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Abstract

Generative Adversarial Networks (GANs) typically learn
a distribution of images in a large image dataset, and are
then able to generate new images from this distribution.
However, each natural image has its own internal statis-
tics, captured by its unique distribution of patches. In
this paper we propose an “Internal GAN” (InGAN) – an
image-specific GAN – which trains on a single input im-
age and learns its internal distribution of patches. It is
then able to synthesize a plethora of new natural images
of significantly different sizes, shapes and aspect-ratios all
with the same internal patch-distribution (same “DNA”) as
the input image. In particular, despite large changes in
global size/shape of the image, all elements inside the im-
age maintain their local size/shape. InGAN is fully unsu-
pervised, requiring no additional data other than the in-
put image itself. Once trained on the input image, it can
remap the input to any size or shape in a single feedforward
pass, while preserving the same internal patch distribution.
InGAN provides a unified framework for a variety of tasks,
bridging the gap between textures and natural images.1

1. Introduction
Each natural image has its unique internal statistics:

small patches (e.g., 5x5, 7x7) recur abundantly inside a sin-
gle natural image [13, 33]. This patch recurrence was shown
to form a strong image-specific prior for solving many ill-
posed vision tasks in an unsupervised way [3, 6, 9, 8, 13,
27, 23, 2, 5]. In this paper we capture and visualize this
unique image-specific patch-distribution, and map it to new
target images of different sizes and shapes – all with the
same internal patch distribution as the input image (which
we loosely call “same DNA”).

For example, imagine you are given an input image, and
you wish to transform it to a new image, of drastically dif-

1Code will be made publicly available.

ferent shape, size and aspect ratio. But you don’t want
to distort any of its internal elements; you want to keep
them all in their original size, shape, aspect ratio, and in the
same relative position within the image. Such examples are
shown in Fig. 1. Note that despite changing the global size
and shape of the farmhouse image, the windows in the target
images maintain their local size and shape. Rows of win-
dows are automatically added/removed, and likewise for the
number of windows in each row. Similarly, when the fruit-
stand image in Fig. 1 is enlarged, more fruits are added in
each fruit-box while keeping the size of each fruit the same;
and vice versa when the image grows smaller, the num-
ber of fruits grows smaller, while maintaining their size and
their relative position within the image. Furthermore, note
that the target image may not necessarily be rectangular.

How can this be done? One way to satisfy these criteria
is to require that the distribution of patches in the target im-
ages match the distribution of patches in the input image, at
multiple image scales. We propose Distribution-Matching
as a new objective for “visual retargeting”. Note that we
use the term retargeting here differently than its common
use in image-retargeting methods [1, 4, 30]. Distribution-
matching allows synthesizing new target images of different
sizes and shapes - all with the same internal patch distribu-
tion as the input image.

A closely related work is the Bidirectional-Similarity
of Simakov et al. [27]. The Bidirectional objective con-
strains the target image to contain only patches from the
input image (“Visual Coherence”), and vice versa, the in-
put should contain only patches from the target (“Visual
Completeness”). Hence, no new artifacts are introduced
in the target image and no critical information is lost ei-
ther. Our new “Distribution Matching” formulation extends
the Bidirectional-Similarity and goes beyond it in multiple
ways: (i) It requires not only that all input patches be in
the output (and vice versa), but also that the frequency of
these patches remain the same. (ii) By matching distribu-
tions rather than individual patches, we can leverage recent
advances in distribution modeling using Generative Adver-
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Figure 1: InGAN’s Capabilities: (Top:) Once trained on an input image (marked by a red frame), InGAN can synthesize a plethora
of new images of significantly different sizes/shapes/aspect-ratios all with the same “DNA” of the input image. All elements inside
the image maintain their local size/shape and relative position. Please view attached videos to see the continuum between different
shapes/sizes/aspect-ratios. (Bottom:) InGAN provides a unified treatment for a variety of different datatypes – single/multi-texture
images, painitings, and complex natural images, all under a single umbrella.



Figure 2: InGAN Architecture: InGAN consists of a Generator G that retargets
input x to output y whose size/shape is determined by a geometric transformation T
(top left). A multiscale discriminator D learns to discriminate the patch statistics of the
fake output y from the true patch statistics of the input image (right). Additionally, we
take advantage of G’s automorphism to reconstruct the input back from y using G and
the inverse transformation T−1 (bottom left).

Figure 3: Adaptive Multi-Scale Patch Dis-
criminator

sarial Networks (GANs) [14]. (iii) A single forward pass
through our trained network can generate target images of
any size/shape/aspect ratio, without having to solve a new
optimization problem for each desired target.

GANs can be understood as a tool for distribution match-
ing [14]. A GAN typically learns a distribution of images in
a large image dataset. It maps data sampled from one distri-
bution to transformed data that is indistinguishable from a
target distribution, G : x→ y with x∼px, and G(x)∼py .
We propose an “Internal GAN” (InGAN) – an image-
specific GAN – which trains on a single input image and
learns its unique internal distribution of patches. InGAN
is fully unsupervised, requiring no training examples other
than the input image. Unlike most GANs, which map be-
tween two different distributions, InGAN is an automor-
phism, G : x→ x, with px being the distribution of patches
in the input image. Retargeting is achieved by modifying
the size and shape of the output tensor, which changes the
arrangement of patches, but not the distribution of patches.

Although this formulation is sufficient in theory to en-
courage both Coherence and Completeness, in practice we
observe that completeness is often not achieved – many
patches from the input image are omitted in the output
(“mode collapse”). To ameliorate this, we introduce a sec-
ond mechanism for encouraging completeness: it should be
possible to reconstruct (“decode”) the input image from the
output, i.e. ‖F (G(x))− x‖ should be small, where F is
a second network trained to perform the reverse mapping.
This objective encourages the mapping between input and
retargeted output to be cycle-consistent [32], a desideratum
that has recently come into widespread use and often im-
proves the results of distribution matching problems. Since
our proposed InGAN is an automorphism, we use G itself
to perform the decoding, that is ‖G (G (x))− x‖ resulting
in a novel Encoder-Encoder architecture.

Our results reinforce the recent finding that neural nets,
when trained on a single image, can learn a useful rep-

resentation of the internal statistics of that image. These
representations can then be used to super-resolve the im-
age [26], to inpaint patches removed from the image [28],
or to synthesize textures from the image [18, 31]. In par-
ticular, GANs trained on a single texture image were intro-
duced by [18, 31]. Through InGAN, we further show that
such image-specific internal statistics, encoded in a feedfor-
ward neural net, provides a single unified framework for a
variety of new tasks/capabilities (Image-Retargeting, Image
Summarization & Expansion, Texture-Synthesis, synthesiz-
ing Non-Rectangular outputs, etc.) Through its multi-scale
discriminator, InGAN further provides a unified treatment
for a variety of different datatypes (single/multi-texture im-
ages, painitings, and complex natural images), all under a
single umbrella. While not guaranteed to provide state-of-
the-art results compared to specialized methods optimized
for a specific task/datatype, it compares favorably to them,
and further gives rise to new applications.

Our contributions are several-fold:
• We define distribution-matching of patches as a criterion

for visual retargeting and image manipulation.
• InGAN provides a unified-framework for various differ-

ent tasks and different datatypes, all with a single network
architecture.

• Once trained, InGAN can produce outputs of signifi-
cantly different sizes, shapes, and aspect ratios, including
non-rectangular output images.

• To the best of our knowedge, InGAN is the first to train a
GAN on a single natural image.

• The inherent symmetry of the challenge (an Automor-
phism) gives rise to a new Encoder-Encoder architecture.

2. Method
2.1. Overview

Our InGAN is an image-conditional GAN (e.g., [17])
that maps an input image (as opposed to noise) to



Figure 4: Generator architecture: G receives an input im-
age x and a geometric transformation T which determines the
size/shape of the output.

a remapped target output image. It uses a genera-
tor, G, a discriminator, D, and re-uses G for decod-
ing/reconstructing the input given the output, as depicted
in Fig. 2. Our formulation aims to achieve two properties:
(i) matching distributions: The distribution of patches,
across scales, in the synthesized image, should match that
distribution in the original input image. This property is a
generalization of both the Coherence and Completeness ob-
jectives of [27]. (ii) localization: The elements’ locations
in the generated image should generally match their relative
locations in the original input image.

In detail, our method works as follows. Given an input
image x, and a geometric transformation T (which deter-
mines the desired shape/size of the target output),G synthe-
sizes a new image, y = G(x;T ). For example, T could be a
scaling transformation, a skew, an affine transformation, or
any other invertible geometric transformation. In our cur-
rent implementation we allow T to be any desired homog-
raphy (a 2D projective transformation). During training, T
is randomly sampled at each iteration. Once trained, G can
handle any desired transformation T (any homography).

The generator G trains to output an image y of
size/shape/aspect-ratio specified by T that, at the patch
level, is indistinguishable from the input image x, ac-
cording to an adversarial discriminator D. We adopt
the LSGAN [20] variant of this optimization problem:
G∗=minG maxD LGAN(G,D), where

LGAN(G,D) = Ey∼pdata(x)[(D(x)−1)2]+Ex∼pdata(x)[D(G(x))2]

The discriminator D and LGAN encourage matching the
patch distribution of y = G (x;T ) to that of x. D is fully
convolutional: it outputs a map (rather than a scalar) where
each pixel depends only on its receptive field [7], thus it has
all the patches of the original input x to train on. Using a
multiscale D enforces patch distribution matching at each
scale separately.

In practice using only LGAN may result in mode col-
lapse, i.e. the synthesized image consists of only a subset
of patches of the original image (it is coherent) but many
patches are missing (it is not complete). To ameliorate this

mode collapse we take advantage of the automorphism of
G and re-use G to reconstruct x back from the synthe-
sized image y. The `1 reconstruction loss Lreconst =∥∥G (

G (x;T ) ;T−1
)
− x

∥∥
1

encourages G to avoid mode
collapse and maintain completeness. The overall loss func-
tion of InGAN is LInGAN = LGAN + λ · Lreconst

Localization is implicitly encouraged through the choice
of network architecture. The architecture is locally-
connected rather than fully-connected (in particular, it is
convolutional). This means that an output pixel at loca-
tion {i, j} can only depend on input pixels in a finite recep-
tive field around that location in the input image. Nonlo-
cal mappings, beyond a certain radius, are impossible with
such an architecture. We also conjecture that simple local
mappings are easier to learn than nonlocal mappings, and
convolutional networks may naturally converge to these so-
lutions [10].

2.2. Shape-flexible Generator

Fig. 4 shows the architecture of the generator G. The
desired geometric transformation for the output shape T is
treated as an additional input that is fed to G for every for-
ward pass. A parameter-free transformation layer (green
layer in Fig. 4) geometrically transforms the feature map to
the desired output shape. Making the transformation layer
parameter-free allows training G once to transform x to any
size, shape or aspect ratio at test time.

The generator is fully-convolutional with an hourglass
architecture and skip connections (U-net [24] architecture).
The bottleneck consists of residual-blocks [15]. Downscal-
ing is done by max pooling. Upscaling is done by nearest-
neighbor resizing followed by a convolutional layer [22].

2.3. Multi-scale Patch Discriminator

We use a fully-convolutional patch discriminator D
(Fig. 3), as introduced in [17]. The labels for the discrim-
inator are maps (matrices of real/fake labels) of same size
as the desired output y. Thus D grades each patch for how
well it matches the patch distribution, rather than grading
the entire synthesized image.

InGAN uses a multi-scale D (similar to [29]). This fea-
ture is significant: A single scale discriminator can only
capture patch statistics of a specific size. Using a multiscale
D matches the patch distribution over a range of patch sizes,
capturing both fine-grained details as well as coarse struc-
tures in the image. At each scale, the discriminator is rather
simple: it consists of just four conv-layers with the first one
strided. Weights are not shared between different scale dis-
criminators. The downsampling factor from one scale to the
next is set to ς =

√
2.

The multiscale D outputs n discrimination maps that are
summed via global weighted mean pooling to yieldD’s out-
put. The weights are updated during the optimization pro-



input Seam-Carving [25] BiDir [27] Spatial-GAN [18] Non-stationary [31] InGAN (Ours)

Figure 5: Unified treatment for a range of datatypes InGAN handles textures, paintings and natural images with a single archi-
tecture, whereas texture synthesis methods [18, 31] poorly handle natural images, and retargeting methods [25, 27] struggle with textures.

cess in a coarse-to-fine manner. Initially, the weights are
such that most of the contribution to LGAN is from the coars-
est scale. As the training progresses, the contribution grad-
ually shifts to the finer scales.

2.4. Generator Invertibillity

TrainingGwithLGAN often leads to mode collapse where
the synthesized y’s are coherent – the multiscale patches of
y are drawn from the input image’s distribution – but not
complete – i.e. important visual information is missing from
the generated y’s. To achieve better completeness, InGAN
reconstructs the input image x from the output image y, en-
suring no visual information was lost in y. Taking advan-
tage of G’s automorphism allows us to re-use G to recon-
struct x back from y without training an additional decoder,
yielding an “Encoder-Encoder” architecture.

3. Implementation Details
We use the ADAM optimizer [19] and a linearly de-

caying learning rate. We train over crops, ranging from
192 × 192 to 256 × 256, with a batch-size of 1. The de-
fault weighting of the Lreconst loss is λ = 0.1. At each
iteration, parameters of a Homography transformation T
are randomly sampled, resulting in different output size,
shape and aspect ratio. We employ a form of curriculum-
learning so that the possible distortion allowed for T is ini-
tially very small. As the training progresses the allowed
range of deformations gradually grows through the curricu-
lum period (10k iterations) until it finally covers the entire
desired range.

We employ several mechanisms for encouraging stabil-
ity; spectral normalization [21] is used both in the discrim-

inator and the generator for all layers except the last one.
Batch normalization [16] is used in most conv-blocks. We
also encountered a degenerate case whereD was able to dis-
criminate real patches from generated ones due to the fact
that all values of the real patches were quantized to values
n/255. To avoid this we add uniform noise in the range of
[0, 1/255] to the real examples before feeding them to the
discriminator.

InGAN requries around 20k-75k iterations of gradient
descent in order to obtain appealing results. Training takes
1.5-4 Hrs on a single V-100 GPU, regardless of the size of
the input image. Once trained, InGAN can synthesize im-
ages of any desired size/shape/aspect-ratio in a single feed-
forward pass. For example, InGAN can remap to VGA size
(640×480) in about 40 ms (equivalent to 25 fps).

4. A Unified Framework for Multiple Tasks
InGAN provides a variety of capabilities and can be ap-

plied to multiple tasks. Moreover, it provides a unified treat-
ment of very different data-types, ranging from pure textures
to natural images, all under a single umbrella.

A single pure texture is usually captured by just a few
dominant image scales. Natural images, on the other hand,
tend to span a wide range of image scales, from fine-grained
details to coarse structures. Non-stationary textures and
multi-textured images tend to reside somewhere in-between
those two extremes. Each of these family of images is
usually treated separately, by different specialized methods.
Here we show that capturing and remapping the multiscale
patch distribution of an image provides a unified treatment
for all these seemingly different data-types. InGAN thus ap-
plies to a a continuum from pure textures to natural images,



input Non-stationary [31] Spatial-GAN [18] InGAN

Figure 6: Texture synthesis: Synthesizing textures of sizes ×1.5 and ×2. Note that [31] is restricted to ×2. Please zoom in.

in a single framework.

For example, observe the corn image in Fig. 7: small im-
age patches at fine image scales capture the tiny details of
the corn seeds, while patches at coarse images scales cap-
ture the structure of an entire corn-cob. When retargeting
the corn image to a wider/thinner output, entire corn-cobs
are added/removed (thus matching the multiscale patch dis-
tribution). In contrast, when changing the height of the
output image, small corn seeds are added/removed from
each corn-cob. This multiscale patch distribution is a fun-
damental characteristic of both natural images and textures.
Nonetheless it is important to stress that InGAN has no
semantic information about “objects” or “scenes”, it only
models the multiscale patch distribution of the input image.

Figs. 1,5,6,7,8 exemplify the range of capabilities and

data-types handled by InGAN. Additional examples are
found in the Supp-Material. A unique capability of
InGAN is its continuous transitions between different
shapes/sizes/aspect-ratios, best exemplified by the at-
tached videos in the Supplementary-Material.

We next discuss a variety of tasks & capabilities pro-
vided by InGAN, all with a single network architecture. In-
GAN may not provide state-of-the-art results compared to
specialized methods optimized for a specific task (often also
for a specific output size). Nevertheless, InGAN compares
favorably to these specialized methods, while providing a
single unified framework for them all. Moreover, InGAN
opens the door to new applications/capabilities.

Texture Synthesis: Texture synthesis is the task of syn-
thesizing a larger texture image from a small sample of the



Figure 7: Natural image retargeting: Comparing InGAN to Bidirectional similarity [27] and Seam Carving [25]. Please zoom in.

texture. Gatys et al. [12, 11] used pretrained network fea-
tures to synthesize textures. “Spatial-GAN” [18] and “Non-
Stationary Texture Synthesis” [31] use a patch-based GAN
in a fully convolutional manner, producing high quality tex-
tures. We refer to these kinds of textures (whether station-
ary or non-stationary) as Single-texture synthesis. Tex-
ture synthesis methods typically perform poorly on Multi-
texture synthesis – namely, synthesizing images contain-
ing multiple textures at various scales. InGAN can handle
both single- and multi-texture synthesis (as well as natu-
ral images), thanks to its multiscale discriminator. Figs. 5
and 6 show comparisons of InGAN to specialized texture-
synthesis methods, both on single- and multi-texture images
([31] is restricted to ×2 outputs).

Natural Image Retargeting: Summary and Expansion
Image retargeting aims at displaying a natural image
on a different display size, smaller or larger, often with
a different aspect ratio. Smaller representations (visual
summary, thumbnail) should faithfully represent the input
visual appearance as best as possible. Another goal is to
generate Expanded images of the same nature (often with
different aspect ratios).

There are several different notions of “image retarget-
ing”. Some methods (e.g., [4, 30]) aim at preserving salient
objects while seamlessly discarding background regions to
obtain a smaller image. They mostly do smart cropping,
keeping the main object centered in its original size. Some

of these methods struggle when there are several dominant
objects present in the image. They do not tend to perform
well on images with lots of clutter and texture, nor are they
catered to image expansion/synthesis. Seam-carving [1]
gradually removes/adds pixel-wide “seams” that yield min-
imal change to image gradients. This method can handle
both Summarization and Expansion.

Other methods (e.g., [27, 23]) aim at preserving local
sizes/aspect-ratios of all image elements (whether salient or
not) as best possible, while changing the global size/aspect-
ratio of the image. They cater both Summarization and Ex-
pansion. InGAN belongs to this family of methods.

Figs. 1,5,7 show retargeting examples and comparisons
of InGAN to Seam-Carving and Bidirectional-Similarity,
on natural images as well as non-natural ones. Since Seam-
carving [1] uses local information only (it removes/adds
pixel-wide “seams”), it tends to distort larger image struc-
tures under drastic changes in aspect ratio (see narrow dis-
torted peacock in Fig. 7). Bidirectional-Similarity [27] han-
dles this by using image patches at various scales, but re-
quires solving a new optimization problem for each output
size/aspect-ratio. In contrast, InGAN synthesizes a plethora
of new target images of different sizes/aspect-ratios with a
single trained network. Please view attached videos.

Image Retargetig to Non-rectangular Shapes: Unlike
any previous method, InGAN is able to retarget images
into non-rectangular outputs. This is made possible by in-



Figure 8: Retargeting to Non-Rectangular Outputs: InGAN is able to retarget to non-rectangular shapes using the geometric
transforation T (e.g., homography). Note that a pure homography tilts all the elements inside the image, wheras InGAN preserves local
shape/appearance & tilt of these elements. In particular, InGAN generates an illusion of retargeting to a new 3D view with correct parallax
(without any 3D recovery).

Input No Single- InGAN
Lreconst scale D

Figure 9: Ablation study: OmittingLreconst or using a single-
scale D, degrades the results compared to full InGAN architecture.
troducing random invertible geometric transformations in
InGAN’s Encoder-Encoder generator. Our current imple-
mentations uses Homgraphies (2D projective transforma-
tions), but the framework permits any invertible transfor-
mations. Figs. 1 and 8 display a few such examples. Note
that a pure homography tilts all the elements inside the im-
age. In contrast, InGAN preserves local shape & tilt of these
elements despite the severe change in global shape of the
image. In particular, while the synthesized visual quality is
not very high under extreme shape distortions, InGAN gen-
erates an interesting illusion of retargeting into a new 3D
view with correct parallax (but without any 3D estimation).

5. Ablation Study and Limitations
We conducted an ablation study to verify the importance

of: (i) the “encoder-encoder” architecture with its `1 recon-
struction loss, and (ii) the importance of multiple scales in

Figure 10: Failure example: Input in red. InGAN has no
semantic understanding of “objects” or “scenes”, it only models
the multiscale patch distribution of the input image, hence cannot
distinguish between object-parts and entire objects.

the discriminatorD. Fig. 9 shows one such example: Train-
ing InGAN without Lreconst (left-most result) shows un-
structured output: two birds are completely missing and the
dominant bird is split into two. Using a single scaleD (mid-
dle result) makesG generate a result that is locally coherent,
but lacks large scale structures. The birds were completely
destroyed. In contrast, the full InGAN (right-most) with
Lreconst and multiscale D maintains both fine details and
coarse structures. In particular, all 3 birds are in the output.

Limitations: InGAN is trained in an unsupervised man-
ner – it has no additional information other than the input
image itself. In particular, InGAN has no semantic un-
derstanding, no notion of “objects” or “scenes”. Its sole
objective is capturing and remapping the multiscale patch
distribution of the input image. Thus, InGAN sometimes
produces funny/unnatural results. Fig 10 shows such an ex-
ample: InGAN produces an output that is both coherent and
complete (all local elements are preserved), yet is incorrect
in its semantic meaning.
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