
tion is illustrated by the real image example in Fig. 11,
where the boundary curves of two objects (a flashlight
and a telephone) merge together.

The two-circle example can also be problematic for
grouping due to the problem of leeching. Leeching can
cause non-salient curves next to a salient one to include
the salient curve as part of them. We have already seen
an example in which, due to this property, a non-salient
curve becomes salient unduly (Section 3.2). Another
example is shown in Fig. 12, in which the elements on
the smaller circle draw their saliencies from the larger
circle, and as a result the most salient curves emanating
from these elements combine with the larger circle.
In addition, we show in the appendix that the smaller
circle can only be traced from the least salient element

Figure 13. Shashua and Ullman’s method at image junctions. The
second, third, and fourth most salient curves start from the open
curve attached to the circle and then proceed around the circle. The
saliencies of the top four curves are 130.8, 122.1, 114.1, and 106.9.
The saliency of the least salient active element is 68.2.

over both curves (which actually would give both the
small and large circles, unless an extra step is used to
remove the larger one). This could be problematic if a
grouping system wishes to recover both circles.

Figure 13 shows the results of the Saliency Network
on an analogous two-circle example. To get the opti-
mal curves, we first traced the curve from the most
salient element (for which8 = 130.8), which gave
the larger circle. To compute the second most salient
curve, we ignored the elements on the most salient
curve and selected among the remaining elements the
next most salient element. We then traced the curve
from this element. The traced curve emerged from the
selected element and then went around the larger cir-
cle. We repeated this process to obtain the third most
salient curve. The new curve resembled the second
most salient curve again, except that it was one element
longer. As discussed above, the saliencies of elements
along the smaller circle attenuate as they become fur-
ther away from the larger circle.

Thus far our analysis has concentrated on the asymp-
totic behavior of the Saliency Network. In their exper-
iments, Shashua and Ullman demonstrated that good
results could be obtained already after a few dozen
iterations. In this they relied on the property that after
thenth iteration the score attributed by the network to
every element represents the saliency of the best curve
of lengthn+ 1 emanating from the element. There is
a drawback to this approach, however. Whereas after
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running the network for a small number of iterations
the saliency values obtained for short curves already ap-
proximate their asymptotic saliencies, long curves still
are undervalued significantly. This is particularly prob-
lematic when closed curves are considered, because
their asymptotic scores benefit from being considered
infinitely long. Thus, when the network is run for a
relatively small number of iterations, closed curves are
evaluated as if they were short, open curves, and as a
result closure would not be encouraged by the network.
Furthermore, when the network is not run to conver-
gence the tracing procedure is not guaranteed to extract
the best curve (see Appendix).

To conclude, Shashua and Ullman’s Saliency Net-
work may be used for grouping, because it is both ef-
ficient and guaranteed to find the optimal curves in an
image, according to a measure-of-fit that prefers length,
straightness, and few gaps. When the network reaches
convergence, the optimal curves in the image can be
extracted through a straightforward tracing procedure.
The algorithm is efficient because, as we have shown
in Section 4, it searches the exponential space of possi-
ble image curves in time that is polynomial (quadratic)
in the size of the image. To speed-up the computation
even further, Shashua and Ullman recommended run-
ning the network for a small number of iterations. If
not run to convergence, however, the network is no
longer guaranteed to provide the optimal curves, and
for longer curves the computed saliencies can be signif-
icantly undervalued. Even if run to convergence, due
to curve junctions the method still has serious problems
in extracting any salient curve other than the best. The
Saliency Network, therefore, may be useful for direct-
ing attention to a single object, but will be unsuitable
in cluttered images for extracting a number of different
objects.

7. Conclusion

The Saliency Network is a mechanism for identifying
salient curves in images based on length and straight-
ness. The method is attractive for several reasons. First,
the measure of saliency generally prefers long and
smooth curves over short or wiggly ones. In addition,
the network is guaranteed to find the most salient curve
according to the measure. While so doing, the net-
work fills in gaps with smooth completions and toler-
ates noise. The network itself is locally connected and
its size is proportional to the size of the image. The

locality is further emphasized since the contribution of
remote elements to the score of a given element atten-
uates with the curvature and gap length separating the
remote elements from the given element.

The Saliency Network is also distinguished by not
only highlighting salient locations but in addition pro-
viding the curves that make those locations salient.
This requires grouping curve fragments together across
gaps and through junctions, which requires choosing
from an exponential set of possible image curves. In
contrast (Guy and Medioni, 1993) produces a simi-
lar edge-based saliency map, but leave open the prob-
lem of recovering the salient curves. Similarly, other
saliency work such as (Heitger and von der Heydt,
1993; Williams and Jacobs, 1995) focuses on revealing
subjective contours and do not consider curves through
contour fragments or junctions.

Our analysis revealed, however, certain weaknesses
with the method. First, we outlined the criteria of fi-
delity, scale invariance, and performance on gaps. For
fidelity, we found cases in which the most salient el-
ement does not lie on the perceptually most salient
curve. Furthermore, we showed cases in which the
saliency measure changes its preferences when curves
are scaled uniformly. Finally, we found that for certain
fragmented curves the measure prefers large gaps over
a few small gaps of the same total size.

We believe that the weaknesses of the Saliency Net-
work are due largely to two important properties of the
saliency measure which are imposed by the Network’s
computation. The two properties are (1) extensibility
and (2) geometric convergence for cycles. Extensibi-
lity implies that an optimal curve must be composed of
sub-curves that are themselves optimal. Due to exten-
sibility, saliencies can be computed efficiently using
a procedure of recursive optimization (dynamic pro-
gramming). One of the benefits of extensibility is that,
although the Saliency Network finds the element from
which the best curve emanates rather than extracting
the best curve itself, the best curve can be extracted
through a simple tracing procedure. Also due to exten-
sibility, however, curves lying near a salient curve will
tend to merge into that salient curve in order to leech on
its saliency. Further, extensibility causes the method
to have difficulties at junctions. When two contours
meet at a junction, the best curve through at least one
of the curves will merge into the other. In addition,
the second best curve in the image can be very difficult
to extract. This leaves unclear how one could use the
method for grouping in cluttered images.
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The second property exhibited by the saliency mea-
sure is that the measure decreases in a geometric series
when evaluated along a cycle. This property, which
is essential for convergence, was used in this paper to
compute the network’s time complexity. In particular,
we showed that the number of times that the network
wraps around a circle before converging is linear in the
radius of the circle, and as a consequence the number
of iterations on a cycle can be linear in the size of the
image. Moreover, this results in an overall complexity
for serial implementations that is quadratic in the size
of the network.

Other difficulties with the Saliency Network are due
to effects of discretization. One such effect is the case
of a straight line that is almost but not quite horizon-
tal; it turns out that this straight line can be less salient
than two line segments of the same total length as the
straight line that meet at a corner. We also explained
that the saliency of a circle for small radii will grow
quadratically with its radius, as the measure of saliency
predicts, but, due to discretization, for large radii will
grow at most linearly. Due to such effects, the network’s
rankings of curves can be significantly altered when the
range of possible orientations is coarsely sampled. The
complexity result mentioned above, however, is based
on the assumption that the number of discrete orienta-
tions per pixel is independent of the size of the image,
but with proper sampling, the complexity of the net-
work becomes at least cubic in the size of the image.

Several of the issues we considered carry over to
related work on saliency and grouping. First, none
of the saliency methods of which we are aware is scale-
invariant or demonstrates that the method is scale-
invariant over an appropriate range (e.g., Guy and
Medioni, 1993; Heitger and von der Heydt, 1993;
Mumford, 1994; Williams and Jacobs, 1995). Some
methods for grouping, however, use a scale-invariant
measure to accept or reject groups (e.g., Pavlidis and
Liow, 1990; Jacobs, 1993). In addition, the measures
of a good contour used in (Montanari, 1971; Martelli,
1976; Kass et al., 1988; Pavlidis and Liow, 1990;
Jacobs, 1993) do not have a preference between one
large gap and several small gaps of the same total size.
In some such cases, the goodness measure evaluates
gaps in a curve by summing the intensity or change in
intensity along the curve, making the measure indif-
ferent to the distribution of the gap elements. Further-
more, grouping techniques that use dynamic program-
ming or shortest-paths techniques on a grid of locally
connected elements are subject to the discretization

problems that we elicited (Montanari, 1971; Martelli,
1976; Amini et al., 1990; Geiger et al., 1995). Finally,
our discussion of the Network’s difficulties at junctions
applies directly to Montanari’s method (Montanari,
1971), basically because the Saliency Network’s dy-
namic programming computation is very similar to
Montanari’s. The methods differ in that Montanari’s
network is not required to converge, and instead the
length of the optimal curve is assumed to be known.
Nevertheless, the problems of curves merging together
at junctions and the second best curve being difficult to
recover (Fig. 13) are still present.

To summarize, the Saliency Network’s two intrinsic
properties of extensibility and geometric convergence
enable the saliency measure to be optimized and the
optimal curves to be recovered efficiently (in polyno-
mial time). At the same time, they seriously restrict the
set of possible functions that can be used as measures
of saliency, and as a result the method has problems
with scale invariance, leeching curves, and grouping
in the presence of junctions. Since these problems
are results of intrinsic properties, they are difficult to
overcome without fundamentally changing the compu-
tation. In addition, overcoming the aliasing problems
would require asymptotically increasing the complex-
ity of the method, since the discretization is closely
tied to the use of dynamic programming to efficiently
optimize the chosen measure. It remains to be seen
whether variations of the current computation can be
defined that remedy its main weaknesses while still al-
lowing the saliency map and most salient curves to be
computed efficiently.

Code Availability

We have made available our C-code implementation
of the Saliency Network. To retrieve the code, ftp to
“ftp.ai.mit.edu,” then log in as “anonymous,” then cd to
“pub/users/tda/,” and then get and uncompress “susal-
code.tar.Z.”

Appendix: Consequences of Extensibility

In this appendix, we show two consequences of the
property of extensibility which pertain to using the
Saliency Network for grouping. The first is that exten-
sibility allows us to easily recover the optimal curves
after the network converges. The basic idea of extensi-
bility, which is illustrated in Fig. 14, is that any suffix of
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Figure 14. Characterization of extensible functions. If the most
salient curve frompi goes throughpj then, at convergence, the most
salient curve frompi must coincide with the most salient curve from
pj . At any finite time, however, the most salient curves frompi

and pj may not overlap anywhere except atpj . In particular, after
n iterations the most salient curve frompi will be the straight line
of lengthn, but the most salient curve frompj could be along the
curved segment frompj to pk.

an optimal curve is optimal as well. The following argu-
ment shows that at convergence the tracing procedure
described in Section 6 produces the optimal curves. At
any iterationN, we know from the definition of ex-
tensibility (Eq. (3)) that8(p) is the saliency of the
most salient curve emerging fromp among all curves
leaving p of length less than or equal toN, and we
know thatπ(p) points to the next element on that most
salient curve. Therefore, atN = ∞ (i.e., at conver-
gence),8(p) is the saliency of the most salient curve
emerging fromp among all possible curves, andπ(p)
points to the next element on that curve. We will as-
sume for simplicity that the optimal curve fromp is
unique. Let0 = 〈p0, p1, p2, . . .〉 be the optimal curve
from some elementp0. Then for any suffix0i of 0
(0i = 〈pi , pi+1, pi+2, . . .〉, i ≥ 0),0i must be the op-
timal curve frompi ; otherwise, if a different curve0∗i
were more salient than0i , then from Eq. (5) we could
substitute0∗i for0i and obtain a new curve fromp0 that
is more salient than0. But if 0i is optimal, thenπ(pi )

must equalpi+1, sinceπ(pi ) points to the next element
on the optimal curve frompi . Thus at convergence fol-
lowing the pointers traces out the optimal curve.

When the network is not run to convergence, on the
other hand, the tracing procedure is no longer guaran-
teed to give the optimal curve. Consider for instance
the picture in Fig. 14. The picture contains a straight
line of lengthn emerging from an elementpi , and it
contains a curved segment between elementspj and
pk, which merges into the straight line. We choose
the curved segment so that aftern iterations it is more
salient (due to having greater length) than the portion of
the straight line to the right ofpj . Consequently after
n iterationsπ(pj )will point to the curved segment. As

well, after then iterations the best curve emerging from
pi will be the straight line of lengthn (and its current
saliency will ben). But if we now trace the point-
ers starting frompi , we will mistakenly think that the
best curve of lengthn contains a portion of the curved
segment betweenpj and pk. This problem could be
avoided if the entire history of the computation were
stored, but that of course would increase the storage
space required by the method considerably.

The second consequence of extensibility that we
show is that, when two objects are touching, it can be
very difficult to recover the contours of both objects.
Consider the two circles shown in Fig. 12. Lets be the
arc length from elementpi on the smaller circle to the
connecting element between the two circles (denoted
by pk). The saliency of the larger circle at conver-
gence isR2, according to Eq. (14). From Eq. (13),
the saliency of a circular arc of extents on the smaller
circle is r 2(1− e−

s
r 2 ). Finally, using Eq. (9) we can

derive the saliency ofpi :

8(pi ) = r 2
(
1− e−

s
r 2
)+ e−

s
r 2 R2

= r 2+ (R2− r 2)e−
s

r 2 .

It can be readily seen that8(pi ) decreases ass, the arc
length frompi to pk, increases. Therefore, the salien-
cies of the elements on the smaller circle decrease as the
elements get further away from the junction element,
with the constraint thatr 2 ≤ 8(pi ) ≤ R2. As a con-
sequence, if a grouping system were to try and recover
the smaller circle, it would have to trace the curve from
the least salient element on both curves (this tracing
would give both the small and large circles, unless an
extra step is used to remove the larger one.
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Notes

1. The formula forρi j appeared in (Shashua and Ullman, 1988) as
ρi j =

∏ j
k=i+1 ρk, but the computation actually performed by

the network (which is given by Eq. (5)) implements the modified
formula given here.

2. Note that this definition of extensibility is different from that used
by Brady et al. (1980).
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