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Abstract

In this paper we present an approach for separating two
transparent layers of complex non-rigid scene dynamics.
The dynamics in one of the layers is assumed to be repeti-
tive, while the other can have any arbitrary dynamics. Such
repetitive dynamics includes, among other, human actions
in video (e.g., a walking person), or a repetitive musical
tune in audio signals. We use a global-to-local space-time
alignment approach to detect and align the repetitive be-
havior. Once aligned, a median operator applied to space-
time derivatives is used to recover the intrinsic repeating
behavior, and separate it from the other transparent layer.
We show results on synthetic and real video sequences. In
addition, we show the applicability of our approach to sep-
arating mixed audio signals (from a single source).

1. Introduction

Our urban environment is full of transparent surfaces
which induce images and videos with mixed layers. The
separation of transparent layers serves as a pre-processing
stage for many vision algorithms which face grave diffi-
culties in the presence of a superimposed layer, such as
recognition, segmentation, feature extraction, etc. Separat-
ing transparent layers from a single video sequence when
the two layers contain complex non-rigid motions is a very
difficult problem.

Previous approaches for layer separation in video as-
sume that dense correspondences can be pre-computed for
each pixel in each layer across the entire sequence [2, 4,
8, 9, 12]. These methods are therefore mostly restricted
to scenes with simple 2D parametric motions, which are
easy to compute under transparency and provide dense cor-
respondences.

Estimating frame-to-frame correspondences between
successive image frames in the case of complex non-rigid
motions is not a reliable process. This problem becomes
even worse when the non-rigid motion is superimposed by

yet another transparent layer with a different complex non-
rigid motion. Thus, existing approaches to layer separa-
tion cannot be applied to such video sequences, since they
rely on accurate recovery of the frame-to-frame correspon-
dences between successive frames (in both layers). The case
of one transparent layer having arbitrary non-rigid motion
was addressed by [7], yet to achieve this, the other layer
was assumed to be characterized by a 2D parametric trans-
formation. None of the existing methods can handletwo
dynamiclayers.

In this paper we propose an approach for separating
transparent layers where one of the layers includesrepet-
itive dynamics (which may be non-rigid and complex).
Repetitive behavior is very common in the natural world,
e.g., human and animal actions, repetitive tunes in audio,
etc. The other layer is unrestricted and may include arbi-
trary non-rigid dynamics. We demonstrate the applicability
of our approach, both in video and in audio.

The repetitiveness in one of the layers facilitates its de-
tection. All segments that include the repetitive behavior,
are very similar. By definition, these segments differ due
to the other superimposed transparent layer. But moreover,
they differ in the repetitive behavior as well, both globally
(on the space-time scale of the whole repetition), and lo-
cally (on the scale of small space-time behavioral details).
Consider for example a person walking. The person may
be walking with different speeds, or have different gait in
each repetition. Therefore a global-to-local approach is
used.Global space-time alignmentof the repetitive behav-
ior compensates for the differences resulting from differ-
ent camera distances, different zooms, and different speeds
of the intrinsic behavior in its different occurrences. Local
space-time fluctuations of the repetitive behavior, necessi-
tate an additionallocal space-time refinementstage after-
wards. This produces for each space-time position a set of
corresponding space-time points across all repetitions. Note
that such correspondences cannot be obtained using optical
flow estimators, due to the highly non-rigid complex mo-
tions in the sequence. Once the different occurrences of
the intrinsic behavior are brought into alignment, a median



is applied to the space-time derivatives to separate the two
non-rigid layers.

The rest of the paper is organized as follows. In Section 2
we give an overview of our approach. In Section 3 we de-
scribe the use of global space-time alignment for finding
repetitions and the global-to-local approach for finding sets
of corresponding points. In Sections 4 and 5 we describe
the recovery of the first and second layers, respectively, and
show results on video sequences. In Section 6 we show the
applicability of our approach to other domains by applying
it to audio signals.

2. Overview of Our Approach

We consider the general case of two superimposed trans-
parent space-time layers in a video or audio sequence,
where one layer has complex non-rigid deformations over
time pertaining to repetitive dynamic behavior (e.g., a walk-
ing in video, or a tune that repeats itself in audio). The sec-
ond layer can have any non-rigid deformations over time.
We take advantage of the repetitive nature of the dynamic
behavior of one of the layers in order to achieve layer sepa-
ration.

Natural non-rigid repetitive actions, such as a person
walking, or running, which cannot be modelled by simple
2D parametric transformations between consecutive video
frames, induce complex non-rigid motion fields. No opti-
cal flow estimator would be able to recover the frame-to-
frame correspondences between successive frames in such
complex sequences. Yet if we treat the entire space-time
volume of a video segment containing a single repetition of
the dynamic behavior, as a single unit, then a simple vol-
umetricspace-timeparametric transformation captures the
global spatio-temporal deformations between multiple oc-
currences of the same dynamic behavior in the video se-
quence.

This notion of repetition of space-time behavior char-
acteristics is key to our approach. First, we automatically
detect the temporal extent and the temporal distances be-
tween the different occurrences of the intrinsic repetitive
dynamic phenomenon in the video sequence (or in the audio
signal). Then we use a global space-time alignment proce-
dure applied to the video segments where the repetitive phe-
nomenon was detected. This accounts for global changes in
space and time between the various repetitions (such as dif-
ferent distance from the camera, differences in speed of the
performed action, etc.), and therefore brings the input video
segments containing the “intrinsic” repetitive behavior into
coarse alignment. An additional spatio-temporallocal re-
finementis then computed, to account for small local de-
formations in the way the repetitive behavior is manifested
locally in space-time (such as raising an arm to a different
height in different repetitions of the action).

Once perfect space-time alignment of the repetitive be-
havior has been obtained, we can proceed to extract and sep-
arate it from the other superimposed layer. This is done by
extending the intrinsic image-based approach of Weiss [11]
to space-time volume. A median is applied to the spatio-
temporal derivatives of all corresponding space-time points
of the “intrinsic dynamic behavior” recovered by the global-
to-local alignment procedure. This operation removes the
derivatives of the other arbitrary layer.

Lastly, we apply the “Layer Information Exchange” al-
gorithm of [7] between the original movie sequence and the
first recovered layer, thus removing the first layer from the
original movie and obtaining the second separated transpar-
ent layer.

3. Detecting Repetitive Behaviors

To detect and align multiple occurrences of the same
dynamic behavior in the video sequence we use global-to-
local space-time alignment.

3.1. Global Space-Time Alignment

For the global space-time alignment we use the approach
of Ukrainitz and Irani [10], which extends the image align-
ment method of Irani and Anandan [3] into space-time. This
approach is useful for locking onto the dominant space-
time parametric transformation (in our case – the repetitive
behavior), despite the presence of the other superimposed
transparent layer.

Formally, given a video sequenceS, and two arbitrary
space-time segmentsA and B in S, we seek the spatio-
temporal parametric transformation~p that maximizes a
global similarity measureM between these two segments
after bringing them into alignment according to~p. Fig. 1
graphically illustrates this step. The volumetric space-
time parametric transformation,~p, comprises of a2D affine
transformation in space(accounting for differences in zoom
and orientation between the different occurrences of the in-
trinsic dynamic behavior), and a1D affine transformation
in time (accounting for differences in speed of the intrinsic
behavior in the different occurrences). Therefore, the space-
time transformation~p comprises of 8 parameters, where the
first 6 parameters (p1, . . . , p6) capture the spatial 2D affine
transformation and the remaining 2 parameters (p7, p8) cap-
ture the temporal 1D affine transformation. The spatio-
temporal displacement vector~u(x, y, t; ~p) is therefore:

~u(x, y, t; ~p)=




u1(x, y, t; ~p)
u2(x, y, t; ~p)
u3(x, y, t; ~p)


=




p1x + p2y + p3

p4x + p5y + p6

p7t + p8


 (1)

To make the paper self-contained, we will briefly review the
approach of [10].



Figure 1:Global Space-Time Alignment
Movie segment B in the video sequence is space-time aligned with
movie segment A using a space-time volumetric parametric trans-
formation.

3.1.1 The Similarity Measure

Local normalized correlations are computed within small
space-time patches(e.g. 7 × 7 × 7). The global similar-
ity measureM is then computed as the sum of all those
local measures in the entire sequence segment. The re-
sulting global similarity measure is thus invariant to spa-
tially and temporally varying non-linear intensity transfor-
mations, which in our case may result from the superposi-
tion of transparent layers.

Given two corresponding space-time patches/windows,
wA and wB , one from each sequence segment, their lo-
cal Normalized Correlation (NC) can be estimated as
NC(wA, wB) = cov(wA,wB)√

var(wA)
√

var(wB)
, wherecov and var

stand for the covariance and variance of intensities. Squar-
ing the NC measure further accounts for correlation of in-
formation in cases of contrast reversal as well. The patch-
wise local similarity measure is therefore:

C(wA, wB) =
cov2(wA, wB)

var(wA)var(wB) + α
(2)

where the constantα is added to account for noise (we used
α = 10, but the algorithm is not particularly sensitive to the
choice ofα).

Theglobalsimilarity measureM between two sequence
segmentsA andB is computed as the sum of all thelo-
cal measuresC applied to small space-time patches around
each pixel in the sequence:

M(A,B) =
∑

x

∑
y

∑
t

C (wA(x, y, t), wB(x, y, t)) (3)

This results in a global measure which is invariant to highly
non-linear intensity transformations (which may vary spa-
tially and temporally within and across the sequence seg-
ments).

3.1.2 Alignment Algorithm

Our goal is to recover the global geometric space-time
transformation which maximizes the global measureM be-
tween the two sequence segmentsA andB. The local mea-
sureC and the global measureM can be expressed in terms
of the unknown parametric transformation~p:

M(~p) =
∑

(x,y,t)∈A

C (wA(x, y, t), wB(x + u1, y + u2, t + u3))

(4)
(recall that the spatio-temporal displacement vector~u de-
pends on~p – see Eq. (1)). The alignment problem becomes
finding the spatio-temporal transformation~p which maxi-
mizes the global similarity measureM(~p).

For the optimization task the Newton method is used.
M(~p) is locally approximated quadratically around the
current spatio-temporal transformation estimate~p0. The
spatio-temporal update step~δp = ~p − ~p0 is found by dif-
ferentiating the local quadratic approximation with respect
to it, and equating to zero. The resulting update step is:

~δp = − (HM (~p0))
−1 · ∇~pM(~p0) (5)

The HessianHM and gradient∇~pM are evaluated at each
space-time point using the gradient and Hessian ofC
(through Eq. (4)). For more details see [10].

This procedure is performed using a space-time Gaus-
sian pyramid for both sequence segmentsA andB. Several
maximization iterations are performed in each level until
convergence, and the result is used for initializing the next
pyramid level.

3.2. Detecting Repetition Length and Extent

The nature of the repetitive non-rigid dynamic behav-
ior is not known in advance, and we would like to auto-
matically detect the repetition length, the number of rep-
etitions, and their positions in the movie. We choose an
arbitrary segment of the movie (a space-time volume – typ-
ically a few tens of entire frames) to be our reference “test
meter” for repetitions. We compare it to a “sliding space-
time window” of the same size, starting at the beginning
of the movie. This is done by bringing into best possible
space-time alignment the reference segment and the current
transformed sliding window using the procedure in Section
3.1. We then compute their “degree of similarity” using the
global similarity measureM in Eq. (3). This process asso-
ciates with each point in time the degree of similarity be-
tween its surrounding space-time video segment to the ref-
erence segment (after accounting for global deformations in
space and in time between these two video segments).

Fig. 2.a displays the results of such measurements of a
real video sequence as a function of time (frame-number),
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Figure 2:Finding Dynamic Behavior Repetitions
The graphs display the correlation measure of a reference seg-
ment of a real video sequence, to a “sliding window” with the
same number of frames in the movie. The position of the “sliding
window” in the sequence is marked by its first frame (X-axis). (a)
The case where the reference segment is 20 frames long (shorter
than the average repetition length). (b) The case where the refer-
ence segment is 60 frames long (longer than the average repetition
length).

where the reference video segment was much shorter than
the average repetition length. Fig. 2.b displays the resulting
measurements for the same sequence, but this time with a
reference segment larger than the average repetition length.
As evident from Fig. 2.a and Fig. 2.b, the repetition of the
non-rigid dynamic behavior is exhibited clearly. Moreover,
qualitatively and quantitatively there is no substantial differ-
ence in using different reference segment lengths, making
this a robust method for detection of repetitive phenomena.

The actual repetition length and the number of repeti-
tions can be easily extracted from the measurement graph.
Each repetition starting and ending point in the video se-
quence can be found automatically (e.g., by identifying
sharp rises in the graph).

Note that trying to detect these repetitions with a single
image frame (e.g., by trying to correlate it to all other frames
in the sequence after best image-to-image alignment) fails
for two reasons: (i) Different occurrences of the intrinsic ac-
tion have temporal sub-frame misalignments between them
(e.g., due to differences in speed), which means that their
individual frames do not capture exactly the same body
poses (namely, they sample the action at different time in-
stances). Such temporal sub-frame misalignments are re-
covered and compensated for by the global sequence-to-
sequences alignment process, but are not handled by image-
to-image alignment. (ii) An entire space-time volume con-
tains significantly more information than a single image,
thus allowing to lock onto the dominant intrinsic action,

Figure 3:Local Space-Time Alignment Refinement

After global parametric alignment of the video segments A and
B, there are residual (non-parametric) misalignments. For each
point(x1, y1, t1) in A, the local refinement step seeks a better local
match(x2, y2, t2) in B, within a small space-time neighborhood
around the corresponding point induced by the global alignment.

whereas the spatial information alone in a single snapshot
in time (in a single frame) is not salient enough.

3.3. Local Space-Time Refinement

Real non-rigid behavior is never perfectly repetitive. A
person for example, does not repeat the phases of walking
or running exactly in the same fashion . On top of the global
variations (e.g., changing speed, position, or orientation)
which are already accounted for by the global sequence-
to-sequence alignment, there are also local deformations in
the dynamic behavior (e.g., small changes in the relative
positioning of body parts in the same motion phase). This
results inlocal residual misalignmentsboth in space and in
time. Therefore, a local refinement procedure for the align-
ment of the space-time features in necessary.

For each space-time point we seek a better local match
within the other segments aligned to it. This is done by cor-
relating a small space-time patch around the point (typically
7x7x7), with nearby patches in theother globally aligned
segments (typically up to spatio-temporal displacements of
±4 pixels spatially and±2 frames temporarily). This is
done using the correlation measureC of Eq. (2).

Fig. 3 graphically displays the local space-time align-
ment step of a small space-time patch centered at (x1, y1, t1)
in one video segment, to its best correlation match in a small
neighborhood in another video segment after global space-
time alignment.

Fig. 4.a shows a few frames of a real video sequence
of two transparent layers. The layer containing the repeti-
tive dynamics comprises of a jumping man filmed through
a transparent swivelling door, while the other arbitrary layer
is the background reflected in the door’s glass window (peo-



ple playing basketball). Fig. 4.b, shows the corresponding
frames for each image in Fig. 4.a in some other movie seg-
ments, detected via global alignment. In Fig. 4.c we over-
layed the images from Fig. 4.a and Fig. 4.b so that the resid-
ual misalignment of the man’s body after the global align-
ment becomes visually evident. In Fig. 4.d we overlayed the
images from Fig. 4.a with the corresponding images from
Fig. 4.b after local refinement (seeking best local space-time
correspondence for each point in the images in Fig. 4.a, in a
small space-timeneighborhoodof the points in the images
in Fig. 4.b), so that the full alignment of the man’s body
after the local refinement becomes visually evident.

4. Extracting the First Layer

The separation of the two space-time transparent layers
is performed in the domain of the spatio-temporal deriva-
tives (Sx, Sy, St), whereS is the input video sequence.
To isolate the non-rigid intrinsic behavior and separate it
from the other transparent layer we apply the median op-
erator to the spatio-temporal derivatives of each space-time
point (x, y, t) and its multiple correspondences, after hav-
ing brought into global and local alignment multiple occur-
rences of the intrinsic dynamic behavior.

The median, in effect, removes the derivatives of the
transient dynamics, i.e., the non-rigid motion of the other
layer, since these arenot aligned (see [11, 7]). The only
remaining non-zero derivatives are of the repetitive dy-
namic intrinsic behavior. Integrating the resulting deriva-
tives yields the gray level sequence of the intrinsic behavior
repeated for all its occurrences. At each time a different be-
havior occurrence serves as a reference coordinate system,
with its global and local variations, thus creating the full se-
quence of the first transparent layer. Such an example can
be found in Fig. 5.b.

5. Extracting the Second Layer

To extract the other non-rigidarbitrary transparent layer,
we use the algorithm proposed by [7] for “Layer Infor-
mation Exchange”. The first recovered layerL1, is sub-
tracted from the input sequenceS to obtain a second layer
L2 = S − αL1 (whereα is a scalar). We seekα which
minimizes the correlation betweenL1 andL2. Such anα
provides the best layer separation. Sinceα is unlikely to
be uniform in the entire sequence, we currently compute
a localα for each pixel according to its local surrounding
neighborhood. This local separation procedure is applied
to the derivatives of the sequence (separately on each di-
rectional derivative). The second layer is then recovered by
integration.

Results of such layer separation can be found in Fig. 5.
Fig. 5.a displays three frames from the same video sequence

Figure 4:Global-to-local Space-Time Alignment
The global-to-local alignment process is displayed. (a) Four
example frames from the movie. (b) Their corresponding
frames in some other repetitions. (c) Residual misalign-
ment of (a) and (b) after applyingglobal space-time align-
ment. (d) No residual misalignment after applyinglocal
space-time refinement. The video sequences can be viewed at
www.wisdom.weizmann.ac.il/∼vision/RepetitiveTransp.html

as in Fig. 4 (a jumping man filmed through a glass door and
other people reflected in the same door). Fig. 5.b displays
the first extracted layer, and Fig. 5.c displays the second
extracted layer.

Another example is displayed in Fig. 6. In this case we
manually mixed two video sequences. We took a video of a
walking man on a uniform background and superimposed it
on another video of running water in a small garden creek



Figure 5:Layer Separation in Real Video Transparency
(a) Three frames from a real video of a jumping man seen
through a swivelling glass door, while other people playing bas-
ketball are reflected in the glass door. (b) The first recovered
layer – the jumping man. (c) The second recovered layer –
the basketball players. The video sequences can be viewed at
www.wisdom.weizmann.ac.il/∼vision/RepetitiveTransp.html

(a highly non-rigid dynamic scene). Fig. 6.a displays three
frames from the superimposed video. Fig. 6.b displays the
first recovered layer (the walking man), and Fig. 6.c dis-
plays the second recovered layer (the running water).

6. Separating Mixed Audio

Our approach is not restricted to video sequences, and
can be applied to repetitive behavior found in other do-
mains. We show its applicability for separating a repetitive
tune superimposed with some other audio signal. A seg-

Figure 6:Layer Separation in Video
(a) Three frames from the input video (which was composed
of two real videos superimposed: a man walking, and a wa-
terfall in a small creek). (b) The first recovered layer – the
walking man. (c) The second recovered layer – the water-
fall in the creek. The video sequences can be viewed at
www.wisdom.weizmann.ac.il/∼vision/RepetitiveTransp.html

ment of the masterpiece “Bolero” by Ravel was repeated a
number of times and mixed with a recording of a man talk-
ing. In another instance it was mixed with another song.
Similar methods as applied to video sequences are applied
here as well.

Fig. 7.a displays the time-frequency representation of
“Bolero” mixed with the talking man. It displays the dis-
creet time Fourier transform of the audio track, at small con-
secutive time intervals. The horizontal axis represents time,
and the vertical axis represents the frequencies present in
the signal in a small time window centered at that particu-
lar time instance. As the signal changes over time, differ-
ent frequencies are dominant. It is evident from Fig. 7.a
that the frequency content has a repeating pattern, which
can be detected and used for finding the repeating segments
of the audio track. Global alignment can be achieved us-
ing image-to-image alignment methods (e.g., [2, 4]) applied
to the time-frequency data (treating it as an image) with a
sliding window in time. Fig. 7.b displays the correlation
of a reference segment from the time-frequency domain in
Fig. 7.a, with a sliding window of the same size within the
domain. The peaks in Fig. 7.b match the position of repeti-
tions and their extent within Fig. 7.a (we also tried finding
those repetitions in the 1D raw audio signal, but this failed
to provide any meaningful information about the repetitions
as opposed to the above 2D image-based approach). The
layer separation of Sections 4 and 5 can then be used for
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Figure 7:Finding Repetitions in Mixed Audio
(a) This is a time-frequency domain spectrogram of a super-
position between the recording of a talking man and a repet-
itive tune from “Bolero” by Ravel. The four repetitive seg-
ments of the intrinsic phenomena are evident in the horizon-
tal bars representing energy in some specific frequency bands
over time. (b) Detected repetitions using image alignment ap-
proach by aligning a short segment (5 secs.) against a “slid-
ing window” in (a). The repetitions in the first layer are de-
tected via the sharp peaks. The audio files can be accessed at
www.wisdom.weizmann.ac.il/∼vision/RepetitiveTransp.html

separating the two signals.

Standard Independent Component Analysis (ICA) meth-
ods [1] cannot be used in this case since they require the
same number of inputs as the number of layers. Previous
methods for single source audio separation [5, 6] have as-
sumed that the time-frequency domain is either strictly di-
vided between the two sources [6] (i.e., the frequency bands
in small time-frequency windows belong to just one source
or the other, but not to both), or allowed weighted super-
position [5]. They rely on a training phase for learning the
signal time-frequency characteristics in order to separate the
signals. Here the separation is obtained from a single in-
put source without previous knowledge of the nature of the
source, and with no learning phase.

7. Summary

In this paper we present an approach for separating two
transparent layers of complex non-rigid scene dynamics.
The dynamics in one of the layers is assumed to be repeti-
tive, while the other can have any arbitrary dynamics. Such
repetitive dynamics includes, among other, human actions
in video (e.g., a walking person), or a repetitive musical tune
in audio signals. We show the applicability of our approach
to separating video sequences and audio signals (from a sin-
gle source).
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