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Abstract. There is a huge diversity of definitions of “visually meaning-
ful” image segments, ranging from simple uniformly colored segments,
textured segments, through symmetric patterns, and up to complex se-
mantically meaningful objects. This diversity has led to a wide range of
different approaches for image segmentation. In this paper we present
a single unified framework for addressing this problem – “Segmentation
by Composition”. We define a good image segment as one which can be
easily composed using its own pieces, but is difficult to compose using
pieces from other parts of the image. This non-parametric approach cap-
tures a large diversity of segment types, yet requires no pre-definition or
modelling of segment types, nor prior training. Based on this definition,
we develop a segment extraction algorithm – i.e., given a single point-of-
interest, provide the “best” image segment containing that point. This
induces a figure-ground image segmentation, which applies to a range
of different segmentation tasks: single image segmentation, simultaneous
co-segmentation of several images, and class-based segmentations.

1 Introduction

One of the most fundamental vision tasks is image segmentation; the attempt to
group image pixels into visually meaningful segments. However, the notion of a
“visually meaningful” image segment is quite complex. There is a huge diversity
in possible definitions of what is a good image segment, as illustrated in Fig. 1.
In the simplest case, a uniform colored region may be a good image segment
(e.g., the flower in Fig. 1.a). In other cases, a good segment might be a textured
region (Fig. 1.b, 1.c) or semantically meaningful layers composed of disconnected
regions (Fig. 1.c) and all the way to complex objects (Fig. 1.e, 1.f).

The diversity in segment types has led to a wide range of approaches for
image segmentation: Algorithms for extracting uniformly colored regions (e.g.,
[1,2]), algorithms for extracting textured regions (e.g., [3,4]), algorithm for ex-
tracting regions with a distinct empirical color distribution (e.g., [5,6,7]). Some
algorithms employ symmetry cues for image segmentation (e.g., [8]), while others
use high-level semantic cues provided by object classes (i.e., class-based segmen-
tation, see [9,10,11]). Some algorithms are unsupervised (e.g., [2]), while others
require user interaction (e.g., [7]). There are also variants in the segmentation
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Fig. 1. What is a good image segment? Examples of visually meaningful image
segments. These vary from uniformly colored segments (a) through textured segments
(b)-(c), symmetric segments (d), to semantically meaningful segments (e)-(f). These
results were provided by our single unified framework.

Fig. 2. Segmentation by composition: A good
segment S (e.g., the butterfly or the dome) can be eas-
ily composed of other regions in the segment. Regions
R1, R2 are composed from other corresponding regions
in S (using transformations T1, T2 respectively).

Fig. 3. Notations:
Seg =

{
S, S, ∂S

}
denotes a

figure-ground segmentation.
S is the foreground segment,
S (its compliment) is the
background, and ∂S is the
boundary of the segment.

tasks, ranging from segmentation of a single input image, through simultaneous
segmentation of a pair of images (“Cosegmentation” [12]) or multiple images.
The large diversity of image segment types has increased the urge to devise a
unified segmentation approach. Tu et al. [13] provided such a unified probabilis-
tic framework, which enables to “plug-in” a wide variety of parametric models
capturing different segment types. While their framework elegantly unifies these
parametric models, it is restricted to a predefined set of segment types, and
each specific object/segment type (e.g., faces, text, texture etc.) requires its own
explicit parametric model. Moreover, adding a new parametric model to this
framework requires a significant and careful algorithm re-design.

In this paper we propose a single unified approach to define and extract vi-
sually meaningful image segments, without any explicit modelling. Our approach
defines a “good image segment” as one which is “easy to compose” (like a puzzle)
using its own parts, yet it is difficult to compose it from other parts of the image
(see Fig. 2). We formulate our “Segmentation-by-Composition” approach, using
a unified non-parametric score for segment quality. Our unified score captures



a wide range of segment types: uniformly colored segments, through textured
segments, and even complex objects. We further present a simple interactive
segment extraction algorithm, which optimizes our score – i.e., given a single
point marked by the user, the algorithm extracts the “best” image segment con-
taining that point. This in turn induces a figure-ground segmentation of the
image. We provide results demonstrating the applicability of our score and al-
gorithm to a diversity of segment types and segmentation tasks. The rest of
this paper is organized as follows: In Sec. 2 we explain the basic concept behind
our “Segmentation-by-Composition” approach for evaluating the visual quality
of image segments. Sec. 3 provides the theoretical formulation of our unified
segment quality score. We continue to describe our figure-ground segmentation
algorithm in Sec. 4. Experimental results are provided in Sec. 5.

2 Basic Concept – “Segmentation By Composition”

Examining the image segments of Fig. 1, we note that good segments of signifi-
cantly different types share a common property: Given any point within a good
image segment, it is easy to compose (“describe”) its surrounding region using
other chunks of the same segment (like a ‘jigsaw puzzle’), whereas it is difficult to
compose it using chunks from the remaining parts of the image. This is trivially
true for uniformly colored and textured segments (Fig. 1.a, 1.b, 1.c), since each
portion of the segment (e.g., the dome) can be easily synthesized using other
portions of the same segment (the dome), but difficult to compose using chunks
from the remaining parts of the image (the sky). The same property carries to
more complex structured segments, such as the compound puffins segment in
Fig. 1.f. The surrounding region of each point in the puffin segment is easy to
“describe” using portions of other puffins. The existence of several puffins in the
image provides ‘visual evidence’ that the co-occurrence of different parts (orange
beak, black neck, white body, etc.) is not coincidental, and all belong to a single
compound segment. Similarly, one half of a complex symmetric object (e.g., the
butterfly of Fig. 1.d, the man of Fig. 1.e) can be easily composed using its other
half, providing visual evidence that these parts go together. Moreover, the sim-
pler the segment composition (i.e., the larger the puzzle pieces), the higher the
evidence that all these parts form together a single segment. Thus, the entire
man of Fig. 1.e forms a better single segment than his pants or shirt alone.

The ease of describing (composing) an image in terms of pieces of another
image was defined by [14], and used there in the context of image similarity.
The pieces used for composition are structured image regions (as opposed to un-
structured ‘bags’/distributions of pointwise features/descriptors, e.g., as in [5,7]).
Those structured regions, of arbitrary shape and size, can undergo a global geo-
metric transformation (e.g., translation, rotation, scaling) with additional small
local non-rigid deformations. We employ the composition framework of [14] for
the purpose of image segmentation. We define a “good image segment” S as one
that is easy to compose (non-trivially) using its own pieces, while difficult to
compose from the remaining parts of the image S = I \ S. An “easy” compo-



sition consists of a few large image regions, whereas a “difficult” composition
consists of many small fragments. A segment composition induces a description
of the segment, with a corresponding “description length”. The easier the com-
position, the shorter the description length. The ease of composing S from its
own pieces is formulated in Sec. 3 in terms of the description length DL (S|S).
This is contrasted with the ease of composing S from pieces of the remaining
image parts S, which is captured by DL

(
S|S

)
. This gives rise to a “segment

quality score” Score (S), which is measured by the difference between these two
description lengths: Score (S) = DL

(
S|S

)
−DL (S|S).

Our definition of a “good image segment” will maximize this difference in
description lengths. Any deviation from the optimal segment S will reduce this
difference, and accordingly decrease Score (S). For example, the entire dome
in Fig. 1.b is an optimal image segment S; it is easy to describe non-trivially
in terms of its own pieces (see Fig. 2), and difficult to describe in terms of
the background sky. If, however, we were to define the segment S to be only a
smaller part of the dome, then the background S would contain the sky along
with the parts of the dome excluded from S. Consequently, this would decrease
DL

(
S|S

)
and therefore Score (S) would decrease. It can be similarly shown that

Score (S) would decrease if we were to define S which is larger than the dome and
contains also parts of the sky. Note that unlike previous simplistic formulations
of segment description length (e.g., entropy of simple color distributions [5]),
our composition-based description length can capture also complex structured
segments.

A good figure-ground segmentation Seg =
{
S, S, ∂S

}
(see Fig. 3) partitions

the image into a foreground segment S and a background segment S, where at
least one of these two segments (and hopefully both) is a ‘good image segment’
according to the definition above. Moreover, we expect the segment boundary ∂S
of a good figure-ground segmentation to coincide with meaningful image edges.

Boiman and Irani [14] further employed the composition framework for coarse
grouping of repeating patterns. Our work builds on top of [14], providing a gen-
eral segment quality score and a corresponding image segmentation algorithm,
which applies to a large diversity of segment types, and can be applied for vari-
ous segmentation tasks. Although general, our unified segmentation framework
does not require any pre-definition or modelling of segment types (in contrast to
the unified framework of [13]).

3 Theoretical Formulation

The notion of ‘description by composition’ was introduced by Boiman and Irani
in [14], in the context of image similarity. They provided a similarity measure
between a query image Q and a reference image Ref , according to how easy it
is to compose Q from pieces of Ref . Intuitively speaking, the larger those pieces
are, the greater the similarity. Our paper builds on top of the basic compositional
formulations of [14]. To make our paper self-contained, we briefly review those
basic formulations.



The composition approach is formulated as a generative process by which
the query image Q is generated as a composition of arbitrarily shaped pieces
(regions) taken from the reference image Ref . Each such region from Ref can
undergo a geometric transformation (e.g., shift, scale, rotation, reflection) before
being “copied” to Q in the composition process. The likelihood of an arbitrarily
shaped region R ⊂ Q given a reference image Ref is therefore:

p (R|Ref) =
∑
T

p (R|T, Ref) p (T |Ref) (1)

where T is a geometric transformation from Ref to the location of R in Q.
p (R|T, Ref) is determined by the degree of similarity of R to a region in Ref
which is transformed by T to the location of R. This probability is marginal-
ized over all possible transformations T using a prior over the transformations
p (T |Ref), resulting in the ‘frequency’ of region R in Ref . Given a partition of Q
into regions R1, . . . , Rk (assumed i.i.d. given the partition), the likelihood that
a query image Q is composed from Ref using this partition is defined by [14]:

p (Q|Ref) =
k∏

i=1

p (Ri|Ref) (2)

Because there are many possible partitions of Q into regions, the righthand side
of (2) is marginalized over all possible partitions in [14].

p (Q|Ref) /p (Q|H0) is the likelihood-ratio between the ‘ease’ of generating
Q from Ref vs. the ease of generating Q using a “random process” H0 (e.g.,
a default image distribution). Noting that the optimal (Shannon) description
length of a random variable x is DL (x) ≡ − log p (x) [15], Boiman and Irani [14]
defined their compositional similarity score as: log (p (Q|Ref)/p (Q|H0)) =
DL (Q|H0) − DL (Q|Ref) i.e., the “savings” in the number of bits obtained
by describing Q as composed from regions in Ref vs. the ‘default’ number of
bits required to describe Q using H0. The larger the regions Ri composing Q
the higher the savings in description length. High savings in description length
provide high statistical evidence for the similarity of Q to Ref .

In order to avoid the computationally-intractable marginalization over all
possible query partitions, the following approximation was derived in [14]:

DL (Q|H0)−DL (Q|Ref) ≈
∑
i∈Q

PES (i|Ref) (3)

where PES (i|Ref) is a pointwise measure (a Point-Evidence-Score) of a pixel i:

PES (i|Ref) = max
R⊂Q,i∈R

1
|R|

log
p (R|Ref)
p (R|H0)

(4)

Intuitively, given a region R, 1
|R| log (p (R|Ref) /p (R|H0)) is the average savings

per pixel in the region R. Thus, PES (i|Ref) is the maximum possible savings per
pixel for any region R containing the point i. We refer to the region which obtains
this maximal value PES (i|Ref) as a ‘maximal region’ around i. The approximate
computation of (4) can be done efficiently (see [14] for more details).



3.1 The Segment Quality Score

A good segment S should be easy to compose from its own pieces using a
non-trivial composition, yet difficult to compose from the rest of the image S
(e.g., Fig. 2). Thus, we expect that for good segments, the description length
DL

(
S|Ref = S

)
should be much larger than DL (S|Ref = S). Accordingly, we

define Score (S) = DL
(
S|Ref = S

)
− DL (S|Ref = S). We use (2) to com-

pute p (S|Ref) (the segment S taking the role of the query Q), in order to
define the likelihood and the description length of the segment S, once w.r.t.
to itself (Ref = S), and once w.r.t. to the rest of the image (Ref = S).
We note that DL

(
S|Ref = S

)
= − log p

(
S|Ref = S

)
, and DL (S|Ref = S) =

− log p (S|Ref = S). In order to avoid the trivial (identity) composition when
composing S from its own pieces, we exclude transformations T from (1) that
are close to the identity transformation (e.g., when T is a pure shift, it should be
of at least 15 pixels.) Using the approximation of (3), we can rewrite Score (S):

Score (S) = DL
(
S|Ref = S

)
−DL (S|Ref = S) (5)

= (DL (S|H0)−DL (S|Ref = S))−
(
DL (S|H0)−DL

(
S|Ref = S

))
≈
∑
i∈S

PES (i|S)−
∑
i∈S

PES
(
i|S
)

=
∑
i∈S

(
PES (i|S)− PES

(
i|S
))

(6)

Thus, Score (S) accumulates for every pixel i ∈ S the term PES (i|S)−PES
(
i|S
)
,

which compares the ‘preference’ (the pointwise evidence) of the pixel i to belong
to the segment S, relative to its ‘preference’ to belong to S.

3.2 The Segmentation Quality Score

A good figure-ground segmentation is such that at least one of its two segments,
S or S, is ‘a good image segment’ (possibly both), and with a good segmenta-
tion boundary ∂S (e.g., coincides with strong image edges, is smooth, etc.) We
therefore define a figure-ground segmentation quality score as: Score (Seg) =
Score (S)+Score

(
S
)

+Score (∂S), where Score (∂S) denotes the quality of the
segmentation boundary ∂S. Using (6), Score (Seg) can be rewritten as:

Score (Seg) = Score (S) + Score
(
S
)

+ Score (∂S) (7)

=
∑
i∈S

(
PES (i|S)− PES

(
i|S
))

+
∑
i∈S

(
PES

(
i|S
)
− PES (i|S)

)
+ Score (∂S)

The quality of the segmentation boundary, Score (∂S), is defined as follows:
Let Pr (Edgei,j) be the probability of an edge between every two neighbor-
ing pixels i, j (e.g., computed using [16]). We define the likelihood of a seg-
mentation boundary ∂S as: p (∂S) =

∏
i∈S, j∈S,(i,j)∈N Pr (Edgei,j) , where

N is the set of neighboring pixels. We define the score of the boundary ∂S
by its ‘description length’, i.e.: Score (∂S) = DL (∂S) = − log p (∂S) =
−
∑

i∈S, j∈S log Pr (Edgei,j). Fig. 4 shows quantitatively that Score (Seg)
peaks at proper segment boundaries, and decreases when ∂S deviates from it.



(a) (b)

Fig. 4. Score (Seg) as a function of deviations in boundary position ∂S:
(a) shows the segmentation score as a function of the boundary position. It obtains a
maximum value at the edge between the two textures. (b) The segmentation score as
a function of the deviation from the recovered segment boundary for various segment
types (deviations were generated by shrinking and expanding the segment boundary).

The above formulation can be easily extended to a quality score of a gen-
eral segmentation of an image into m segments, S1, . . . , Sm: Score (Seg) =∑m

i=1 Score (Si) + Score (∂S) , s.t. ∂S =
⋃m

i=1 ∂Si

3.3 An Information-Theoretic Interpretation

We next show that our segment quality score, Score (S), has an interesting
information-theoretic interpretation, which reduces in special sub-cases to com-
monly used information-theoretic measures. Let us first examine the simple case
where the composition of a segment S is restricted to degenerate one-pixel sized
regions Ri. In this case, p (Ri|Ref = S) in (1) reduces to the frequency of the
color of the pixel Ri inside S (given by the color histogram of S). Using (2) with
one-pixel sized regions Ri, the description length DL (S|Ref = S) reduces to:

DL (S|Ref = S) = − log p (S|Ref = S) = − log
∏
i∈S

p (Ri|Ref = S)

= −
∑
i∈S

log p (Ri|Ref = S) = |S| · Ĥ (S)

where Ĥ (S) is the empirical entropy1 of the regions {Ri} composing S, which is
the color entropy of S in case of one-pixel sized Ri. Similarly, DL

(
S|Ref = S

)
=

−
∑

i∈S log p
(
Ri|Ref = S

)
= |S| · Ĥ

(
S, S

)
, where Ĥ

(
S, S

)
is the empirical

cross-entropy of regions Ri ⊂ S in S (which reduces to the color cross-entropy
in case of one-pixel sized Ri). Using these observations, Score (S) of (5) reduces

1 The empirical entropy of the sample x1, .., xn is Ĥ (x) = − 1
n

∑
i log p (xi) which

approaches the statistical entropy H (x) as n→∞.



to the empirical KL divergence between the region distributions of S and S:

Score (S) = DL
(
S|S

)
−DL (S|S) = |S| ·

(
Ĥ
(
S, S

)
− Ĥ (S)

)
= |S| ·KL

(
S, S

)
In the case of single-pixel-sized regions Ri, this reduces to the KL divergence
between the color distributions of S and S.

A similar derivation can be applied to the general case of composing S from
arbitrarily shaped regions Ri. In that case, p (Ri|Ref) of (1) is the frequency
of regions Ri ⊂ S in Ref = S or in Ref = S (estimated non-parametrically
using region composition). This gives rise to an interpretation of the description
length DL (S|Ref) as a Shannon entropy measure, and our segment quality score
Score (S) of (5) can be interpreted as a KL divergence between the statistical
distributions of regions (of arbitrary shape and size) in S and in S.

Note that in the degenerate case when the regions Ri ⊂ S are one-pixel sized,
our framework reduces to a formulation closely related to that of GrabCut [7]
(i.e., figure-ground segmentation into segments of distinct color distributions).
However, our general formulation employs regions of arbitrary shapes and sizes,
giving rise to figure-ground segmentation with distinct region distributions. This
is essential when S and S share similar color distributions (first order statistics),
and vary only in their structural patterns (i.e., higher order statistics). Such an
example can be found in Fig. 5 which compares our results to that of GrabCut.

3.4 The Geometric Transformations T

The family of geometric transformations T applied to regions R in the compo-
sition process (Eq. 1) determines the degree of complexity of segments that can
be handled by our approach. For instance, if we restrict T to pure translations,
then a segment S may be composed by shuffling and combining pieces from
Ref . Introducing scaling/rotation/affine transformations enables more complex
compositions (e.g., compose a small object from a large one, etc.) Further in-
cluding reflection transformations enables composing one half of a symmetric
object/pattern from its other half. Note that different regions Ri ⊂ S are ‘gen-
erated’ from Ref using different transformations Ti. Combining several types
of transformations can give rise to composition of very complex objects S from
their own sub-regions (e.g., partially symmetric object as in Fig. 10.c).

4 Figure-Ground Segmentation Algorithm

In this section we outline our figure-ground segmentation algorithm, which op-
timizes Score (Seg) of (7). The goal of figure-ground segmentation is to extract
an object of interest (the “foreground”) from the remaining parts of the image
(the “background”). In general, when the image contains multiple objects, a user
input is required to specify the “foreground” object of interest.

Different figure-ground segmentation algorithms require different amounts
of user-input to specify the foreground object, whether in the form of fore-
ground/background scribbles (e.g., [6]), or a bounding-box containing the fore-
ground object (e.g., [7]). In contrast, our figure-ground segmentation algorithm



Input Our results Results of GrabCut [7]
image Init+ recovered S Init bounding box recovered S

Fig. 5. Our result vs. GrabCut [7]. GrabCut fails to segment the butterfly (fore-
ground) due to the similar colors of the flowers in the background. Using composition
with arbitrarily shaped regions, our algorithm accurately segments the butterfly. We
used the GrabCut implementation of www.cs.cmu.edu/~mohitg/segmentation.htm

requires a minimal amount of user input – a single user-marked point on the
foreground segment/object of interest. Our algorithm proceeds to extract the
“best” possible image segment containing that point. In other words, the algo-
rithm recovers a figure-ground segmentation Seg =

(
S, S, ∂S

)
s.t. S contains

the user-marked point, and Seg maximizes the segmentation score of (7). Fig. 6
shows how different user-selected points-of-interest extract different objects of
interest from the image (inducing different figure-ground segmentations Seg).

A figure-ground segmentation can be described by assigning a label li to
every pixel i in the image, where li = 1 ∀i ∈ S, and li = −1 ∀i ∈ S. We can
rewrite Score (Seg) of (7) in terms of these labels:

Score (Seg) =
∑
i∈I

li·
(
PES (i|S)− PES

(
i|S
))

+
1
2

∑
(i,j)∈N

|li − lj |·log Pr (Edgei,j)

(8)
where N is the set of all pairs of neighboring pixels. Maximizing (8) is equiv-
alent to an energy minimization formulation which can be optimized using a
MinCut algorithm [17], where

(
PES (i|S)− PES

(
i|S
))

form the data term, and
log Pr (Edgei,j) is the “smoothness” term. However, the data term has a com-
plicated dependency on the segmentation into S, S, via the terms PES (i|S) and
PES

(
i|S
)
. This prevents straightforward application of MinCut. To overcome

this problem, we employ EM-like iterations, i.e., alternating between estimating
the data term and maximizing Score (Seg) using MinCut (see Sec. 4.1).

In our current implementation the “smoothness” term Pr (Edgei,j), is com-
puted based on the edge probabilities of [16], which incorporates texture, lumi-
nance and color cues. The computation of PES (i|Ref) for every pixel i (where
Ref is either S or S) involves finding a ‘maximal region’ R surrounding i which
has similar regions elsewhere in Ref , i.e., a region R that maximizes (4). An
image region R (of any shape or size) is represented by a dense and structured
‘ensemble of patch descriptors’ using a star-graph model. When searching for a
similar region, we search for a similar ensemble of patches (similar both in their

www.cs.cmu.edu/~mohitg/segmentation.htm


Input image Extracted S (red) around user selected points (green)

Fig. 6. Different input points result in different foreground segments.

patch descriptors, as well as in their relative geometric positions), up to a global
transformation T (Sec. 3.4) and small local non-rigid deformations (see [18]).
We find these ‘maximal regions’ R using the efficient region-growing algorithm
of [18,14]: Starting with a small surrounding region around a pixel i, we search
for similar such small regions in Ref . These few matched regions form seeds for
the region growing algorithm. The initial region around i with its matching seed
regions are simultaneously grown (in a greedy fashion) to find maximal matching
regions (to maximize PES (i|Ref)). For more details see [18,14].

4.1 Iterative Optimization

Initialization: The input to our segment extraction algorithm is an image and
a single user-marked point of interest q. We use the region composition proce-
dure to generate maximal regions for points in the vicinity of q. We keep only
the maximal regions that contain q and have high evidence (i.e., PES) scores.
The union of these regions, along with their corresponding reference regions, is
used as a crude initialization, S0, of the segment S (see Fig. 7.c for an example).
Iterations: Our optimization algorithm employs EM-like iterations: In each
iteration we first fix the current segmentation Seg =

(
S, S, ∂S

)
and compute the



(a) (b) (c) (d) (e) (f)

Input Image Input point Score=418 Score=622 Score=767 S

Fig. 7. Progress of the iterative process: Sequence of intermediate
segmentations of the iterative process. (a) The input image. (b) The
user marked point-of-interest. (c) Initialization of S. (d) S after 22
iterations. (e) Final segment S after 48 iterations. (f) The resulting
figure-ground segments, S and S. The iterations converged accurately
to the requested segment after 48 iterations.

S

data term by re-estimating PES (i|S) and PES
(
i|S
)
. Then, we fix the data term

and maximize Score (Seg) using MinCut [17] on (8). This process is iterated
until convergence (i.e., when Score (Seg) ceases to improve). The iterative pro-
cess is quite robust – even a crude initialization suffices for proper convergence.
For computational efficiency, in each iteration t we recompute PES (i|Ref) and
relabel pixels only for pixels i within a narrow working band around the current
boundary ∂St. The segment boundary recovered in the next iteration, ∂St+1,
is restricted to pass inside that working band. The size of the working band is
∼ 10% of the image width, which restricts the computational complexity, yet
enables significant updates of the segment boundary in each iteration.

During the iterative process, similar regions may have conflicting labels. Due
to the EM-like iterations, such regions may simultaneously flip their labels, and
fail to converge (since each such region provides “evidence” for the other to flip
its label). Therefore, in each iteration, we perform two types of steps successively:
(i) an “expansion” step, in which only background pixels in St are allowed to flip
their label to foreground pixels. (ii) a “shrinking” step, in which only foreground
pixels in St are allowed to flip their label to background pixels. Fig. 7 shows a
few steps in the iterative process, from initialization to convergence.

4.2 Integrating several descriptor types

The composition process computes similarity of image regions, using local de-
scriptors densely computed within the regions. To allow for flexibility, our frame-
work integrates several descriptor-types, each handles a different aspect of simi-
larity between image points (e.g., color, texture). Thus, several descriptor types
can collaborate to describe a complex segment (e.g., in a “multi-person” segment,
the color descriptor is dominant in the face regions, while the shape descriptor
may be more dominant in other parts of the body). Although descriptor types
are very different , the ‘savings’ in description length obtained by each descriptor
type are all in the same units (i.e., bits). Therefore, we can integrate different



Input image pair Our cosegmentation Cosegmentation of [12]

Fig. 8. Cosegmentation of image pair: Comparing our result to that of [12].

Input image 4 class images Init point+recovered Seg

Fig. 9. Class-based Segmentation: Segmenting a complex horse image (left) using
4 unsegmented example images of horses.

descriptor-types by simply adding their savings. A descriptor type that is use-
ful for describing a region will increase the savings in description length, while
non-useful descriptor types will save nothing. We used the following descriptor
types: (1) SIFT (2) Color: based on a color histogram (3) Texture: based
on a texton histogram (4) Shape: An extension of Shape Context descriptor of
Belongie et al. (5) The Self Similarity descriptor of Shechtman and Irani.

5 Results

We applied our segment extraction algorithm to a variety of segment types and
segmentation tasks, using images from several segmentation databases [19,20,7].
In each case, a single point-of-interest was marked (a green cross in the figures).
The algorithm extracted the “best” image segment containing that point (high-
lighted in red). Higher resolution images and many more results can be found in
www.wisdom.weizmann.ac.il/~vision/GoodSegment.html.
Single-Image Segmentation: Fig. 10 demonstrates the capability of our ap-

proach to handle a variety of different segments types: uniformly colored seg-
ments (Fig. 10.f), complex textured segments (Fig. 10.h), complex symmetric
objects (e.g., the butterfly in Fig. 5, the Man in Fig. 1.e). More complex objects
can also be segmented (e.g., a non-symmetric person Fig. 10.b, or the puffins
Fig. 10.g), resulting from combinations of different types of transformations Ti

for different regions Ri within the segment, and different types of descriptors.
We further evaluated our algorithm on the benchmark database of [19], which

consists of 100 images depicting a single object in front of a background, with
ground-truth human segmentation. The total F-measure score of our algorithm
was 0.87±0.01 (F = 2·Recall·Precision

Recall+Precision ), which is state-of-the-art on this database.

 www.wisdom.weizmann.ac.il/~vision/GoodSegment.html


“Cosegmentation”: We applied our segmentation algorithm with no modifica-
tions to a simultaneous co-segmentation of an image pair – the algorithm input
is simply the concatenated image pair. The common object in the images is
extracted as a single compound segment (Fig. 8, shows a comparison to [12]).
Class-Based Segmentation: Our algorithm can perform class-based segmen-
tation given unsegmented example images of an object class. In this case, we
append the example images to the reference Ref = S of the foreground seg-
ment S. Thus the object segment can be composed using other parts in the
segment as well as from parts in the example images. This process requires no
pre-segmentation and no prior learning stage. Fig. 9 shows an example of extract-
ing a complex horse segment using 4 unsegmented examples of horse images.
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Fig. 10. Examples of figure-ground segmentations.


