Appendix (of the paper “Similarity by Composition”)

L. Proof of Claim1 in Section 2.3 of the paper

Claim 1. Upper and lower bounds on GES:
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Proof.

Lower Bound:
The lower bound is immediate:
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The last inequality is valid because the maximal element is always higher than the average one
(average weighted by P(S|H,.f)). Swapping log and max in the last expression we get
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For every non-overlapping regions Ry, ..., Ry:
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where RY is the region in S which contains ¢ (this is not necessarily the maximal region R, of ¢).

Note that there is only one such region because the regions in S are disjoint. From the definition of
PES(q|H:cy) as the maximal saving per point and R, as the region obtaining this saving we get:
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This applies for every segmentation (including the maximal segmentation). From the last three
equations we get the upper bound on GE'S. ]

II. Estimating the segmentation length logP(S|H,.s):

Computing the lower bound on GES requires estimation of logP(S|H,.s), which is also
—length(S|Hyeyf). In our implementation, we assume that the “description length” of the seg-
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mentation length(S) = > length(s;) + const, where s; is the shape of the region R; (including
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its position in (Q), and const is a constant overhead needed for specifying the number of regions in
a segmentation S. For example, in images we computed length(s;) as the length of the chain code
required to describe the perimeter of the region (plus the position in @)). In video it was the surface
area of the region. Alternatively, we can estimate length(s;,) = —log(P(s;|Hycy)) according to
any given prior on shapes. To bound const, we assume that the number of regions in a segmentation
is bounded by NV (e.g., 1000). Thus, const < logN.



