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Abstract—We introduce a behavior-based similarity measure that tells us whether two different space-time intensity patterns of two

different video segments could have resulted from a similar underlying motion field. This is done directly from the intensity information,

without explicitly computing the underlying motions. Such a measure allows us to detect similarity between video segments of differently

dressed people performing the same type of activity. It requires no foreground/background segmentation, no prior learning of activities,

and no motion estimation or tracking. Using this behavior-based similarity measure, we extend the notion of two-dimensional image

correlation into the three-dimensional space-time volume and thus allowing to correlate dynamic behaviors and actions. Small space-time

video segments (small video clips) are “correlated” against the entire video sequences in all three dimensions (x, y, and t). Peak correlation

values correspond to video locations with similar dynamic behaviors. Our approach can detect very complex behaviors in video sequences

(for example, ballet movements, pool dives, and running water), even when multiple complex activities occur simultaneously within the

field of view of the camera. We further show its robustness to small changes in scale and orientation of the correlated behavior.

Index Terms—Space-time analysis, motion analysis, action recognition, motion similarity measure, template matching, video

correlation, video indexing, video browsing.

Ç

1 INTRODUCTION

DIFFERENT people with similar behaviors induce comple-
tely different space-time intensity patterns in a

recorded video sequence. This is because they wear
different clothes, and their surrounding backgrounds are
different. What is common across such sequences of the
same behaviors is the underlying induced motion fields.
This observation was used in [9], where low-pass filtered
optical-flow fields (between pairs of frames) were used for
action recognition. However, dense, unconstrained, and
nonrigid motion estimation is highly noisy and unreliable.
Clothes worn by different people performing the same
action often have very different spatial properties (different
color, texture, and so forth). Uniform-colored clothes induce
local aperture effects, especially when the observed acting
person is large (which is why Efros et al. [9] analyze small
people “at a glance”). Dense flow estimation is even more
unreliable when the dynamic event contains unstructured
objects like running water, flickering fire, and so forth.

In this paper, we introduce an approach for measuring the
degree of consistency (or inconsistency) between the implicit
underlying motion patterns in two video segments, without
explicitly computing those motions. This is done directly from the
space-time intensity (gray scale) information in those two video

volumes. In fact, this “behavioral similarity” measure between
two video segments answers the following question: given
two completely different space-time intensity patterns (two
video segments), could they have been induced by the same
(or similar) space-time motion fields? Such a behavioral
similarity measure can therefore be used to detect similar
behaviors and activities in video sequences despite differ-
ences in appearance due to different clothing, different
backgrounds, different illuminations, and so forth.

Our behavioral similarity measure requires no prior
foreground/background segmentation (which is often re-
quired in action-recognition methods, for example, [3], [4],
[24], [27]). It requires no prior modeling or learning of
activities and is therefore not restricted to a small set of
predefined activities (as opposed to that in [2], [4], [5], [7],
[26]). Although [2], [9], [14], [21], [26] require explicit motion
estimation or tracking, our method does not. By avoiding
explicit motion estimation, we avoid the fundamental
hurdles of optical flow estimation (aperture problems,
singularities, and so forth). Our approach can therefore
handle video sequences of very complex dynamic scenes
where motion estimation is extremely difficult, such as scenes
with flowing/splashing water, complex ballet movements,
and so forth.

Our method is not invariant to large geometric deforma-
tions of the video template. However, it is not sensitive to
small deformations of the template (including small
changes in scale and orientation).

We use this measure to extend the notion of traditional
two-dimensional (2D) image correlation into a three-dimen-
sional (3D) space-time video-template correlation. The
behavioral similarity measure is used here for “correlating”
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a small “video query” (a small video clip of an action) against
a large video sequence in all three dimensions ðx; y; zÞ for
detecting all video locations with high behavioral similarity.
This gives rise to various applications based on action
detection using a simple example clip (such as video
browsing and indexing, unsupervised video clustering based
on behaviors [28], “Intelligent fast forward” [29], “Do as I Do”
action synthesis [9], and so forth).

Space-time approaches to action recognition, which also
perform direct measurements in the space-time intensity
video volume, have been previously suggested in [3], [8], [16],
[19], [20], [27], [28]. Slices of the space-time volume (such as
the xt-plane) were used in [20] for gait recognition. This
approach exploits only a small portion of the available data
and is limited to cyclic motions. In [3], [27], actions were
represented using space-time shape generated by a moving
silhouette of a human figure. Informative features were
extracted from the space-time shapes using the solution of the
Poisson equation inside the shapes [3] or from local geometry
of their surface [27]. Although these papers showed promis-
ing action recognition performances, they are restricted to
cases where figure-background segmentation can be ob-
tained. In [28], empirical distributions of space-time gradients
collected from an entire video clip are used. In [8], a video
sequence is characterized by the distribution of space-time
feature prototypes (cluster centers) extracted at temporal
interest points from “cuboids” of space-time gradients.

As such, the work in [28] and [8] are restricted to a single
action in the field of view of the camera at any given time and
do not capture the geometric structure of the action parts
(neither in space, nor in time). In [15], [16], a sparse set of
“space-time corner” points are detected and used to
characterize the action while maintaining scale invariance.
Since there are so few such points in a typical motion, the
method may be prone to occlusions and to misdetections of
these interest points. Some actions do not include such points
at all (see more details in [14] and in [8]). It is therefore also
limited to a single action in the field of view of the camera.
Niebles et al. [19] extended the method by Dollár et al. [8] by
unsupervised learning (similar to the “bag of features” in
images) of action classes and showed an application for
detecting multiple actions in the field of view. However, this
method is based on a complex learning phase from multiple
examples of each action, and as in [8], their method does not
capture the geometric structure of the action parts.

An approach for registering two video clips (including
action clips) was presented in [25]. Their local similarity
measure was based on normalized cross-correlation of space-
time gradients of corresponding small space-time patches
(ST-patches) across the two sequences. Although this
measure is invariant to local changes in contrast and bright-
ness, it relies on the similarity of the local structure of the two
clips and is therefore not invariant to nonlinear local changes
in appearance or to more complex local changes in appear-
ance and local deformations. In contrast, our measure is based
on the similarity (consistency) of the underlying motion fields
and is therefore completely invariant to the appearance of the
compared actions or moving objects.

In the area of motion analysis, many studies have utilized
eigendecomposition of the spatio-temporal “Structure Ten-
sor” (or “scatter matrix”) for accurate estimation of the optical
flow [1], [13], nonlinear filtering [23], extraction of space-time

interest points [16], extraction of other space-time operators
[17], and motion segmentation [10]. In this work, we explore a
different kind of analysis using the “Structure Tensor” for a
different application.

Because our approach captures dense spatio-temporal
geometric structure of the action, it can therefore be applied
to small video templates. Multiple such templates can be
correlated against the same video sequence to detect
multiple different activities. A shorter version of this paper
appeared in the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’05) [22]. To our best knowl-
edge, this is the first work that shows an ability to detect
multiple different activities that occur simultaneously in the
field of view of the camera, without any prior spatial or
temporal segmentation of the video data, and in the
presence of cluttered dynamic backgrounds.

The rest of this paper will present our approach for
measuring the degree of consistency between two under-
lying motion fields (without computing any motion) and its
applications to action analysis. However, the consistency
measure itself may be useful in many other applications
that require comparing motion fields (for example, motion
segmentation, dynamic texture analysis, and so forth).

1.1 Overview of the Approach and Notations

Fig. 1 provides a graphical view of the notations used in the
paper. A small space-time template T (= a very small video
clip, for example, 30� 30� 30) is “correlated” against a
larger video sequence V (for example, 200� 300� 1; 000) in
all three dimensions (x, y, and t). This generates a space-
time “behavioral correlation surface” Cðx; y; tÞ or, more
precisely, a space-time “behavioral correlation volume” (not
shown in the figure). Peaks within this correlation volume
are locations in the video sequence V with similar behavior
to the template T .

Each value in the correlation volumeCðx; y; tÞ is computed
by measuring the degree of “behavioral similarity” between
two video segments: the space-time template T and a video
segment S � V (of the same dimensions as T ), centered
around the point ðx; y; tÞ 2 V . The behavioral similarity
between two such video segments, T and S, is evaluated by
computing and integrating local consistency measures
between small ST-patches (for example, 7� 7� 3) within
these video segments. Namely, for each point ði; j; kÞ 2 S, a
small ST-patch PS � S centered around ði; j; kÞ is compared
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Fig. 1. Overview of framework and notations.



against its corresponding1 small ST-patch PT � T (see Fig. 1).
These local scores are then aggregated to provide a global
correlation score for the entire template T at this video
location. (This is similar to the way correlation of image
templates is sometimes performed. However, here, the small
patches P also have a temporal dimension, and the similarity
measure between patches captures the similarity of the
implicit underlying motions.)

We will start by exploring unique properties of intensity
patterns induced in small ST-patches P within the video
data (Section 2). Step by step, we will develop the
consistency measure between two such ST-patches (PT
and PS) (Sections 3 and 4). These local scores are then
aggregated into a more global behavior-based correlation
score between two video segments (T and S), which in turn
leads to the construction of a correlation volume of the
video query T relative to the entire large video sequence V
(Section 6). Examples of detecting complex activities (pool
dives, ballet dances, and so forth) in a real noisy video
footage are shown in Section 7.

2 PROPERTIES OF A SPACE-TIME INTENSITY PATCH

We will start by exploring unique properties of intensity
patterns induced in small space-time patches of video data. In
short, we will refer to a small “space-time patch” as an
ST-patch. If an ST-patch P is small enough (for example,
7� 7� 3), then all pixels within it can be assumed to move
with a single uniform motion. This assumption is true for
most of ST-patches in real video sequences. (It is very similar
to the assumption used in [18] for optical flow estimation, but
in our case, the patches also have a temporal dimension.) A
very small number of patches in the video sequence will
violate this assumption. These are patches located at motion
discontinuities, as well as patches that contain an abrupt
temporal change in the motion direction or velocity.

A locally uniform motion induces a local brush of straight
parallel lines of color (or intensity) within the ST-patch P . All
the color (intensity) lines within a single ST-patch are oriented
in a single space-time direction ðu; v; wÞ (see zoomed in part in
Fig. 1). The orientation ðu; v; wÞ can be different for different
points ðx; y; tÞ in the video sequence. It is assumed to be
uniform only locally, within a small ST-patch P centered
around each point in the video. Examining the space-time
gradients rPi ¼ ðPxi ; Pyi ; PtiÞ of the intensity at each pixel
within the ST-patch P ði ¼ 1 . . .nÞ, then these gradients will
all be pointing to directions of maximum change of intensity
in space time (Fig. 1). Namely, these gradients will all be
perpendicular to the direction ðu; v; wÞ of the brush of
color/intensity lines

rPi
u
v
w

2
4

3
5 ¼ 0: ð1Þ

Different space-time gradients of different pixels in P (for
example, rPi and rPj) are not necessarily parallel to each
other. However, they all reside in a single 2D plane in the

space-time volume that is perpendicular to ðu; v; wÞ. Note
that (1) does not require for the frame-to-frame displace-
ments to be infinitesimally small, only uniform within P .
However, it cannot handle very large motions that induce
temporal aliasing. These issues are addressed in Section 6.

Stacking these equations from all n pixels within the
small ST-patch P , we obtain
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where n is the number of pixels in P (for example, if P is
7� 7� 3, then n ¼ 147). Multiplying both sides of (2) by GT

(the transposed of the gradient matrix G) yields

GTG
u
v
w

2
4

3
5 ¼ 0

0
0

2
4
3
5

3�1

: ð3Þ

GTG is a 3� 3 matrix. We denote it by M:

M ¼ GTG ¼
�P 2

x �PxPy �PxPt
�PyPx �P 2

y �PyPt
�PtPx �PtPy �P 2

t

2
4

3
5; ð4Þ

where the summation is over all pixels within the ST-patch.
Therefore, for all small ST-patches containing a single
uniform motion, the matrix M3�3 (also called the “Gram
matrix” of G) is a rank-deficient matrix: rankðMÞ � 2. Its
smallest eigenvalue is therefore zero ð�min ¼ 0Þ, and ðu; v; wÞ
is the corresponding eigenvector. Note that the size of
M ð3� 3Þ is independent from the size of the ST-patch P .
This matrix, is also known as the space-time “Structure
Tensor” or “scatter matrix” [1], [10], [13], [16], [17], [23].

Now, if there exists an ST-patch for which rankðMÞ ¼ 3,
then this ST-patch cannot contain a single uniform motion
(that is, there is no single ½u v w� vector that is perpendicular
to all space-time intensity gradients). In other words, this
ST-intensity patch was induced by multiple independent
motions. Note that this observation is reached by examining
M alone, which is directly estimated from color or intensity
information. No motion estimation is required. As men-
tioned above, rankðMÞ ¼ 3 happens when the ST-patch is
located at spatio-temporal motion discontinuity. Such
patches are also known as “space-time corners” [15], [16]
or patches of “no coherent motion” [13]. These patches are
typically rare in a real video sequence.

3 CONSISTENCY BETWEEN TWO ST-PATCHES

Similar rank-based considerations can assist in telling us
whether two different ST-patches, P1 and P2, with com-
pletely different intensity patters, could have resulted from
a similar motion vector (that is, whether they are motion
consistent). Once again, this is done directly from the
underlying intensity information within the two patches,
without explicitly computing their motions, thus avoiding
aperture problems that are so typical of small patches.

We say that the two ST-patches P1 and P2 are motion
consistent if there exists a common vector u ¼ ½u v w�T that
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1. What we mean by “corresponding” is the following: If ði; j; kÞ is the
location of a pixel within the segment S, then accordingly, the pixel at
position ði; j; kÞ within segment T will be referred to as the “corresponding
pixel,” and the ST-patch centered around it would be the “corresponding
patch.”



satisfies (2) for both of them, that is, G1u ¼ 0 and G2u ¼ 0.
Stacking these together, we get

G12
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where matrix G12 contains all the space-time intensity
gradients from both ST-patches P1 and P2.

As before, we multiply both sides by GT
12, yielding

M12
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w
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; ð6Þ

where M12 ¼ GT
12G12 (the Gram matrix) is a 3� 3 rank-

deficient matrix: rankðM12Þ � 2.
Now, given two different space-time intensity patches,

P1 and P2 (each induced by a single uniform motion), if
the combined matrix M12 is not rank deficient (that is,
rankðM12Þ ¼ 3 <¼> �minðM12Þ 6¼ 0), then these two ST-
patches cannot be motion consistent.

Note that M12 ¼M1 þM2 ¼ GT
1 G1 þGT

2 G2 and is
based purely on the intensity information within these
two ST-patches, avoiding explicit motion estimation.

Moreover, for our higher level purpose of space-time
template correlation, we currently assumed that P1 and P2

are of the same size ðnÞ. However, in general, there is no
such limitation in the above analysis.

4 HANDLING SPATIO-TEMPORAL AMBIGUITIES

The rank-3 constraint on M12 for detecting motion incon-
sistencies is a sufficient but not a necessary condition. Namely, if
rankðM12Þ ¼ 3, then there is no single image motion that can
induce the intensity pattern of both ST-patches P1 and P2

and, therefore, they are not motion consistent. However, the
other direction is not guaranteed: There can be cases in
which there is no single motion that can induce the two
space-time intensity patterns P1 and P2, yet rankðM12Þ < 3.
This can happen when each of the two ST-patches contains
only a degenerate image structure (for example, an image
edge) moving in a uniform motion. In this case, the space-
time gradients of each ST-patch will reside on a line in
the space-time volume, all possible ðu; v; wÞ vectors will span
a 2D plane in the space-time volume and, therefore,
rankðM1Þ ¼ 1 and rankðM2Þ ¼ 1. Since M12 ¼M1 þM2,
therefore, rankðM12Þ � 2 < 3, regardless of whether there is
or is no motion consistency between P1 and P2.

The only case in which the rank-3 constraint on M12 is
both sufficient and necessary for detecting motion incon-
sistencies is when both matrices M1 and M2 are each of
rank-2 (assuming each ST-patch contains a single motion);
namely—when both ST-patches P1 and P2 contain non-
degenerate image features (corner-like).

In this section, we generalize the notion of the rank
constraint on M12 to obtain a sufficient and necessary motion-
consistency constraint for both degenerate and nondegenerate
ST-patches.

If we examine all possible ranks of the matrix M of an
individual ST-patch P , which contains a single uniform motion,
then rankðMÞ ¼ 2 when P contains a corner-like image
feature, rankðMÞ ¼ 1 when P contains an edge-like image

feature, and rankðMÞ ¼ 0 when P contains a uniform-
colored image region.

This information (about the spatial properties of P ) is
captured in the 2� 2 upper left minor M} of the matrix M
(see (4))

M} ¼ �P 2
x �PxPy

�PyPx �P 2
y

� �
:

This is very similar to the matrix of the Harris detector [12],
but the summation here is over the 3D ST-patch and not a
2D image patch.

In other words, for an ST-patch with a single uniform
motion, the following rank condition holds: rankðMÞ ¼
rankðM}Þ. Namely, when there is a single uniform motion
within the ST-patch, the added temporal component (which
is captured by the third row and the third column of M) does
not introduce any increase in rank.

This, however, does not hold when an ST-patch contains
more than one motion, that is, when the motion is not along a
single straight line. In such cases, the added temporal
component introduces an increase in the rank, namely,
rankðMÞ ¼ rankðM}Þ þ 1. (The difference in rank cannot be
more than 1, because only one column/row is added in the
transition from M} to M.) Thus,

Note that this is a generalization of the rank-3 constraint on
M, which was presented in Section 2. (When the rank M is 3,
then the rank of its 2� 2 minor is 2, in which case, the rank-
increase is one.) In fact, “space-time corners” [16] can be seen
as a special case of ST-patches with a rank-increase of one (see
Appendix B). The constraint (7) holds both for degenerate and
nondegenerate ST-patches.

Following the same reasoning for two different ST-patches
(similar to the way the rank-3 constraint of a single ST-patch
was generalized in Section 3 for two ST-patches), we arrive at
the following sufficient and necessary condition for detecting
motion inconsistency between two ST-patches:

This is a generalization of the rank-3 constraint on M12

presented in Section 3. In Appendix A, we prove constraint
(8) and show that it holds both for degenerate and
nondegenerate ST-patches.

5 CONTINUOUS RANK-INCREASE MEASURE �r

The straightforward approach to estimate the rank-increase
from M} to M is to compute their individual ranks and then
take the difference, which provides a binary value (0 or 1). The
rank of a matrix is determined by the number of nonzero
eigenvalues it has.
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However, due to noise, eigenvalues are never zero.
Applying a threshold to the eigenvalues is usually data
dependent, and a wrong choice of a threshold would lead to
wrong rank values. Moreover, the notion of motion consis-
tency between two ST-patches (which is based on the rank-
increase) is often not binary: If two motions are very similar
but not identical—are they consistent or not? We would
therefore like to have a continuous measure of motion
consistency between two ST-patches. This motivated us to
develop the following continuous notion of rank-increase.

Let �1 � �2 � �3 be the eigenvalues of the 3� 3 matrix
M. Let �}1 � �

}
2 be the eigenvalues of its 2� 2

upper left minor M}. From the Interlacing Property of
eigenvalues in symmetric matrices ([11, p. 396]), it follows
that �1��}1 � �2 � �}2 � �3. This leads to the following
observations:2

�1 �
�1 � �2 � �3

�}1 � �
}
2

¼ detðMÞ
detðM}Þ � �3 ð9Þ

and

1 � �2 � �3

�}1 � �
}
2

� �3

�1
� 0:

We define the continuous rank-increase measure �r to be

�r ¼ �2 � �3

�}1 � �
}
2

ð10Þ

0 � �r � 1. The case of �r ¼ 0 is an ideal case of no rank-
increase, and when �r ¼ 1, there is a clear rank-increase.
However, the above continuous definition of �r allows to
handle noisy data (without taking any threshold) and
provides varying degrees of rank-increases for varying
degrees of motion-consistencies.3

Fig. 8 in Appendix B shows the continuous rank-increase
measure computed for individual ST-patches of a single
sequence of a walking person. Note that within a single
sequence, patches with high individual rank-increase
measure (7) are sparse and correspond to space-time
corners, local regions of motion discontinuity, and/or
temporal aliasing (very fast motion). This is also the case
when comparing two aligned sequences of the same action
(that is, pairs of patches across the two sequences with high

joint rank-increase measure (8) are sparse). However, when
the two sequences are misaligned (or contain different
actions), there are many pairs of patches with high joint
rank-increase measure. This is employed in Section 6.

6 CORRELATING A SPACE-TIME VIDEO TEMPLATE

A space-time video template T consists of many small
ST-patches. It is “correlated” against a larger video sequence
by checking its consistency with every video segment
centered around every space-time point ðx; y; tÞ in the large
video. A good match between the video template T and a
video segment S should satisfy two conditions:

1. It should bring into “motion-consistent alignment” as
many ST-patches as possible between T and S (that is,
minimize their joint rank-increase measure (8).

2. It should maximize the alignment of motion dis-
continuities within the template T with motion
discontinuities within the video segment S. Such
discontinuities may also result from space-time
corners and very fast motion. Namely, it should
maximize the alignment of patches with high
individual rank-increase measure (7), where the joint
rank-increase test (8) will not apply.

A good global template match should minimize the
number of local inconsistent matches between the linear
patches (with a single linear motion) and should also minimize
the number of matches between linear patches in one
sequence with nonlinear patches (with multiple motions or
motion discontinuity) in the other sequence. The following
measure captures the degree of local inconsistency between a
small ST-patch P1 2 T and an ST-patch P2 2 S, according to
the abovementioned requirements:

m12 ¼
�r12

minð�r1;�r2Þ þ �
; ð11Þ

where � avoids division by 0 (for example, � ¼ 10�5).
This measure yields low values (that is, “consistency”)

when P1 and P2 are motion consistent with each other (in
which case, �r12 	 �r1 	 �r2 	 0). It also provides low
values when both P1 and P2 are patches located at motion
discontinuities within their own sequences (in which case,
�r12 	 �r1 	 �r2 	 1). m12 will provide high values (that
is, “inconsistency”) in all other cases.

Our empirical evaluations on both real and synthetic
data show that for two ST-patches P1 and P2,
�r12 � minð�r1;�r2Þ. In addition, for two identical
patches, the following holds �r11 ¼ �r1. This follows
from (10) and the fact that the eigenvalues of a matrix
multiplied by a scalar are multiplied by the same scalar.
We therefore assume in our algorithm that the above
measure is bounded below by 1, and the lowest measure
is attained when a patch is compared to itself.

To obtain a global inconsistency measure between the
template T and a video segment S, the average value of m12

in T is computed: 1
N �m12, where N is the number of space-

time points (and, therefore, also the number of ST-patches)
in T . Similarly, a global consistency measure between the
template T and a video segment S can be computed as the
average value of 1

m12
, where 0 � 1

m12
� 1. The autoconsis-

tency of a patch (consistency with itself) is 1 and, therefore,
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2. It is easy to show that the term detðMÞ
detðM}Þ is the “pure temporal”

eigenvalue that was derived in [17] using a Galilean diagonalization of the

matrix M. It is shown there that this diagonalization compensates for the

local constant velocity and the “pure temporal” eigenvalue encodes

information about the nonlinearity of the local motion.

3. Providing some intuition for this choice of �r: In an “ideal” case, there

are two clusters of eigenvalues—small ones and large ones, where the

values within each cluster are similar, and there is a large gap between them

(a ratio of several orders of magnitude, much larger than the ratios within

each cluster). The large values are related to the contrast of the ST-patch and

the small ones to the noise level. When there is no “clear” rank-increase, the

denominator has one extra large eigenvalue than the numerator and the

ratio in (10) is thus very small. For example, if rankðM12Þ ¼ 2 and

rankðM}
12Þ ¼ 2, there will be two large values in the denominator and only

one in the numerator. When there is a “clear” rank-increase, the numerator

and denominator contain the same number of eigenvalues from both

clusters, and the ratio thus tends to 1. In any other case, this ratio attains

intermediate values. This observation was verified in our empirical

evaluations.



the global autocorrelation of a template (video segment)
with itself is also 1.

6.1 Weighting the Gradients

We would like the consistency measure to be able to
compare ST-patches of very different contrast. Suppose P1

has much larger contrast than P2 (larger space-time
gradients), then the matrix M12 will be mostly affected by
M1 and not much by M2. In order to make the consistency
measure invariant to contrast, we normalize the gradients at
each point by the mean magnitude of the local gradients (þ
some small constant) in a small space-time window (we
used the patch size). This is equivalent to replacing the
matrix M ¼ GTG by ~M ¼GTW�1G, where W is a diagonal
matrix with the mean local gradient magnitudes on its
diagonal.

6.2 Weighting the Patches

Not all patches in a template should necessarily have equal
importance when their local consistency measure are
summed into the global consistency measure. One may want
to weight patch contributions differently, depending on the
specific task at hand. For example, if the dynamic information
is more important than the static one, more weight can be
assigned to patches with high temporal derivatives or normal
flow. One type of patches that should be given low weights in
most practical situations are uniform patches (almost no
derivatives). A uniform patch has high motion consistency
with any other patch. This might lead to high behavioral
correlation values in uniform textureless regions, which is

usually not desired. We therefore applied a simple weighting

function: w12 ¼ minðfðjrP1jÞ; fðjrP2jÞÞ, where f is a Sig-

moid function, which gives a low weight if any of the patches

is uniform with almost no space-time gradients (in our

experiments, we use a Sigmoid function with a threshold of

15 gray levels and a width of 10 gray levels). The final

template correlation score becomes

CðT; SÞ ¼
�w12

1
m12

�w12
; ð12Þ

which is the global consistency measure we used in our
experiments. The above weighting function can be further
generalized by giving more weight to spatially corner-like
patches than to the more ambiguous edge-like patches.
Fig. 2 illustrates the averaging process of ST-patches into
one global consistency measure.

A space-time template T (for example, 30� 30� 30) can
thus be “correlated” against a larger video sequence (for
example, 200� 300� 1; 000) by sliding it in all three
dimensions (x, y, and t) while computing its consistency
with the underlying video segment at every video location.
This generates a space-time “correlation surface” (or more
precisely, a space-time “correlation volume”). Peaks within
this correlation volume are locations in the large video
sequence where similar behavior to that depicted by the
template is detected. To allow flexibility to small changes in
scale and orientation, we correlate the template and the
video at half of their original resolution. Examples of such
correlation results can be found in Figs. 3, 4, and 5.
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Fig. 2. From local patch consistency to global template correlation. This figure illustrates how the global template correlation volume is constructed
from many local correlation volumes of small ST-patches that construct the template sequence. (a) A few sample frames from an input video V with
multiple actions. (b) A few representative frames from a “jump” template T. (c) Three small ½7� 7� 3� ST-patches were chosen for illustration. The
direction of motion is shown by the green arrows. (d) The correlation volumes resulting from “correlating” (11) each of the ST-patches against the
entire video V. Each volume highlights regions that are consistent with the left/down/up motions of the patches correspondingly. (e) These volumes
are shifted according to the patch locations inside the template (denoted by þð�xk;�yk;�tkÞ) and summed up to get the global template correlation
volume (12). All false locations are pruned and we are left with the true location.



6.3 Computational Efficiency

In regular image correlation, the search space is 2D (the entire
image). In the presented space-time correlation, the search
space is 3D (the entire video sequence), and the local
computations are more complex (for example, eigenvalue
estimations). As such, special care must be taken of
computational issues. The following observations allow us
to speedup the space-time correlation process significantly:

1. The local matrices M3�3 (4) can be computed and
storedaheadoftimeforallpixelsofallvideosequences
in the database and, separately, for the space-time
templates (the video queries). The only matrices that
need to be estimated online during the space-time
correlation process are the combined matrices M12 (6),
which result from comparing ST-patches in the
template with ST-patches in a database sequence.
This, however, does not require any new gradient
estimation during runtime, since M12 ¼M1 þM2

(see end of Section 3).
2. Eigenvalue estimation, which is part of the rank-

increase measure (10), is computationally expensive
when applied to M12 at every pixel. The following
observations allow us to approximate the rank-
increase measure without resorting to eigenvalue
computation.
detðMÞ ¼ �1 � �2 � �3, and detðM}Þ ¼ �}1 � �

}
2 . The

rank-increase measure of (10) can be rewritten as

�r ¼ �2 � �3

�}1 � �
}
2

¼ detðMÞ
detðM}Þ � �1

:

LetkMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Mði; jÞ2

q
betheFrobeniusnormof the

matrix M. Then, the following relation holds between
kMkF and �1 [11]:

�1 � kMkF �
ffiffiffi
3
p

�1:

The scalar
ffiffiffi
3
p
ð	 1:7Þ is related to the dimension

of Mð3� 3Þ. The rank-increase measure �r can
therefore be approximated by

�r̂ ¼ detðMÞ
detðM}Þ � kMkF

: ð13Þ

�r̂ requires no eigenvalue computation, is easy to
compute from M, and provides the following
bounds on the rank-increase measure �r of (10):
�r̂ � �r �

ffiffiffi
3
p

�r̂. Although less precise than �r, �r̂
provides sufficient separation between “rank-in-
creases” and “no rank-increases.” We use this
approximated measure to speedup our space-time
correlation process.

3. If we were to compute the entire correlation volume,4

then the overall runtime of a 144� 180� 200 video
sequence and a 50� 25� 20 query would be
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Fig. 3. Walking on the beach. (a) T ¼ a short walk clip. (b) V ¼ the longer beach video against which T was }correlated:} (c) Peaks of space-time

correlation C superimposed on V (see text). For video sequences, see [30].

Fig. 4. Ballet example. (a) T ¼ a single turn of the man-dancer. (b) V ¼ the ballet video against which T was }correlated:} (c) Peaks of space-time

correlation C superimposed on V (see text). For video sequences, see [30].

Fig. 5. Swim-relay match. (a) T ¼ a single dive into the pool. (b) V ¼ the swim-relay video against which T was }correlated:} (c) Peaks of the

space-time correlation C superimposed on V (see text). For video sequences, see [30].

4. Since the correlation volume is smooth, it is enough to compute it for
every other pixel in all frames and then interpolate.



30 minutes on a Pentium 4 3.0 GHz processor using
our nonoptimized implementation (mostly in Ma-
tlab). However, since we are searching only for
correlation peaks, it is not necessary to estimate the
entire correlation volume, and the process can be
significantly sped up using a coarse-to-fine search.

This is done by constructing space-time Gaussian
pyramids [6] from the original sequence V and the
template T . Namely, each coarser pyramid level is
generated by blurring and subsampling the previous
pyramid level both in time and in space. A full search
is performed in the coarsest resolution level to find
several peaks of behavior correlation above some
predefined threshold. The top K peaks are propa-
gated to the next higher space-time resolution level,
and a new search is performed only in a small space-
time region around each peak to refine the loca-
tions.5 This search process proceeds similarly to the
next levels until the final search in the finest
resolution level yields the exact locations of the
highest correlation peaks in the original sequence.

Another speedup relates to the number of patches in the
template that are computed and contribute to the final
correlation score (12). Instead of taking overlapping patches
around all pixels in the template T (and their matching
patches from the video segmentS), it is possible to take only a
subset of patches that represent the template well enough.
This subset is chosen in a sparse space-time grid of locations
in the template.

Complexity reduction. Let N be the size (in pixels) of the
video V ,M is the size of the template T ,R is the reduction in
the size of the coarsest resolution level in the space-time
pyramid with L levels relative to the original level, r is the
reduction of pixels in the sparse grid in the template,K is the
maximal number of peaks propagated from one pyramid
level to the next, and W is the size of the neighborhood. The
complexity of exhaustively computing the full “correlation
volume” using all template patches in the finest level is
OðNMÞ. In contrast, the complexity of the coarse-to-fine
search described above isOðNM=ðR2r2Þ þ LKWÞ. We found
that the following parameters gave adequate results: R ¼ 8,
r ¼ 4, L ¼ 2, W ¼ 103, and K ¼ 10. For finding 10 highest
peaks in the above example (144� 180� 200 video and 50�
25� 20 query), we got a reduction of more than two orders of
magnitude in the computational complexity, thus reducing the
search time6 to 10 seconds, which is close to real time (equivalent
to 20 frames/sec), using our nonoptimized implementation.
In general, coarse-to-fine search algorithms have some
probability of misdetection. However, in our experiments,
we found this probability to be very low.

In order to reduce effects of temporal aliasing due to fast
motion, the video sequences were first spatially blurred.
Spatial Gaussian blurring of size ½5� 5� with � ¼ 0:8 was
applied to the two input sequences (V and T) prior to
processing. The size of the ST-patches P (4) was ½7� 7� 3�,
using weighted sums of gradients with Gaussian weights
(�space ¼ 1:5 and �time ¼ 0:8) instead of regular sums.

7 RESULTS

One possible application of our space-time correlation is to
detect “behaviors of interest” in a video database. A
behavior of interest can be defined via one (or more)
example video clip (a “video query”). Such video queries
serve as space-time correlation templates, which are
matched against a different (typically longer and larger)
video sequence. Our approach seeks for video locations with
similar underlying motion fields (both of the figure and of
the background) without segmentation or motion estima-
tion. Please view the video clips (databases and queries) of
the following experiments at www.wisdom.weizmann.
ac.il/~vision/BehaviorCorrelation.html [30].

Fig. 3 shows the results of applying our method to detect
all instances of walking people in a beach video. The space-
time template T was a very short walk clip (14 frames of
60� 70 pixels) of a different man recorded elsewhere. Fig 3a
shows a few sampled frames from T . Fig 3b shows a few
sampled frames from the long beach video V (460 frames of
180� 360 pixels). The template T was “correlated” twice
with V—once as is, and once its mirror reflection, to allow
detections of walks in both directions. Fig. 3c shows the
peaks of the resulting space-time correlation surface
(volume) Cðx; y; tÞ superimposed on V . Red denotes highest
correlation values; blue denotes low correlation values.
Different walking people with different clothes and
different backgrounds were detected. Note that no back-
ground-foreground segmentation was required. The behavior-
al-consistency between the template and the underlying
video segment is invariant to the differences in spatial
appearance of the foreground moving objects and of their
backgrounds. It is sensitive only to the underlying motions.

Fig. 4 shows the analysis of a ballet footage downloaded
from the Web (“Birmingham Royal Ballet”). The space-time
template T contains a single turn of a man dancer (13 frame
of 90� 110 pixels). Fig. 4a shows a few sampled frames
from T . Fig. 4b shows a few frames from the longer ballet
clip V (284 frames of 144� 192 pixels), against which T was
“correlated.” Peaks of the space-time correlation volume C
are shown superimposed on V (Fig. 4c). Most of the turns of
the two dancers (a man and a woman) were detected,
despite the variability in spatial scale relative to the
template (up to 20 percent, see more details about
robustness to variations in Section 8). Note that this
example contains very fast moving parts (frame to frame).

Fig. 5 shows the detecting dives into a pool during a
swimming relay match. This video was downloaded from the
Web site of the 2004 Olympic Games and was severely MPEG
compressed. The video query T is a short clip (70� 140 pixels
�16 frames) showing one dive (shown slightly enlarged in
Fig 5a for visibility). It was correlated against the one-minute
long video V (757 frames of 240� 360 pixels, Fig 5b). Despite
the numerous simultaneous activities (a variety of swim
styles, flips under the water, and splashes of water) and
despite the severe noise, the space-time correlation was able
to separate most of the dives from other activities (Fig 5c). One
dive is missed due to partial occlusion by the Olympic logo at
the bottom right of the frame. There is also one false detection,
due to a similar motion pattern occurring in the water. It is
unlikely to assume that optical flow estimation would
produce anything meaningful on such a noisy sequence,
with so much background clutter, splashing water, and so
forth. Also, it is unlikely that any segmentation method
would be able to separate foreground and background objects
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5. This refinement search can also be done in a cascade of grids
fashion—by searching first in a sparse grid of space-time locations (for
example, every three pixels and every two frames) and then refine the
search on a denser grid of locations around the highest peaks.

6. The preprocessing time of the large video sequence took additional
15 seconds, but it is computed only once in case of multiple queries and can
be done offline in some applications.



here. Nevertheless, the space-time correlation method was
able to produce reasonable results.

Fig. 6 shows the detection of five different activities that
occur simultaneously: “walk,” “wave,” “clap,” “jump,” and
“fountain” (with flowing water). Five small video queries
were provided ðT1; . . . ; T5), one for each activity (Fig 6a).
These were performed by different people and backgrounds
than in the longer video V . A short subclip from the
rightmost fountain was used as the fountain query T5.
Fig. 6c shows the peaks detected in each of the five
correlation volumes C1; . . . ; C5. Space-time ellipses are
displayed around each peak, with its corresponding activity
color. All activities were correctly detected, including the
flowing water in all three fountains.

In all the above examples, a threshold was applied
highlighting the peaks. The threshold was chosen to be
0.7-0.8 of the highest peak value detected. In these various
examples, it is evident that the correlation volume behaves
smoothly around the peaks. The size of the basin of attraction
occupied about half the size of the human figure, and the peak
in each basin was usually unique. These properties enable us
to use efficient optimization tools when searching for the
maxima (as was suggested at the end of Section 6).

8 ROBUSTNESS TO LOCAL AND GLOBAL

DEFORMATIONS

Although not invariant to changes in scale and rotation, our
method is quite robust to some degree of space-time
deformations between the video segments. Deformations
can be of two types: Global parametric variations, which
include spatial scaling, temporal scaling (changes in the
speed of an action), slight rotations, and affine shears (due
to different viewpoints). Local nonparametric variations are
due to the different shapes of people and deviations in their
performances of the same actions.

In order to evaluate the robustness of our approach to
such variations, we performed the following empirical tests.
We took a short clip of a walking person and correlated it
against other clips of the same person walking but with
different clothes and background, as well as to other
walking people. In addition, the “Walk” clip was matched
also to clips of other actions of the same person and other
people (most of the clips were taken from the database in
[3]). These clips included actions such as “Run,” “Jump
aside,” “Skip,” “Jump ahead” (all in the same direction of
the “walk”), and “Nonhorizontal” actions including “Jump-
ing jack” and “Waving” actions. The last video clip
contained “Sea waves” that were moving horizontally at

the speed of the reference “Walk” action. After computing
the measures for the original clips with respect to the
reference “Walk” clip, a series of simple parametric
deformations were applied to each of these clips, each time
evaluating their measure with respect to the reference clip.
These transformations included: shifts in x, y, and t, spatial
scale, temporal scale, and rotations. After each global
scaling or rotation transformation, an exhaustive search
was performed to find the best matching score between the
reference “Walk” sequence and the transformed sequence.

The final scores for all of these tests are summarized in the
graphs in Fig. 7. These graphs show that the “Walk” actions
(marked in blue) can be easily distinguished from the other
actions. The results show that our method is robust to a range
of deformations of the action clip (of size7 45� 80� 40): a
vertical shift of up to 10 percent of the template height
(8 pixels), a horizontal shift of up to 11 percent of template
width (5 pixels), 10 percent shift in time (4 frames), 10 percent
spatial scale, 10 percent temporal scale, and a rotation of at
least 10 degrees. These values are determined for the worst
case, that is, for the most similar action to the deformed
“Walk” action.

There are several reasons for this robustness: First, this
method relies on the correspondence of the average motions
extracted from small regions (ST-patches) and not on pixel-wise
correspondence between the structure within the patches (as
assumed, for example, in [25]). The second reason is that
natural motion fields are smooth and contain lower frequen-
cies than the intensity information itself. The third reason is
that we do not compare the true flow fields but measure a
continuous measure for the possible motion-consistencies.
Degenerate patches (for example, edges) can match a variety
of space-time patterns with a common motion component so
their contribution to the global template measure may not
change significantly by small local shifts. These reasons allow
for matching templates with substantial differences between
them without the need to accurately align them beforehand
(as was suggested in [25]).

The robustness of the method to local and global variations
can be further improved by several simple modifications to
the current method. For example, instead of checking motion
consistency between two corresponding patches from the
two videos, a patch from one sequence can be matched to
multiple patches within a small neighborhood in the second
sequence, seeking for the best local match among them.
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7. The action clip was generated by selecting a 45� 80 window
surrounding the walking person for a duration of 40 frames. This generates
a diagonal parallelogram in space time, that is contained in a bounding
space-time box of 130� 80� 40.

Fig. 6. Detecting multiple activities. (a) T1; . . .T5 ¼ five different short video templates. (b) V ¼ the video against which T was }correlated:}

(c) Ellipses with colors corresponding to the five activities are displayed around the peaks detected in all five correlation surfaces C1; . . . ; C5 (see

text). For video sequences, see [30].



9 CONCLUSION

By examining the intensity variations in video patches, we

can implicitly characterize the space of their possible motions.

This is done without having to explicitly commit to a

particular choice of flow vectors (which are likely to be

erroneous for complex dynamic scenes). This allows us to

identify whether two different space-time intensity patterns

in two different video segments could have been induced by

similar underlying motion fields. We use this to compare
(“correlate”) small video templates against large video

sequences in order to detect all locations with similar

dynamic behaviors, whereas being invariant to appearance,

and without prior foreground/background segmentation. To

our best knowledge, this is the first time multiple different

behaviors/actions occurring simultaneously in the field of

view are detected and in very complex dynamic scenes.

Currently, our method is not invariant to large geometric

deformations of the video template. However, it is not

sensitive to small changes in scale and orientation and can

be extended to handle large changes in scale by employing a

multiscale framework (in space and in time). This is part of

our future work.

APPENDIX A

PROOF OF THE RANK-INCREASE CONSTRAINT

In Section 4, we stated an iff consistency constraint between

two ST-patches P1 and P2. We would like to prove that there

exists a common motion vector u ¼ ½u v w�T to P1 and P2 that

satisfies (6) iff

�r ¼ rankðM12Þ � rankðM}
12Þ ¼ 0: ð14Þ

Note that not every vector ½u v w�T corresponds to a valid

motion vector: only vectors for which w 6¼ 0. The vector

½u v 0�T corresponds to an infinite motion, whereas w 6¼ 0 to a

finite motion, and ~u
~v

� �
¼ u=w

v=w

h i
is the common physical flow

field vector.

Therefore, for consistent motions, we can always write

M12

~u
~v
1

2
4
3
5 ¼ 0: ð15Þ

We will next show how this leads to the consistency

constraint in (14), and vice versa (both directions).

A.1 Consistent Motions (15) ))�rr ¼ 0

Let C1, C2, and C3 denote the columns of M12, then we can

rewrite (15) as

M12

~u
~v
1

2
4
3
5 ¼

"
C1

����� C2

�����C3

#
~u
~v
1

2
4
3
5 ¼ 0:

Thus, the third column C3 is a linear combination of the

first two columns.
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Fig. 7. Robustness to small global transformations. These graphs show the behavioral correlation measure of a reference video clip of a “Walk”
action (lower left blue-framed sequence) correlated with other clips of different actions that were deformed using various parametric transformations.
The other clips contain additional “Walk” actions of different people, clothes, backgrounds (all prealigned to the reference one), as well as other
actions: “Run,” “Jump aside,” “Skip,” “Jump ahead,” and “Nonhorizontal” actions including “jumping jack” and “waving” actions. The last video clip
contains “Sea waves” that are moving horizontally at the speed of the reference action. Each group of actions was color coded with the same color
(see sample sequences surrounding the graphs). The x-axis of the bottom translation graphs is measured as the percentage from the size of the
reference template that was 130� 80� 40 in our example. The maximal possible correlation value is 1 (the autocorrelation of any sequence with
itself). Note that some of the other actions (mainly, the “Run” and “Skip”) obtain similar correlation values to the “Walk” actions, when they are scaled
in time, meaning that, in many cases, a clip of a walking person cannot be distinguished from a slowed down clip of a running or a skipping person.



Due to the symmetry of M12

M}
12

m31

m32

m31 m32 m33

2
4

3
5 u0

v0

1

2
4

3
5 ¼ 0:

The third row ½m31 m32 m33� (which is also equal to the
third column CT

3 ) is therefore a linear combination of the
first two rows of M12 (which are equal to CT

1 and CT
2 ). In

particular, ½m31 m32� is spanned by the rows of M}
12.

Therefore,

rankðM12Þ ¼
dimðspanfC1;C2;C3gÞ ¼ dimðspanfC1;C2gÞ

¼ rank M}
12

m31 m32

" # !
¼ rank M}

12

	 

:

tu

A.2 �rr ¼ 0)) Consistent Motions (15)

Reversing the above reasoning—if rankðM12Þ ¼ rankðM}
12Þ,

then the third column in M12 is spanned by the first two
columns. Namely,9a, b such that C3 ¼ aC1 þ bC2. Therefore,

M12

�a
�b
1

2
4

3
5 ¼ 0;

that is, (15) is satisfied. tu

APPENDIX B

RANK-INCREASE PATCHES—A GENERALIZATION

OF “SPACE-TIME CORNERS”

In this appendix, we show the relation between the rank-
increase measure and “space-time corners” [15], [16]. Fig. 8
shows the continuous rank-increase measure (�r in (13))
computed for individual ST-patches of a sequence of a walking
person. The computed measure is overlayed on top of the
sequence. For ST-patches with a single motion (the upper
body parts), the rank-increase values are very low. The high
values are obtained in ST-patches containing more than one
motion, for example, where hands and legs motion is
changing its direction, in regions of motion discontinuities
(hands intersect the body, legs cross) or in ST-patches with
motion aliasing where the speed of limbs is large, relative to
the camera frame rate. These patches are characterized by
rankðM}Þ ¼ rankðMÞ � 1 (see (7)). “Space-time corners” are
spatial corners whose direction of motion changes. Therefore,

for “space-time corners,” rankðM}Þ ¼ 2 and rankðMÞ ¼ 3.
Thus, ST-patches with high individual rank-increase are a
generalization of the “space-time corners” as they include
both spatial corner-like ST-patches with rankðM}Þ ¼ 2 and
also edge-like ST-patches with rankðM}Þ ¼ 1, both with
more than one linear motion.

The “space-time corners” were shown to be informative
for action recognition as they appear at the same space-time
locations in similar actions. ST-patches with high individual
rank-increase can thus serve as denser features for action
recognition in similar conditions to the ones in [16]. However,
although denser, ST-patches with high rank-increase still
suffer from the same disadvantages. First, they lack informa-
tion about the direction of the motion as “space-time corners”
do. Only by looking at the joint matrix M12 constructed from
two different ST-patches can we capture the consistency
between the motions in the two patches. Second, the rank-
increase regions and the “space-time corners” depend on the
background. When the background is textured, many
ST-patches of high rank-increase will emerge on the contour
of the moving body due to foreground-background motion
discontinuities (this was exploited in [10] for motion
segmentation). Third, these ST-patches depend on the speed
of motion relative to the frame rate. Above some velocity
value starts motion aliasing that raises the rank-increase.
Fourth, these ST-patches are still too sparse. Moreover, there
are actions with very few or no ST-patches with rank-increase
(for example, an action of a person moving circularly his arm).
See [14] for more details about these cases.

In this work, we do not use the rank-increase of
individual patches for generating features. Our method
employs patches with low rank-increase measure, and we
measure consistency of pairs of patches by examining the
rank-increase measure of their joint matrix.
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