Deep Learning

Time and Memory Efficiency

Part 1 : JAEYOUNG CHUN Part 2 : ADIR MORGAN APRIL 29, 2018 Weizmann Institute of Science Department of computer science

Classical Algorithms / Build Blocks

Motivation

Why Seeking Efficiency?

Jaeyoung Chun

Facebook Under Fire: How Privacy Crisis Could Change Big Data Forever

1,920 CPUs 280 GPUs \$3,000 Electricity Bill

Lee Sedol vs AlphaGo, Game 2

Lee, playing white, invades a region controlled by AlphaGo

AlphaGo defies convention b the invasion altogether, inste up its defenses in another an

AppStore Download Restriction

To download an app over 100MB onto your mobile device,

you must connect to WiFi.

Putting this in perspective, VGG-16 has 130 million parameters (520MB).

AIQI			
	Upd	ates	Update All
P	Purchased		>
Availab	le Updates		
X	Microsoft Excel Version 1.25, 382 MB Sep 11, 2016		UPDATE
Enjoy ev Office file	en more flexibility fo	or storing and ac 勝讯微 示	cessing your
Update	This item is a Unless an increme available for this Excel" may not do connect	over 100MB. ental download is item, "Microsoft ownload until you to Wi-Fi.	OPEN
Get use ress an	Cancel	OK	nore. mart
Enjoy ev Office file	en more flexibility fo es with Edmodo and	or storing and ac 腾讯微云	cessing your

ATOT ITE

Speed of Training

800 pJ

Energy Consumption

Cost of data movement is much more huge. When compared, arithmetic ops is more like a noise.

0.2 pJ for 8-bit Mult

Something to Keep in Mind...

- Losing any accuracy?
- Multiple methods interfering each other?

Understanding the underlying concepts & getting insights, and intuitions > Implementation and mathematical details

Algorithms for Efficient Inference

Pruning

Less number of parameters with almost no loss of accuracy

not just to reduce the network complexity, but also to avoid overfitting

Pruning

Train Connectivity

Prune Connections

Retrain Weights

Learn the connectivity via normal network training, as you would normally do. Prune the small-weight connections from the network. (below a certain threshold) Retrain the network to learn the final weights for the remaining sparse connections.

ζ

• Pruning w/o Retraining

Han et al. NIPS'15

Pruning

Jaeyoung Chun

Han et al. NIPS'15

Pruning: AlexNet

Pruning + Image Captioning

ORIGINAL

a basketball player in a white uniform is a playing with a **ball**.

PRUNED 90%

If our brain loses 90% of neurons, can we still describe this image with this high accuracy? *· a basketball player in a white uniform is a playing with a basketball.

Pruning in Human?

Peter Huttenlocher (1931-2013)

Jaeyoung Chun

Weight Sharing

Weight Sharing

Weights are not shared across layers. The shared weights approximate the original network because the method determines weight sharing after a network is fully trained.

K-Means Clustering (with K=4)

Only 4 numbers

4x4=16 numbers

Han et al. ICLR'16

Weight Sharing

Jaeyoung Chun

Weight Sharing / Quantization

No more 32-bit FP and only 2 bits

Trained Quantization: Weight Distribution

Pruning and/or Quantization: Accuracy

Pruning and/or Quantization: Accuracy

Huffman Coding

00	11	00	01	10	00
00	00	00	00	00	00
10	10	00	11	00	00
11	00	00	10	11	00
00	10	00	01	01	00
00	00	00	00	00	00

6x6=36 numbers

2 bits * (24 + 5 + 4 + 3) = 72 bits

Color	Effective Weight	Index (Int)	Index (Binary)	Count	%
Purple	2.00	0	00	24	66.67
Orange	0.00	2	10	5	13.89
Yellow	-1.00	3	11	4	11.11
Green	1.50	1	01	3	8.33

Frequent weights → use less bits to represent Infrequent weights → use more bits to represent

Huffman Coding

Color	Effective Weight	Index (Int)	Huffman Code	Count	%
Purple	2.00	0	1	24	66.67
Orange	0.00	2	00	5	13.89
Yellow	-1.00	3	011	4	11.11
Green	1.50	1	010	3	8.33

(1 bit * 24) + (2 bits * 5) + (3 bits * 4) + (3 bits * 3) = 55 bits

Deep Compression

Stage 1

Compression Ratio (w/o accuracy loss)

Algorithms for Efficient Training

Without Moore's Law (popular version)

Data Parallelism

Data Parallelism

Data Parallelism

Add my weight changes and send the new weight to the next worker. Go all the way around the ring.

Hyper-Parameter Parallelism

Try many alternative networks in parallel

- Different number of layers
- Different size of convolutional kernels
- Different number of neurons per layer
- ...

→ Search in the parameter space

hidden layer 2

Mixed Precision Training

More precision than required \rightarrow reduce precision

Mixed Precision Training: Comparison

AlexNet			
Mode	Top1 accuracy, %	Top5 accuracy, %	
Fp32	58.62	81.25	
Mixed precision training	58.12	80.71	
Inception V3			
Mode	Top1 accuracy, %	Top5 accuracy, %	
Fp32	71.75	90.52	
Mixed precision training	71.17	90.10	
and the second se			

ResNet-50

Mode	Top1 accuracy, %	Top5 accuracy, %
Fp32	73.85	91.44
Mixed precision training	73.6	91.11

Hardware

Quick Overview of Hardware Side, But Why?

We write algorithms and software that runs on hardware.

01

02

Some of the algorithms we reviewed are actually used in the hardware design. "An in-depth look at Google's first Tensor Processing Unit (TPU)" https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Google TPU

- Tensor Processing Unit
- Compared to GPU & CPU
 - 15x to 30x faster
 - 30x to 80x better energy efficiency
- Only internal use
 - e.g. AlphaGo, Street View, Photos, ...

.. Can be inserted into a SATA hard disk slot for easy/fast deployment to existing server infrastructure

Google Cloud TPU (2nd gen)

- Mid Feb 2018
 Cloud TPU^{BETA} announced.
- Supports for inference as well as training

Google Cloud TPU (2nd gen)

🔘 Ca	ompute Engine - deep- 🗙	Jaeyoung	
← →	C Secure https://console	e.cloud.google.com/c 🛧 💁 I 🖽 🚺 🗢 🕄 🖛	. 🗠 :
=	Google Cloud Platform	🔹 deep-learning 👻 🔍 🛼 🕕 😯 🌲	:
۲	Compute Engine	Create a Cloud TPU	\$
A	VM instances	Name 😨	
alla -	Instance groups	jaeyoung-node-1	
	Instance templates	Zone 😡 us-central1-c	•
	Disks	TPU type	
0	Snapshots	tpu-v2	•
[13]	Images	TensorFlow version	
		1.8	•
×	TPUs	Network	
1%1	Committed use discounts	default	-

Jaeyoung Chun

The Secret of Google TPU

Quantization Optimization technique that uses an 8-bit integer to approximate an arbitrary value between a preset minimum and a maximum value

CISC Instruction Set

High-level instructions specifically designed for neural network inference.

Matrix Multiply Unit

Processes hundreds of thousands of operations (= matrix operation) in a single clock cycle.

Minimal Design

Optimized for neural network inference only. In the TPU, the control logic is minimal and takes under 2% of the die.

Google TPU: Quantization

We have already seen the power of Quantization when discussing Deep Compression.

Jouppi et al. "In-Datacenter Performance Analysis of a Tensor Processing Unit" (2017) "RISC vs CISC", https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risc/sic/

Google TPU: CISC Instruction Set

6x4 Memory

Reduced vs. Complex Instruction Set Computer

RISC	CISC
LOAD A, 2:3 LOAD B, 5:2 PROD A, B STORE 2:3, A	MULT 2:3, 5:2
Low-level simple instructions that are commonly used	High-level instructions that perform complex operations
e.g. load, store, add, multiply	e.g. compute multiply-and-add

Google TPU: CISC Instruction Set

TPU Instruction	Function	
Read_Host_Memory	Read data from memory	
Read_Weights	Read weights from memory	
MatrixMultiply / Convolve	Multiply or convolve with the data and weights, accumulate the results	
Activate	Apply activation functions	
Write_Host_Memory	Write result to memory	

High-level instructions specifically designed for neural network inference

Google TPU: Matrix Multiplier Unit

65,536 (multiply-and-add operations per cycle)

TPU clock in MHz)

46x10¹² (65,536 × 700M operations per sec)

Google TPU: Minimal Design

Jaeyoung Chun

EIE: Speedup and Energy Efficiency

Jaeyoung Chun

Break