Introduction to Computer Vision

 Exercise 5 (last exercise)

 Exercise 5 (last exercise)}

Due Date: Sunday, Feb. 4, 2018
Submission: in pairs

General Instructions

How and what to submit?
Please submit your solutions electronically as .zip to regular link (both .mat and .pdf files)

Part 1 - One plane scene

In this part you will use the two images from directory 'part1' to compute the homography between the first image and the second one.

1.1- Sample corresponding points

- Identify corresponding points from both images in order to recover the homography matrix (how many do you need?)
- You may find the function ginput() helpful

1.2- Recover the Homography matrix

- From each pair of corresponding points construct 2 equations where the 8 parameters of H are unknown.
- Recall, when applying homography one should multiply by H and scale by z:

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\alpha \cdot H\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\frac{1}{h_{7} x+h_{8} y+h_{9}}\left(\begin{array}{l}
h_{1} x+h_{2} y+h_{3} \\
h_{4} x+h_{5} y+h_{6} \\
h_{7} x+h_{8} y+h_{9}
\end{array}\right)
\end{aligned}
$$

- Define: $\quad h_{9}=1$
- Formalize all the equations above as:

$$
A\left(\begin{array}{c}
h_{1} \\
\cdot \\
\cdot \\
\cdot \\
h_{8}
\end{array}\right)=b \text { where } A \text { is an } 8 \times 8 \text { matrix }
$$

- Note: The matrix calculated here is not the pure homography but the homography for the uncalibrated coordinates:

$$
H=K^{t} \bar{H} K^{-t}
$$

1.3- Apply the Homography

Use the recovered homography to warp the first image to the second.

- Implement the function I_trans = apply_homography (\mathbf{I}, H), where H is the recovered homography and I, I_trans are the source and target images respectively.
- To do that, create a grid of all pixels in target image using meshgrid() and then calculate for all coordinates their matching coordinates in source image.
- Most of the calculated source coordinates will not be integers, so you will need to use interp2() to interpolate the values in these locations.
- Please do not use some readymade MATLAB warping function, the goal here is that you implement this yourselves.
- Avoid using loops over the coordinates. Use matrix manipulations instead, note that interp2() can be activated on meshgrids.

1.4- For the report

- Specify the matrix P from section 1.2
- Repeat 1.1-1.3 while in 1.1 choose points that are close to each other. Attach
- the warped image with the points taken for the reconstruction marked on (use scatter()).
- The absolute differences image
- Repeat 1.1-1.3 while in 1.1 choose points that are far from each other. Attach
- the warped image with the points taken for the reconstruction marked on (use scatter()).
- The absolute differences image
- Align the magazine to be the output image
- In the first image choose the 4 corners of the magazine
- What should the corresponding coordinates be?
- Write in your report
- Which approach is better
- Explain why it is better

Part 2 - Two planes scene

In this part you will use the two images from directory 'part2' to compute the fundamental matrix
2.1 Compute 2 Homographies

Repeat sections 1.1-1.2 for each of the two planes (wall and table) in the image to calculate the homography from image 3 to image 4.

2.2 Plane + parallax

Apply both homographies (wall and table) calculated to image3. Your report should contain the following:

- One figure with the following 4 images (use subplot()) For each of the cases:
- Image3
- Image4
- New aligned image
- Absolute differences image between the aligned image and image4.
- Points used for the homography calculation should be marked on all of the above images except the last one.
- Explain what happens to the plane that the corresponding points were not taken from (for example, the wall when the points were taken from the table).
- Explain what is the effect of the location of the epipole over the transformed locations of the non-planar points.

2.3 Fundamental matrix

Use both homographies from the previous sections to calculate the fundamental matrix.

- Hint: use your solution from exercise 3 question 6
- Include the theoretic process for recovering the fundamental matrix in you report. Specify what is the linear equations system that needs to be solved.
- Calculate the fundamental matrix and attach it to the report.
- Think of a way to check that your calculation is good enough, explain it in the report and add some documentation of how you applied it in your case.

Good Luck!!!

