
Jaeyoung Chun

Deep Learning

Time and Memory Efficiency

APRIL 29, 2018
Weizmann institute of science

Department of Computer science

Part 1 : JAEYOUNG CHUN
Part 2 : ADIR MORGAN

Jaeyoung Chun

Agenda

PART 1

1. Motivation
2. Classical Algorithms / Build Blocks
3. Hardware

4. Recent Works

PART 1

PART 2

Jaeyoung Chun

Motivation
Why Seeking Efficiency?

Jaeyoung Chun

Jaeyoung Chun

Jaeyoung Chun

AlphaGo 1,920 CPUs

 280 GPUs

$3,000 Electricity Bill
per game

Jaeyoung Chun

AppStore Download
Restriction

To download an app over 100MB onto your
mobile device,

you must connect to WiFi.

Putting this in perspective,
VGG-16 has 130 million parameters (520MB).

Jaeyoung Chun

Jaeyoung Chun

Model Size

2015
ResNet

16x 152
22.6

LAYERS

GFLOPS

~3.5% Top-5 Error Rate

2012
AlexNet

8
1.4

LAYERS

GFLOPS

~16% Top-5 Error Rate

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Jaeyoung Chun

Jaeyoung Chun

Speed of Training

Benchmarked with fb.resnet.torch using four M40 GPUs

3.5↑
DAYS

.05↓
ERR %

Jaeyoung Chun

Jaeyoung Chun

Energy Consumption

Local
SRAM
(KB)

On-Chip
SRAM
(MB)

Off-Chip
LPDDR
DRAM
(GB)

50 pJ
(32 bits)

Cost of data movement is much more huge.
When compared, arithmetic ops is more like a noise.

3.7 pJ
(32-bit FP Multiplication)

Fetching &
moving data for

computation

640 pJ
(32 bits)

5 pJ
(32 bits)

LPDDR
c.f.) 1.1 pJ for 16-bit FP Mult
 0.2 pJ for 8-bit Mult

ALU

Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

Jaeyoung Chun

Jaeyoung Chun

Pruning

Dense-Sparse-Dense

Weight Sharing
Quantization Huffman Coding

Low Rank Approximation Binary/Ternary Network

Deep Compression

SqueezeNet Deep Gradient Compression

Winograd Sparse-Wingograd

Parallelization Mixed Precision

Model Distillation Local Reparameterization

Efficient Inference Algos: Classic/Building Block

Algos: Relatively New

CPU GPUTPU
(Tensor Processing Unit)

EIE
(Efficient Inference Engine)

Hardware

Efficient TrainingModules
(*) no clear cut

Jaeyoung Chun

Jaeyoung Chun

Something to Keep in Mind...

● Losing any accuracy?
● Multiple methods interfering each other?

Pruning

Weight Sharing
Trained Quantization

Huffman Coding

Deep Compression

Implementation and
 mathematical details

Understanding the underlying concepts
& getting insights, and intuitions

1

2

3

>

Jaeyoung Chun

Algorithms for
Efficient Inference

Jaeyoung Chun

Jaeyoung Chun

Pruning

Less number of parameters with almost no loss of accuracy

not just to reduce the network complexity,
but also to avoid overfitting

-0.01x2 + x + 1

Lecun et al. NIPS’89, Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning

Retrain Weights

Retrain the network to
learn the final weights for
the remaining sparse
connections.

Train Connectivity

Learn the connectivity
via normal network
training, as you would
normally do.

Prune Connections

Prune the small-weight
connections from the
network.
(below a certain threshold)

1 2 3

Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning

Pruning w/o Retraining

Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning

Train
Connectivity

Prune
Connections

Train
Weights

Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning: AlexNet

Pretty much you
have to look at all the

pixels of the image

Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning + Image Captioning

If our brain loses 90% of neurons,
can we still describe this image

with this high accuracy?

ORIGINAL

a basketball player in a white uniform
is a playing with a ball .

PRUNED 90%

a basketball player in a white uniform
is a playing with a basketball .

Han et al. NIPS’15

Jaeyoung Chun

Jaeyoung Chun

Pruning in Human?

Adult

Adolescent

New Born

1 Year Old

50 trillion synapses

1,000 trillion synapses

500 trillion synapses

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

Peter Huttenlocher
(1931-2013)

Jaeyoung Chun

Jaeyoung Chun

Weight Sharing

Less number of bits per parameter
Too accurate leads to overfitting anyway

2.09

2.12

1.92

1.87

Edge (Connection)Weight

2.00

2.00

2.00

2.00

Edge (Connection)Weight

Before After

Effective Weight
or Shared Weight

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Weight Sharing

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

K-Means Clustering (with K=4)

Color
(Cluster) Original Weights Effective Weight

(Centroid)

Purple [2.09, 2.12, 1.92, 1.87] 2.00

Green [1.48, 1.53, 1.49] 1.50

Orange [0.09, 0.05, -0.14, 0, 0] 0.00

Yellow [-0.98, -1.08, -0.91, -1.03] -1.00

4x4=16 numbers
Only 4 numbers

Weights are not shared across layers. The shared weights approximate the original
network because the method determines weight sharing after a network is fully trained.

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Weight Sharing

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Color Effective
Weight

Purple 2.00

Green 1.50

Orange 0.00

Yellow -1.00

2.00 -1.00 1.50 0.00

0.00 0.00 -1.00 2.00

-1.00 2.00 0.00 -1.00

2.00 0.00 1.50 1.50

Also called “Codebook”

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Weight Sharing / Quantization

Color Effective
Weight

Index
(Int)

Index
(Binary)

Purple 2.00 0 00

Green 1.50 1 01

Orange 0.00 2 10

Yellow -1.00 3 11

00 11 01 10

10 10 11 00

11 00 10 11

00 10 01 01

No more 32-bit FP and only 2 bits

Lookup

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Trained Quantization: Weight Distribution

Weight Sharing with K-Means
better represents the distribution

(esp. bimodal part)

The middle part is “pruned”,
making the distribution look like

bimodal.

Naive quantization with 4-bit integer
Sampling the space uniformly which doesn’t capture
the distribution well.

x

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Pruning and/or Quantization: Accuracy

Pruning + Quantization
Pruning Only Quantization Only

SVD

Model Size Ratio
After Compression

Accuracy
Loss

Compressed model is
8% of the original

Accuracy
Gain

Accuracy
Identical

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Pruning and/or Quantization: Accuracy

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Huffman Coding

00 11 00 01 10 00

00 00 00 00 00 00

10 10 00 11 00 00

11 00 00 10 11 00

00 10 00 01 01 00

00 00 00 00 00 00

6x6=36 numbers

Color Effective
Weight

Index
(Int)

Index
(Binary) Count %

Purple 2.00 0 00 24 66.67

Orange 0.00 2 10 5 13.89

Yellow -1.00 3 11 4 11.11

Green 1.50 1 01 3 8.33

2 bits * (24 + 5 + 4 + 3) = 72 bits

Frequent weights → use less bits to represent
Infrequent weights → use more bits to represent

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Huffman Coding

Color Effective
Weight

Index
(Int)

Huffman
Code Count %

Purple 2.00 0 1 24 66.67

Orange 0.00 2 00 5 13.89

Yellow -1.00 3 011 4 11.11

Green 1.50 1 010 3 8.33

36

24

0

12

5

2
7

4

3

3

1

1 0

0 1

1 0

(1 bit * 24) + (2 bits * 5) + (3 bits * 4) + (3 bits * 3) = 55 bits

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Deep Compression

Stage 1 Stage 2 Stage 3

Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding” (2015)

Jaeyoung Chun

Jaeyoung Chun

Compression Ratio (w/o accuracy loss)

40X

39X

35X

49X

10X

11X

Han et al. ICLR’16

Jaeyoung Chun

Jaeyoung Chun

Deep Compression

Local
SRAM
(KB)

On-Chip
SRAM
(MB)

Off-Chip
LPDDR
DRAM
(GB)

50 pJ
(32 bits)

Fetching &
moving data for

computation

640 pJ
(32 bits)

5 pJ
(32 bits)

LPDDR

Large DNNs such as AlexNet, VGGNet are
fully fit into on-chip SRAM.

Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

ALU

Jaeyoung Chun

Jaeyoung Chun

SqueezeNet
+ Deep Compression

Can we apply Deep Compression to
already compact model such as SqueezeNet?

“Dog”. ehh?

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size." (2016)

Jaeyoung Chun

Algorithms for
Efficient Training

Jaeyoung Chun

Jaeyoung Chun

Moore’s Law

Still increasing

A benchmark spec for
CPU integer processing power

Number of Cores

Typical Power (watts)

Frequency (MHz)

Single-thread Performance (SPECint)

Transistors (thousands)Scaling a CPU
in a number of dimensions (Original Moore’s law)

(Popular version of Moore’s Law)

Chuck Moore, "DATA PROCESSING IN EXASCALE-CLASS COMPUTER SYSTEMS", The Salishan Conference on High Speed Computing (2011)

Jaeyoung Chun

Jaeyoung Chun

Without Moore’s Law (popular version)

How are we going to continue to scale the performance we need
to build a better DNN?

2005

Number of Cores

Single-thread Performance

Use multiple processors
in parallel1975 1990

Q:

A:2010

Jaeyoung Chun

Jaeyoung Chun

Data Parallelism

Run different images on
different GPUs in parallel

Weight updates must
be coordinated
between workers.

CIFAR-10

Dally, High Performance Hardware for Machine Learning, NIPS’2015

Jaeyoung Chun

Jaeyoung Chun

Data Parallelism

Data
Shards

Model
Workers

Parameter Server p’ = p + Δp

p’Δp

Each GPU works on some portion
of the dataset and sends their Δp

(changes in weights) to
Parameter Server

Aggregate everyone’s Δp’s, add to
the weights, calculate the new
weights, and sends them back to
everybody.

Jeff Dean et al. “Large Scale Distributed Deep Networks” (2013)

Jaeyoung Chun

Jaeyoung Chun

Data Parallelism

Model Worker 1 Model Worker 2

Model Worker 3

RING

p’ = p + Δp

p’ = p + Δp

p’ = p + Δp

Add my weight changes and send the new
weight to the next worker. Go all the way

around the ring.

Dally, High Performance Hardware for Machine Learning, NIPS’2015

Jaeyoung Chun

Jaeyoung Chun

Hyper-Parameter Parallelism

Try many alternative networks in parallel

● Different number of layers
● Different size of convolutional kernels
● Different number of neurons per layer
● . . .

Search in the parameter space

Dally, High Performance Hardware for Machine Learning, NIPS’2015

Jaeyoung Chun

Jaeyoung Chun

Mixed Precision Training
More precision than required → reduce precision

Save by factor of 2

● Storage
● Memory bandwidth

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC (2017)

Jaeyoung Chun

Jaeyoung Chun

Mixed Precision Training: Comparison

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, “Training with mixed precision”, NVIDIA GTC (2017)

Jaeyoung Chun

Hardware

Jaeyoung Chun

Jaeyoung Chun

Quick Overview of Hardware Side,
But Why?

Some of the algorithms we
reviewed are actually used in the
hardware design.

02

We write algorithms and software
that runs on hardware.01

Jaeyoung Chun

Jaeyoung Chun

Google TPU

● Tensor Processing Unit
● Compared to GPU & CPU

○ 15x to 30x faster
○ 30x to 80x better energy efficiency

● Only internal use
○ e.g. AlphaGo, Street View, Photos, ...

Can be inserted into a SATA
hard disk slot for easy/fast

deployment to existing
server infrastructure

“An in-depth look at Google’s first Tensor Processing Unit (TPU)”
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Jaeyoung Chun

Google Cloud TPU
(2nd gen)

● Mid Feb 2018
Cloud TPUBETA announced.

● Supports for inference as well as
training

Jaeyoung Chun

Jaeyoung Chun

Google Cloud TPU (2nd gen)

Jaeyoung Chun

The Secret of Google TPU

01

02

03

04Quantization

Optimization technique that uses an 8-bit
integer to approximate an arbitrary value

between a preset minimum and a
maximum value

CISC Instruction Set

High-level instructions specifically
designed for neural network inference.

Matrix Multiply Unit

Processes hundreds of thousands of
operations (= matrix operation) in a single
clock cycle.

Minimal Design

Optimized for neural network inference
only. In the TPU, the control logic is
minimal and takes under 2% of the die.

Jaeyoung Chun

Jaeyoung Chun

Google TPU: Quantization

We have already seen the power of Quantization when discussing Deep Compression.

Not smooth, but with careful design,
we can still prevent accuracy loss.

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Jaeyoung Chun

Jaeyoung Chun

Google TPU: CISC Instruction Set

Low-level simple
instructions
that are commonly
used

e.g.
load, store, add, multiply

High-level instructions
that perform complex
operations

e.g.
compute
multiply-and-add
many times

Reduced vs. Complex Instruction Set Computer

LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A

(2,3)

(5,2)

MULT 2:3, 5:2

A B

C D

E F

6x4 Memory

CPU Register

Execution Unit

RISC CISC

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)
“RISC vs CISC”, https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

Jaeyoung Chun

Jaeyoung Chun

Google TPU: CISC Instruction Set

TPU Instruction Function

Read_Host_Memory Read data from memory

Read_Weights Read weights from memory

MatrixMultiply / Convolve Multiply or convolve with the data
and weights, accumulate the results

Activate Apply activation functions

Write_Host_Memory Write result to memory

High-level instructions specifically designed for
neural network inference

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Jaeyoung Chun

Jaeyoung Chun

65,536
Google TPU: Matrix Multiplier Unit

(multiply-and-add operations per cycle)

(65,536 × 700M operations per sec)
46x1012
700
(TPU clock in MHz)

Unified Buffer for Local
Activations

(96K x 256 x 8b = 24 MiB)

Matrix Multiply Unit
(256 x 256 x 8b = 64K)

DRAM
Port

DDR3

DRAM
Port

DDR3

Accumulators
(4K x 256 x 32b = 4 Mib)

Control Activation Pipeline

Host
Interface

PCIe Interface Misc I/O

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Jaeyoung Chun

Jaeyoung Chun

Google TPU: Minimal Design

Unified Buffer for Local
Activations

(96K x 256 x 8b = 24 MiB)

Matrix Multiply Unit
(256 x 256 x 8b = 64K)

DRAM
Port

DDR3

DRAM
Port

DDR3

Accumulators
(4K x 256 x 32b = 4 Mib)

Control Activation Pipeline

Host
Interface

PCIe Interface Misc I/O

2%

29%

3%3%

2% 6%

6%

3% 1%

24%

Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit” (2017)

Jaeyoung Chun

Jaeyoung Chun

EIE (Efficient Inference Engine)

Sparse Activation

W (weight) x A (activation)
If A = 0 → W x 0 = 0

3

Weight Sharing

With K-means clustering,
e.g. the blues (2.09, 2.12., 1.92, 1.87) are

treated as 2.0 instead
(i.e. effective weights)

2

Sparse Weight

W (weight) x A (activation)
If W = 0 → 0 x A = 0

1

10x

3x8x less memory footprint

less computation

less computation

5x
less memory footprint

Han et al. ISCA’16

Jaeyoung Chun

Jaeyoung Chun

EIE: Speedup and Energy Efficiency

Han et al. ISCA’16

Jaeyoung Chun

Break

