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Abstract
Nonrigid 3D structure-from-motion and 2D optical flow can
both be formulated as tensor factorization problems. The
two problems can be made equivalent through a noisy affine
transform, yielding a combined nonrigid structure-from-
intensities problem that we solve via structured matrix de-
compositions. Often the preconditions for this factorization
are violated by image noise and deficiencies of the data vis-
a-vis the sample complexity of the problem. Both issues are
remediated with careful use of rank constraints, norm con-
straints, and integration over uncertainty in the intensity val-
ues, yielding novel solutions for SVD under uncertainty, fac-
torization under uncertainty, nonrigid factorization, and sub-
space optical flow. The resulting integrated algorithm can
track and 3D-reconstruct nonrigid surfaces that have very lit-
tle texture, for example the smooth parts of the face. Work-
ing with low-resolution low-texture “found video,” these
methods produce good tracking and 3D reconstruction re-
sults where prior algorithms fail.

1. Introduction
The problem of acquiring 3D morphable models of non-
rigid objects has attracted intense interest in computer vi-
sion since the advent of deformable and eigen-models in the
1980s. Current solutions address special cases of the prob-
lem that are well-constrained by additional information. For
example, when depth estimates are available from multiple
cameras or laser range-finders; when the poses or articu-
lations are fixed or chosen from a maximally informative
set; when the surface is decorated with special textures or
markers to make inter-frame correspondences obvious; or
when structured light is used to reveal its contours. These
methods require various combinations of high-quality high-
resolution sources, calibrated cameras, special lighting, and
careful posing. A second class of solutions relaxes image
constraints but depends on having a precomputed class of
possible models [1] or motions (as used in [3] for tracking).

In this paper we consider a relatively unconstrained case:
Single-camera video in which the surface is freely moving
and articulating. There are no shape or motion priors. We
only require that the surface be at least sparsely textured,
and that lighting changes, if any, be slow relative to the
object’s physical motion. The texture can be partially de-
generate everywhere the image is sampled, as long as it is
not all degenerate in the same direction. We consider low-
quality sources that are difficult to constrain, for example,
pre-existing footage or home movies of young children. In
this paper we will work with faces and video but the methods
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Figure 1: Image formation: Morph bases (S) are summed
according to weights (c), rotated (R), and translated (t) to
give the image projection (P). To infer S, c,R, t from P
is it convenient to re-order these operations as in eqn. (1),
depicted here with matrix images:
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are general and apply to any flexible object observed in 2D

(image) or 3D (volumetric) sequences.
Our result is a factorization algorithm for 3D nonrigid

structure and motion from video that finds 2D correspon-
dences in the course of enforcing 3D geometric invariants.
Taking the Tomasi & Kanade [8] rigid-body factorization as
a starting point, we reconsider the uncertainty formulation
introduced by Irani & Anandan [6], the subspace formula-
tion for optical flow introduced by Irani [5], and the non-
rigid extension proposed by Bregler, Hertzmann, & Bier-
mann [3]. Noting their common theme—geometric invari-
ants expressed as rank constraints—we generalize and in-
tegrate the constraints from these three subproblems. Our
solutions are substantially different from those of [6, 5, 3],
reflecting our identification of new constraints, new solution
methods, and corrections to errors in the prior literature.

2. Notation
We use matrix tensor operators and highly recommend [7] as
an introduction and [4] for usage examples. a is a scalar, a
is a vector,A is a matrix; [⇒i Ai], [⇓i Ai], [ ⇓iAi] are hor-
izontal, vertical, and diagonal concatenations, respectively.
I is the identity matrix; 0 and 1 are the zero and one ma-
trices. Matrix dimensions are indicated in subscripts (e.g.,
Ar×c) or determined by conformance. A� denotes trans-
pose; vector-transpose A(i) transposes matrix A with each
vertical group of i elements treated as a unit; block-transpose
A(i,j) does the same treating each block of i× j elements as
a unit. ⊗ denotes Kronecker (tensor) product; � denotes
Hadamard (element-wise) product; ⊕ denotes tiled addi-
tion, e.g., A6×2 ⊕B2×2 = A6×2 + (13×1 ⊗B2×2). vecA
vectorizes A by stacking its columns and veciAr×c =
(vecA)(i) folds (vecA)rc×1 into a matrix having rc/i
columns of i elements each. A/B andB\A denote right and
left division;A† denotes Moore-Penrose pseudo-inverse.
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3. Setting
We begin with a simple model of image formation, depicted
in figure 1. Observed shape is a weighted sum of morph
bases, rotated in 3D, projected onto the image plane, and
translated in that plane. We write the projection in frame f
as Pf = (c�f ⊗Rf )S⊕ tf (1)
The rows of S contain the x, y, z ordinates of
the K morph bases for N points: S3K×N

.=
[s1x, s1y, s1z, s2x, s2y, s2z, ..., sKx, sKy, sKz]�. With-
out loss of generality, we assume that the row sums are
S13K×1 = 0. By convention, the first morph basis gives
a scalable mean shape and subsequent morphs deform
it. These are combined according to the vector cK×1 of
morph weights, which fixes both expression and scale. The
orthonormal matrix RD×3 effects a 3D rotation and 2D

projection (for D = 2), then tD×1 translates the projection
in the image plane. This is a weak perspective model, an
approximation to full perspective projection that works well
when the depth variation within the object is small relative
to the object’s distance from the camera—typically the case
for consumer camera videography.

For F � K frames we defineMf
.= c�f ⊗Rf ,CK×F

.=
[⇒f cf ], and TDF×1

.= [⇓f tf ], with projections

PDF×N
.= [⇓f Pf ] =MS⊕T, where (2)

MDF×3K
.= [⇓f Mf ] = [ ⇓fR̂f ](C�⊗ I3) (3)

= (C�⊗ 1D×3)� (1K×1 ⊗R).(4)

This is depicted in figure 2. Much of this paper will be de-
voted to the special structure of the motion matrixM.

Our first goal is to infer S,R,C, and T from the inter-
frame correspondences in P. Often these correspondences
are unavailable or very hard to compute; in §6 we will lever-
age our analysis into an algorithm that estimates all variables
including P directly from video.

Assuming for now that that all points are observed in all
frames, the translations T̂ can be estimated as the row-means
of P and then removed from P so that all rows in P 
 T̂
are zero-mean. Then P 
 T̂ can factor into pseudo-motion
matrix M̃ and pseudo-shape/morph basis matrix S̃. M̃ in
turn can decompose into pseudo-rotations and pseudo-morph
weights. There are infinitely many such factorizations and
we must solve for one that is consistent with the forward
model in eqn. (1). As with many multilinear phenomena in
image formation, the key to a successful factorization will
be the identification and exploitation of rank and norm con-
straints on substructures in these matrices.

3.1. Rigid-body factorization
In the K = 1 case of rigid-body motion, the rank theorem
of Tomasi & Kanade [8] asserts that a rank-3 thin singular
value decomposition (SVD) M̃S̃

SVD3←− P
T will factor mo-
tion and shape information from tracking data. The pseudo-
motion matrix M̃ of left singular vectors associated with the

=⊕×
T PM S

Figure 2: The forward model for multiple frames (eqn. (2)),
showing the structure of the motion matrix M (eqn. (3)).
Each block in M is a scaled rotation matrix; its rows have
equal norm and are orthogonal. Moreover, its first row is or-
thogonal to any second row taken from blocks to the left and
right. An SVD of P 
 T produces a pseudo-motion matrix
M̃ = MJ and pseudo-shape matrix S̃ = J−1S, where J is
an arbitrary unknown full-rank matrix. Successful factoriza-
tion thus depends on finding a correction matrix J that will
restore the appropriate structure to M̃ and S̃.

three largest singular values contains the 3D rotation/scale
information; the matching right singular vectors form the
pseudo-shape matrix S̃. Assuming that rigid shape statisti-
cally dominates the data in P, the remaining vectors contain
information about violations of the rigid-motion assumption,
e.g., nonrigidities and tracking noise.

3.2. Corrective transform
The SVD determines both sides up to an invertible 3D affine
transformation G3×3 such that MS = (M̃G−1)(GS̃) =
M̃S̃ = P; one must solve for a G−1 that restores orthog-
onal structure to M̃ in order to get proper rotations and
shape. Let the row vectors m�

fx
,m�

fy
∈ M be the x and

y components of frame f ’s projection. Then the orthogonal-
ity of m�

fx
= m̃�

fx
/G and m�

fy
= m̃�

fy
/G gives the con-

straint ∀m̃�
f
∈M̃ m̃�

fx
G−1G−�m̃fx

− m̃�
fy
G−1G−�m̃fy

=

m̃�
fx
G−1G−�m̃fy

= 0. This system of constraints is lin-
ear in the six unknowns of symmetric H = G−1G−�,
which can be obtained via standard least-squares methods
from a system of linear constraints (with the added constraint
m̃�

1x
G−1G−�m̃1x

= c > 0 to fix the scale of G). Be-
causeH is symmetric, the constraints on it can be expressed
very concisely: Define vechH to be the vector of the lower-
triangular elements of H, and vecsH .= vech(H + H� −
H� I). ThenH is the least-squares solution to the overcon-
strained system of linear equations ∀f :m̃�

fx
,m̃�

fy
∈M̃

(vecs(m̃fxm̃
�
fx
− m̃fym̃

�
fy

))� vechH = 0, (5)

(vecs(m̃fxm̃
�
fy

))� vechH = 0, (6)

(vecs(m̃1x
m̃�

1x
))� vechH = c, (7)

where eqns. (5) and (6) ensure that the x and y projections of
the rotation have equal norm and are orthogonal.
G−1 is then computed from H’s eigen-decomposition:

H = VΛV� ⇒ G−1 = V
√
Λ. This assumes that H

is positive definite, which is not always the case, leading to
nonpositive eigenvalues in Λ and a complex-valued or rank-
deficient G−1. In this case we suggest approximating G
from an SVD ofH, then turning to the fixpoint

G← G([⇓f M̃fG]\[⇓f (M̃fG)�†])1/2 (8)
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This solves for the transform that brings M̃fG closest to
(M̃fG)�†, with equality for proper rotations.

3.3. The nonrigid case
Bregler, Hertzmann & Biermann [3] recently proposed a di-
rect extension of the above algorithm to the nonrigid case:
For K morph bases one performs an SVD of P 
 T and
retains the top 3K singular vectors on each side to obtain

M̃DF×3K S̃3K×N
SVD3K←− P 
 T. The shape matrix S̃ of

right singular vectors contains K morph bases. Each set
of D rows in the motion matrix M̃ of left singular vectors
is rearranged as if it were an outer product of rotation co-
efficients and deformation weights, then factored as such
via a second round of rank-1 SVDs: ∀f (vec R̃f )C̃f

SVD1←−
vec3D M̃f . The rotations and shape/deformation ma-
trix are then affine corrected as in §3.2. This as-
sumes that the 1st SVD leaves the singular vectors consis-
tently signed and ordered by morph and dimension (e.g.,
S̃ = [s1y,−s1x, s1z, s2y,−s2x, s2z, ..., sKy,−sKx, sKz]�

where s2x is the x component of the second morph basis)
whereas the SVD not only reorders but actually mixes these
channels with an unknown affine transform J−1

3K×3K—one
that maximizes concentration of variance in the top singu-
lar values. The singular vectors are also randomly signed.
Fortuitously, in most human faces the first four channels of
greatest variation are head height, width, depth, and vertical
jaw motion (s1y, s1x, s1z, s2y, ...), so that shape and perhaps
the first morph will be plausible, but after that the ordering
of the channels is unpredictable, leading to mutual contami-
nation of the morph and rotation estimates.

A simple example shows how the BHB factorization
heuristic is vulnerable to less fortuitous datasets and SVDs:
Imagine a child’s toy with two beads that ride on horizontal
rails. The toy has 3D shape and two independent modes of
deformation. BHB factorization requires rank-9 data to de-
termine shape and two modes of deformation, but the track-
ing data is only rank-5 (with a mix of channels approximated
by the ordering s1x, s1y, s2x, s3x, s1z), which means that re-
gardless of the amount of data, BHB factorization can only
recover two morph bases (shape and a single deformation
that combines the motions of both beads in way that may
not be physically valid). The misordered singular vectors
also lead to incorrect rotation estimates, which contaminate
morph bases with torsions and, in the presence of noise, can
create additional spurious morph bases. This state of affairs
is illustrated in column two of figure 3.

3.4. The corrective transform problem
The crux of the problem is finding an optimal correction
J−1

3K×3K that transforms the result of the SVD into a prop-

erly structured motion matrix (M̂ ← M̃J−1). Recall from
figure 2 that each D × 3 block Mfk

∈ M is a scaled ro-
tation whose rows m�

fk,x
and m�

fk,y
effect the x and y im-

generating basis BHB this paper

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1
−0.5

0
0.5

1
1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: Reconstruction of a curved surface and two
“beads” that move independently on horizontal tracks. Dots
show average point locations; quivers show direction of mo-
tion for positive morph weights. COLUMN 1: The linear ba-
sis set used to generate test data: shape/scale; upper bead mo-
tion; lower bead motion. COLUMN 2: Shape and deforma-
tions recovered by BHB factorization [3] of 2D projections.
One bead is misplaced in depth; there is no independent mo-
tion of the beads (except that the upper bead is allowed a spu-
rious motion in depth); and all deformations have torsions
that compensate for incorrect rotation estimates. COLUMN

3: A correct shape/deformations basis recovered from the
same data by the method given below. ( Adding or subtract-
ing the deformations gives isolated motion of either bead.)

age projection of one morph basis; these rows have equal
norm and are orthogonal. Moreover, they are orthogonal to
m�

fj,y
and m�

fj,x
taken from any block to the left or right

(j �= k), because these blocks are all generated from the
same rotation. The exact set of necessary and sufficient
norm/orthogonality constraints that M̂ must satisfy are sum-
marized by the quadratic equality ∀M̂f∈M̂,

(vec
3
M̂�

f )�(vec
3
M̂�

f ) = 1
D ID⊗ ((vec

3D
M̂f )�(vec

3D
M̂f )). (9)

Since M̂ = M̃J−1, solution of eqn. (9) in the least-squares
sense is equivalent to minimizing a system of polynomials
that are quartic in the elements of J−1. In the rigid-body
case, eqn.(9) is strictly quartic in J−1 and can be approached
as a squared-squared-error problem via nested least-squares
procedures. This is the strategy of §3.2. In the nonrigid case
this strategy does not apply because eqn. (9) is both quar-
tic and quadratic in J−1; the first least-squares procedure in
§3.2—division—obliterates information about the quadratic
terms that is needed by the second—eigen-decomposition.
Direct solution is a very difficult problem so research has
centered on finding numerically well-behaved heuristics. For
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example, the BHB factorization sets J ← IK ⊗G, a block-
diagonal correction that assumes that the SVD correctly or-
ganizes all of the information about a morph basis in the ap-
propriate column-triple in M̃.

Numerical experiments with projections of 3D data whose
principal components are known indicate that J is dense, par-
ticularly above the diagonal, meaning that the SVD mixes
variation due to minor deformations into the shape and prin-
cipal deformations. In fact, it is quite difficult to construct
a dataset for which J has anything vaguely close to block-
diagonal structure—even with vast amounts of noiseless syn-
thetic data. Our experiments suggest that the scale of the de-
formations must drop off quadratically in order for the initial
SVD to properly group their x, y, z components. Even then,
it is unlikely that the components are consistently ordered
within all groups.

In appendix §B we give one of a family of solutions that
generalize the corrective transform (§3.2) to nonrigid motion.
However, all such solutions are plagued by rank-deficiency
problems because the number of unknowns grows quadrat-
ically while the rank of the constraints grows linearly: J−1

has 9K2 unique elements while there are 4K nonredundant
constraints1 per M̃f ∈ M̃. Moreover, in casual video, the
motions in most frames are highly redundant and contribute
few new constraints. This sample-complexity problem is a
property of image formation, consequently any correction al-
gorithm based purely on the expected structure of the motion
matrix will fail as the number of morph modes grows.

4. Flexible factorization
Our strategy is to bring in constraints from the shape/morph
matrix S: The deformations in Ŝ should be as small as pos-
sible relative to the mean shape, so that the observed dis-
placement of projected points away from the object-centric
origin are explained mostly by the object’s shape and resid-
ually by its deformations. Equivalently, whenever possi-
ble, point motions should be explained parsimoniously by
rigid transforms (rotations and scale changes) rather than
unparsimoniously by combinations of deformations. Oth-
erwise all motion could be explained as deformations. Let
Ŝ = S̃J be the corrected shape/morph matrix and define
Z .= I3 ⊗ diag[0,11×K−1]. We want to minimize the Frobe-
nius norm of ZŜ, the part of the shape/morph matrix that
contains deformations.

We now have two constraints—structure of the motion
matrix and parsimony of the deformations. The problem is
that the motion matrix gives constraints on J−1 via M̂ =
M̃J−1, while the shape/morph matrix gives constraints on J
via Ŝ = S̃J. To work around this algebraic inconvenience,
we rewrite our motion constraint as M̌J = M̃, where M̌ is
an initial estimate of the corrected motion matrix.

1One norm and one orthogonality constraint per block; two orthogonal-
ity constraints from from the first block to each block to its right.

To make our initial estimate M̌, one may use §B (or the
BHB heuristic) and construct a properly structured motion
matrix from the result. Both methods have weaknesses and
we have found a third procedure which appears to be more
robust for 2D data (for 3D data, §B eqn.(25) appears to be ro-
bust): First we flip signs of the left singular vectors in M̃ to
minimize the squared-error vis-a-vis the norm/orthogonality
constraints of eqn. (9). Sign flipping leads to better rotation
estimates and it can be done efficiently by caching interme-
diate results. Short-distance column-swaps can be evaluated
in the same manner. We then affine-correct each column-
triple in M̃ as in §3.2 and 3D-rotate each column-triple to
a common coordinate frame. We then stack all column-
triples in M̃ into M̃(2F,3), compute a corrective transform
G−1 as per §3.2, and apply it to all column-triples of M̃.
For each transform to M̃ a compensatory inverse transform
is applied to S̃. We then factor each M̃f ∈ M̃ into rotation
and morph weights using an orthonormal decomposition2 [2]
that directly factors a matrix into a rotation and a vector. We
then construct a properly structured motion matrix M̌, plug-
ging the initial estimates of R and C into eqn. (3). Unlike
the BHB procedure, each column-triple has a unique cor-
rection and we have orthogonalized the pseudo-motion ma-
trix without information-lossy factorization into Rf and cf .
However, we have only estimated elements of J−1 in a band
around the diagonal; the remaining far off-diagonal elements
will be recovered in the next paragraph.

Combining the constraints from the motion and shape ma-
trices, we obtain the objective function

minJ tr((M̌J− M̃)�(M̌J− M̃)) + tr(S̃�J�ZJS̃). (10)

This seeks the operator J that brings out the expected struc-
ture in M̃ with the smallest possible deformations in S. This
error is minimized by the solution to the system of equations
M̃J = M̌ and ZJS̃ = 0. J is obtained from the sparse
division

Ĵ← vec
3K

([
I3K ⊗ M̌
S̃�⊗ Z

]∖ [
vec M̃
03KN×1

])
(11)

from which we calculate Ŝ← JS̃ and M̂← M̃/J or simply
keep R̂ and re-estimate Ĉ. Since eqn. (11) uses information
in both sides of the SVD, it is well constrained. In practice,
we find that the upper triangle and several subdiagonals of J
are usually dense, indicating that information about any one
deformation is indeed spread over several columns of M̃.

Eqn. (11) is a regularization that makes it possible to ex-
tract good factorizations from very small datasets, but in such
cases it may also suppressing deformations having very weak
evidence.

5. Using image gradients
The above algorithm can be recast entirely in terms of im-
age gradients, which are linearly related to motion in the

2Calculated as A←((vec3D M̃f )1)(D), VΛV� EIG←−(AA�)D×D ,
R̂←VΛ−1/2V�A, ĉ←((vec R̂)�M)�/D. See [2] for derivation.
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setting of optical flow: Consider a small region R in im-
age I0 that shifts to a new location in image I1. As-
suming it views a constantly illuminated Lambertian sur-
face, its optical flow fD×1 may be estimated (to first-
order) from spatial image gradient ∇p

.= dI0(p)/dp as
f̂ ← X\y where the spatial variation within frame I0 is
XD×D

.=
∫

R
∇p∇�

p dp and the temporal variation between
I0 and I1 is yD×1

.=
∫

R
(I0(p)− I1(p)) · ∇p dp. Good es-

timates of X are usually available but y is sensitive to noise
in the image intensities. Assuming this noise is gaussian dis-
tributed,X has special significance as the inverse covariance
matrix of the flow estimate f—its eigenvectors give the di-
rections in which f is most and least certain.

We will represent N local flows to each of F images si-
multaneously in the stacked matrices FDN×F ,YDN×F and
diagonally stacked XDN×DN . X describes spatial varia-
tion around landmarks in a reference frame; each column
Yf ∈ Y describes temporal variation between the refer-
ence frame I0 and target frame If . Without additional con-
straints,Y = XF. The covariance of the uncertainty in F is
ΣF

.= X−1; conversely ΣY
.= XΣFX� = X.

We will now show how all of the operations of the pre-
vious section can be applied to X and Yf . First we eigen-

decompose VΛV� EIG←− ΣY = X and use Q .= Λ−1/2V�

for certainty-warped operations on Y. Q warps a problem
having an elliptical (mahalanobis) error metric to one having
a spherical (Frobenius) norm, so that minimal mahalonobis-
error solutions can be obtained from least-squares proce-
dures such as matrix division and SVD3. We use this to esti-
mate pure translations:
T̂DF×1 ← vec[((QX(1n×1 ⊗ ID))†(QY))D×F ] (12)

This is a certainty-warped calculation of the mean dis-
placements. (The pseudoinverse is quickly computed us-
ing QR-decomposition and inversion of the resulting upper-
triangular D × D matrix.) We now remove translation and
incorporate position into the temporal intensity variations,
obtaining Y′ .= Y +X(P0 
P0 
 T̂) (13)
where P0 are the locations of reference texture patches in
the reference frame and P0 is their centroid. Y′ is now a
function of rotations and deformations only, satisfying

P̃ .= (X\Y′)(D) =MS. (14)
Appendix §A details how to factor the zero-meaned corre-
spondence estimates P̃ w.r.t. their uncertainty (covariance
ΣX\Y′ = ΣF = X−1) into M̃, S̃; appendix §A.1 shows
how to do the same factoring directly from intensity varia-
tionsY′ w.r.t. their uncertainty ΣY′ = XΣFX� = X. The
flexible factorization of §4 applies directly to the results.

6. Nonrigid 3D subspace flow
The fact that nonrigid motion is a low-rank multilinear pro-
cess has an unusually useful implication: It is possible to

3Recently popular “covariance-weighted” methods in computer vision
have a long history as directionally weighted least squares in matrix algebra.

simultaneously track a 3D nonrigid surface and acquire its
3D shape/morph basis simply by manipulating the rank of
the flow calculations. The rigid-body equivalent of this as-
sertion was first noted by Irani [5], whose rank-reduced flow
algorithm was based on the premise that flow and associ-
ated temporal image gradients from a reference frame to ad-
joining frames are bilinear products of two matrices whose
low rank can be deduced from the camera and scene type.
Our forward model similarly implies that rank-reduction of
P⊕P0
P0
T to rank 3K will force the motion data to be
consistent with the subspace of plausible nonrigid 3D mod-
els. Moreover, since temporal intensity gradients are locally
linearly in motion (Y = XF = X(P 
 P0)), uncertainty-
informed rank-reduction of the temporal intensity variation
matrix will similarly constrain the flow to lie in the same
subspace. The key is to manipulate Y′ (eqn. (13)) so that
the rank constraints implied by eqn. (14) are applicable. This
is accomplished by the intensity-based factorization in §A.1;
we also give a more efficient alternate procedure:

We begin by computing X from image patches within
a reference frame I0 and Y′ from comparisons of those
patches to similarly located patches in all other frames. Be-
causeMS has rank 3K, eqn. (14) tells us that Y′ has maxi-
mum rank 3DK. We eigen-decomposeVΛV� EIG←− ΣY′ =
X and useQ .= Λ−1/2V� in a certainty-warped thin SVD

UΣW� SVD3DK←− QY′. (15)

SinceQ�Q = X−1, the productQ�UΣW� � X−1Y′ ≡
(MS)(D) is the uncertainty-informed reduction of the inter-
frame correspondences to rank-3DK (modulo translations).
Rearranging the product to conform with MS licenses the
final rank-reduction to rank 3K:

U′Σ′W′� SVD3K←− (Q�UΣW�)(D). (16)

Finally, we restore translations to obtain point locations:

P̂N×DF = U′Σ′W′� ⊕T⊕P0. (17)

New temporal image gradientsYnew are sampled w.r.t. these
correspondences, and the process repeats until convergence.
This is simlar in spirit to Irani’s [5] rank-reduced flow but
differs in that (A) it handles nonrigid scenes and objects;
(B) it properly certainty-warps the intensity variations w.r.t.
their own uncertainty prior to SVD; and (C) the rank con-
straints are exact because they are inherited directly from the
forward model. The results of eqn. (16) are useful beyond
rank-reduction: We use pseudo-motions M̃ ← U′√Σ′

and
pseudo-shape S̃ ← √

Σ′W′� to “grow” the sequence by
predicting correspondences in new frames via linear extrap-
olation of the rows at either end of M̃.

The factorization constrains the search for correspon-
dences; the search provides information for the factorization.
As the process grows to cover the entire sequence, the space
of possible nonrigid 3D models becomes increasingly con-
strained. A subsequent paper will describe how this method
is made efficient for online tracking of video.
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7. Examples
61 contiguous frames of 29.97Hz interlaced 320×240 video
were captured from a rented VHS video tape4. The scene
rapidly cuts back and forth between a restaurant patron and
a waitress; we modeled the patron’s face, which averages 80
pixels in height. We chose roughly 90 points on his face
in a reference frame, and ran the 3D flow algorithm with
4 morph bases to find correspondences and 3D structure in
the remaining frames. Note that this is quite unconstrained
video—there are no markers on the face, some of the points
have almost no local texture, there are lighting changes, the
camera parameters are unknown, and there is motion in the
background. To see whether the algorithm could handle dis-
continuous video, we added four more sequences totalling 87
frames from adjoining camera cuts. The 3D flow algorithm
found correct correspondences across the camera cuts and
in all the remaining frames. In most frames the head faces
forward with very small rotations out of the fronto-parallel
plane; in the last sequence he looks down at a menu. Despite
the rather spare rotational depth cues, the recovered model,
shown in figure 7, has good 3D shape. We used the model to
render “3D video” in which the video plane is deformed ac-
cording to the recovered depths, then viewed from an angle.
Figure 4 shows 3 original frames and synthetic “side views.”

We also took 490 frames from an old home video of a
3-year-old telling a story. Due the the child’s smooth skin
and blonde coloring, there is very little texture to support
feature tracking and indeed, local feature trackers typically
failed within 50 frames. The 3D flow algorithm of §6 was
initialized with 100 points on the face found by an interest
operator in a single frame, and successfully found correspon-
dences across the entire sequence, concluding with a correc-
tive transform to give the 3D model used to generate the im-
ages in figure 6. Figure 5 shows the recovered motion param-
eters. The original Irani subspace flow algorithm [5] does not
successfully track this sequence, even when modified to use
the same rank constraints as our version. The image corre-
spondences found by our algorithm were fed into the original
BHB algorithm, which failed to separate jaw motions from
head rotations (jaw openings have a slight negative correla-
tion with the pitch of the head around the model centroid),
producing a model with an inverted jaw (figure 6, right).

8. Summary
We have presented a linear framework for recovering 3D

shape, motion, and articulations of nonrigid 3D objects from
video. Factoring morphable 3D models from 2D correspon-
dences is a quartic optimization problem, for which we pre-
sented (§B) one of a family of formally “correct” solutions
based on cascaded matrix decompositions that generalize the
classic rigid-body structure-from-motion factorization. All

4Thanks to Rahul Bhotika for this sequence.

algorithms based on the forward model’s geometric invari-
ants can be defeated by properties of singular value decom-
positions that are at odds with the desired factorization, so
we identified an additional “parsimony” constraint and used
it to develop a factorization that corrects the SVD’s unde-
sirable properties. We then gave an improved and general-
ized method for factorization of correspondences or intensity
variations with respect to uncertainty in the image sequence.
This led to a solution for morphable 3D models directly from
intensities in which interframe correspondences are found in
the course of computing the factorization.
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A. Factoring with uncertainty
Here we derive a method for factoring uncertain nonrigid
tracking data. The rigid case was first treated by Irani &
Anandan [6]. We correct some small errors and use a new
solution method to generalize to nonrigid motion and var-
ied uncertainty structures. To facilitate comparison with the
original paper we use I&A’s variable names and convert to
their matrix organization:

The D-interleave matrix E[D]
N×N is a permutation ma-

trix with Ei,�(i−1)/D	+N((i−1) mod D)+1 = 1. Postmulti-
plication with E rearranges a matrix with columns repre-
senting interleaved (e.g., x1y1z1x2y2z2x3y3z3 . . .) data to
a grouped form (e.g., x1x2x3y1y2y3z1z2z3 . . .); postmul-
tiplication with E� does the reverse. We use E to rear-
range the block-diagonal inverse covariance matrix X to
form a striped matrix X′ .= E�XE for the calculations
below (X = EX′E� recovers the block-diagonal form).
We eigen-decompose ΩΛΩ� EIG←− X′ and compute a right-
handed certainty warpQ′ .= Ω

√
Λ, that maps the direction-

ally weighted least-squares problem implied by X′ onto an
equivalent ordinary least-squares problem.

We split the tracking data into new matrices UF×N ,
VF×N , and (optional) WF×N containing horizontal, ver-
tical, and (optional) depth ordinates for N points in F
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frames. We desire a factorization into pseudo-shape ma-
trix S̃3K×N and pseudo-motion matrix M̃DF×3K satisfying
M̃S̃ = [U,V,W](F,N) = [U�,V�,W�]�, with any resid-
ual having minimal mahalanobis length w.r.t. the metric de-
fined by X. We rearrange the tracking data into a horizon-
tally stacked matrix [U,V,W] in which each row describes
a frame; this places all variables whose uncertainty is cor-
related in the same row so that the certainty warp can be
applied. The identity Crp×c = Arp×qB ⇐⇒ C(r,c) =
A(r,q)(Ip ⊗ B) allows us to rewrite the target factorization
as

[U,V,W]Q′ = M̃(F,3K)(ID⊗S̃)Q′. (18)

We begin with a thin singular value decomposi-

tion H̃F×3DK∆̃3DK×3DKG̃�
3DK×DN

SVD3DK←− [U,V,W]Q′

to suppress noise under a mahalanobis (elliptical) error met-
ric specified by X′. We must unwarp to remove the bias

introduced by Q′, using a smaller SVD: ˜̃H ˜̃∆ ˜̃G� SVD3DK←−
∆̃G̃�/Q′ to obtain H ← H̃ ˜̃H ˜̃∆1/2 and G ← ˜̃∆1/2 ˜̃G�.
(Without unwarping, effects of Q′ will persist into the fi-
nal result as shape distortions.) Now HG is the best (min-
imal mahalonobis-error w.r.t.X′) rank-3DK approximation
of [U,V,W]. For gaussian uncertainty this maximum likeli-
hood estimate also has maximum marginal likelihood, which
means that we have effectively integrated out the uncertainty
in the temporal intensity gradients sampled from the images.

We must make H and G consistent with the tar-
get factorization (eqn. (18)) by finding an invertible
transform D3DK×3DK such that M̃(F,3K) = HD−1 and
DG = (ID⊗S̃). Using the above identity, we note
that [U,V,W](F,N) � (HG)(F,N) = M̃S̃ =
(HD−1)(F,3K)S̃ = (ID⊗H)(D−1)(3DK,3K)S̃, which im-
plies that the desired transformD and shape S̃ can be recov-
ered directly via the rank-3K decomposition

D̂−1
(3DK,3K)ˆ̃S

SVD3K←− (ID⊗H)\(HG)(F,N) (19)

= (ID⊗ ˜̃∆
−1/2 ˜̃H

�
H̃�)(HG)(F,N)

In contrast to [6], this correctly unwarps5 the results of the
first SVD, handles dense uncertainty covariances, and gives a
fully constrained solution for D̂−1.

A.1. Factorization from intensity gradients
We can factor directly from intensity variations, which
eqn. (13) relates to shape and rotation changes through ma-
trix Y′ = X(MS)(D). Equivalently, to use the notation of
§A, Y′�E = [U,V,W]X′. Because the uncertainties in
Y′�E and [U,V,W] have covariances X′ and X′−1 re-
spectively, their certainty-warped forms are equivalent and
interchangeable. This means that the factorization of §A can

5If not unwarping, one can use the identity
(Id⊗Sr×n)Adr×q = Bdr×q ⇐⇒ S← (vecr B(r))/(vecn A(n)) to
extract a certainty-weighted estimate of shape from DG = (ID⊗S̃)Q′:

ˆ̃S← (vec
3K

(D̂G)(3K))/(vec
N

Q′(N)) (20)

For block-diagonal X this gives independent equations for each point.

be applied directly to Y′ simply by replacing the left hand
side of eqn. (18) withY′�EQ′Λ−1.

B. Nonrigid corrective transform
Here we generalize the correction of §3.2 to estimate a cor-
rection matrix J .= M\M̃. We break M into K column-
triples, each being a stack of rotation matrices scaled by
morph weights. Let m�

fk,x
,m�

fk,y
∈ Mf ∈ M be the rows

in column-triple k giving the x and y projections in frame
f . As in §3.2, these vectors should have equal norm and
be orthogonal. Morever, their projections onto vectors from
other column-triples should also have equal norm (because
all column-triples have the same rotations): ∀f,k,j

[mfk,x
m�

fj,x
=mfk,y

m�
fj,y

] and [mfk,x
m�

fj,y
= 0]. (21)

Since m̂�
fk,x

= m̃�
fx

(J−1)cols(3k−2:3k), for each value of k

and j this yields a separate linear system like §3.2 eqns. (5–
6) giving constraints on a matrix Hk,j (with vecs and vech
replaced with vec for k �= j). EachHk,j is the outer product
of two column-triples in (J−1), e.g.,

Hk,j = (J−1)cols(3k−2:3k)(J−1)�cols(3j−2:3j) and (22)

H .= [⇓K
k [⇒K

j Hk,j ]] = (J−1)(3K,3)(J−1)(3K,3)�(23)

is symmetric and should have rank 3. LetVΛV� EIG3←− H be
a truncated decomposition ofH using its three largest eigen-
values and their associated eigenvectors. Then the desired
correction is (J−1) = (V

√
Λ)(3K,3).

Although formally correct, this procedure is of limited use
because without additional constraints on the structure of J,
the constraints on allHk,j are highly redundant, with insuffi-
cient constraints to determine all elements inH. In practice
H1,1 contains enough constraints to support an estimate of
the first three columns of J−1, from which we can calcu-
late the first column-triple M̂ and with it a good estimate of
all rotations R̂ (provided thatH1,1 has exactly three strongly
dominant eigenvalues). If working with 3D correspondences,
such as motion capture or MRI tracking, the equality

M̃ =MJ = [ ⇓fR̂f ](C�⊗ I3)J = [ ⇓fR̂f ](J(3)C)(3)

(24)
leads to a direct solution for all remaining unknowns:

Ĵ(3)Ĉ
SVDk←− ([ ⇓fR̂f ]�M̃)(3). (25)

With 2D data, one can project M̃ into the space orthogonal
to J−1

cols(1:3) and solve for J−1
cols(4:6) that will produce a second

column-triple of M̂ that is consistent with the rotations. In
formulæ: We project M̃′ ← M̃(I − J−1

cols(1:3)(J
−1
cols(1:3))

†)

and solve the linear system ∀f M̃′
fx
J′R̂�

fx
−M̃′

fy
J′R̂�

fy
=

M̃′
fx
J′R̂�

fy
= M̃′

fy
J′R̂�

fx
= 0 for J′ using the identity

ABC = (C� ⊗ B) vecA to obtain J−1
cols(4:6) ← (I −

J−1
cols(1:3)(J

−1
cols(1:3))

†)J′. We then recursively solve for the
remaining column-triples. Again, the quality of the result
depends on the eigenvalue structure of H1,1. We are now
studying how this relates to the quantity and quality of data.
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Figure 6: Original frame and three synthetic frames rotating the face, closing the mouth, and pursing the lips. At right is the
base shape obtained by feeding the correspondences into the BHB factorization, which inverts the jaw. The graph shows that
the flexible factorization estimates morph bases that more effectively explain the data.

Figure 4: Cropped video frames and synthetic profile views
showing 3D recovered for the front half of the head. The
rendering is not anti-aliased, and inherits compression and
interlacing artifacts visible in the original low-res frames.
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Figure 5: Morph, rotation, scale, and translation parame-
ters recovered from the preschooler sequence. The high fre-
quency fluctuations record mouth motions while talking.
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Figure 7: Front and left profile views of a K = 4 model
recovered from 148 frames via 3D flow (see figure 4). First
deformation (thick blue arrows) raises eyebrows and tightens
mouth; second deformation (green arrows) opens and closes
mouth; third deformation (thin red arrows) widens and nar-
rows mouth. Dotted lines outline the mouth and eyebrows.
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