
Constructing Implicit 3D Shape Models for Pose Estimation

Mica Arie-Nachimson Ronen Basri∗

Dept. of Computer Science and Applied Math.
Weizmann Institute of Science

Rehovot 76100, Israel

Abstract

We present a system that constructs “implicit shape mod-
els” for classes of rigid 3D objects and utilizes these mod-
els to estimating the pose of class instances in single 2D
images. We use the framework of implicit shape models to
construct a voting procedure that allows for 3D transfor-
mations and projection and accounts for self occlusion. The
model is comprised of a collection of learned features, their
3D locations, their appearances in different views, and the
set of views in which they are visible. We further learn the
parameters of a model from training images by applying
a method that relies on factorization. We demonstrate the
utility of the constructed models by applying them in pose
estimation experiments to recover the viewpoint of class in-
stances.

1. Introduction
3D objects may appear very different when seen from

different viewing positions. Computer vision systems are
expected to consistently recognize objects despite this vari-
ability. Constructing representations of 3D objects and their
appearances in different views therefore is an important
goal of machine vision systems. Recent years have seen
tremendous effort, and considerable success, in using statis-
tical models to describe the variability of visual data for de-
tection and classification. This work, however, has focused
primarily on building deformable 2D representations of ob-
jects, while very few studies attempted to build class models
that explicitly account for viewpoint variations. This paper
presents an effort to construct a statistical voting procedure
for classes of rigid 3D objects and use it to recover the pose
of class instances in single 2D images.

Constructing 3D models from 2D training images is
challenging because depth information is difficult to infer
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from single images. Training methods must therefore re-
late the information in pairs, or larger subsets of images,
but this requires a solution to a problem of correspondence,
which is aggravated by the different appearances that fea-
tures may take due to both viewpoint and intra-class varia-
tions. However, once correspondence is resolved one may
be able to construct models that can generalize simultane-
ously to novel viewpoints and class instances and allow es-
timating geometric properties of observed class instances
such as viewpoint and depth.

Here we present a system that constructs 3D models of
classes of rigid objects and utilizes these models to esti-
mating the pose of class instances. Our formulation relies
on the “implicit shape models” [13], a detection scheme
based on weighted voting, which we modify to allow for
3D transformations and projection and to account for self
occlusion. The class models we construct consist of a col-
lection of learned features, their 3D locations, their appear-
ances in different views, and the set of views in which they
are visible. We further learn the parameters of these models
from training images by applying a method that relies on
factorization [23]. Note that unlike most prior work, which
used factorization to reconstruct the shape of specific ob-
jects, here we use factorization to construct voting models
for classes of rigid objects whose shapes can vary by lim-
ited deformation (see however extensions of factorization to
more general linear models in, e.g., [18, 17]). Finally, we
demonstrate the utility of the constructed models by apply-
ing them in pose estimation experiments.

Most recognition work that deals with class variabil-
ity either ignores variability due to viewpoint altogether
(e.g. [6, 13]) or builds a separate independent model for
a collection of distinct views [3, 5, 16]. Several recent
methods construct “multiview models,” in which models of
nearby views are related either by sharing features or by
admitting some geometric constraints (e.g., epipolar con-
straints or homographies) [12, 19, 20, 21, 22, 24]. 3D class
models are constructed in [14] by training using synthetic
3D models and their synthesized projections. [9, 26] in-
troduce multiview models in which features from different
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views are associated with a 3D volumetric model of class
instances.

Our paper is divided as follows. Our implicit 3D shape
model is defined in Section 2. An approach to constructing
the model is described in Section 3. A procedure for esti-
mating the pose of class instances is outlined in Section 4.
Finally, experimental results are provided in Section 5.

2. Implicit 3D Shape Model
Implicit shape models were proposed in [13] as a method

for identifying the likely locations of class instances in im-
ages. Object detection is achieved in this method by apply-
ing a weighted voting procedure, with weights determined
by assessing the quality of matching image to model fea-
tures. The method was designed originally to handle 2D
patterns whose position in the image is unknown. Here we
modify this procedure to allow handling projections of 3D
objects taking into account visibility due to self occlusion.

We define our implicit 3D shape model as follows. We
represent a class as a set of features embedded in 3D space,
where each feature point represents a “semantic part” of an
object. Then, given a 2D image we consider transforma-
tions that map the 3D feature points to the image plane and
seek the transformation that best aligns the model features
with the image features.

Specifically, we assume we are given a codebook of J
model (class) features, denoted F1, ..., FJ , where every fea-
ture Fj represents such a semantic element. Features are
associated with some 3D location Lj and an appearance de-
scriptor Ej . Given an image I , we obtain a set of image
features, denoted f1, ...fN , with fi associated with a 2D lo-
cation li and an appearance descriptor ei. We further define
the discrete random variables F and f to respectively take
values in {F1, ..., FJ} and {f1, ...fN} and use the notation
P (Fj , fi) to denote P (F = Fj , f = fi). Let T denote a
class of transformations that map 3D locations to the image
plane, and let T ∈ T denote a transformation in this class.
We seek to maximize the score P (T |I) over all T . This
score can be written as follows.

P (T |I) =
∑

i

∑
j

P (Fj , fi, T |I).

As the dependence on I is implicit in the selection of the
image features f1, ..., fN we henceforth simplify notation
by dropping this dependence. We further assume that the
joint probability P (Fj , fi, T ) can be written as a product

P (Fj , fi, T ) =
P (Lj , li, T )P (Ej , ei, T )

P (T )
,

and use a uniform prior for T ∈ T . The first term in the nu-
merator, P (Lj , li, T ), models the effect of feature location
and is defined as a function of the displacement li−T (Lj).

Specifically, we currently use a uniform distribution over
a square window around li (similar to the choice made
in [13]). The second term in this product, P (Ej , ei, T ),
models the effect of appearance, and will be determined by
the quality of the match between ei and Ej . We further
write this term as

P (Ej , ei, T ) = P (Ej , T |ei)P (ei),

and assume a uniform distribution for P (ei). To define the
term P (Ej , T |ei) we use the score function match(ei, Ej)
(defined below), which evaluates the quality of a match be-
tween appearance descriptors. We set this term to

P (Ej , T |ei) ∝

{
match(ei,Ej)∑

j∈V(T ) match(ei,Ej)
j ∈ V(T )

0 j 6∈ V(T ),

where V(T ) denotes the set of model features that are visi-
ble under T .

Our model has the following parameters:

Appearance: the appearance of an image feature ei is rep-
resented by a SIFT descriptor [15] computed over a
16 × 16 pixel patch centered at li. A model fea-
ture Fj is associated with a set of 2D appearances,
Ej = {ej,1, ej,2, ...}, representing the appearances of
the feature in different viewpoints and in different class
instances. We compare a model feature Ej with an

image feature ei by the measure match(ei, Ej)
def
=

maxk d(ei, ej,k) over all appearances associated with
Ej , where d(ei, ej) = exp(−||ei − ej ||22).

Location: a model feature is associated with a 3D location
Lj = (Xj , Yj , Zj)T , and an image feature is associ-
ated with a 2D location li = (xi, yi)T .

Transformation: we allow for a 3D similarity transforma-
tion followed by an orthographic projection. A simi-
larity transformation has 6 degrees of freedom and is
defined by a triplet< s,R, t >, where s denotes scale,
R is a 2×3 matrix containing the two rows of a rotation
matrix with RRT = I , and t is a 2D translation. We
limit the allowed scale changes to the range [0.4, 2.5].

Visibility: we allow each feature to be visible in a re-
stricted subset of the viewing sphere. We model this
subset by a disk (as in [2]), defined by the intersection
of a (possibly non-central) half space and the viewing
sphere. Such a choice of visibility region is reasonable
when the object is roughly convex and the appearance
of features changes gradually with viewpoint.

The following section describes how we construct this
model from training images.



3. Model Construction

Constructing a 3D class model from a training set of im-
ages involves computing statistics of feature locations in a
3D object centered coordinate frame. As depth information
is not directly available in single images we need a method
that can integrate information from multiple images. More-
over, the recovery of depth values requires accurate knowl-
edge of the pose of the object in the training images, and it
is arguably desirable not to require such detailed informa-
tion to be provided with the training images. The task of
constructing a 3D class model is therefore analogous to the
problem of shape reconstruction in which the 3D structure
of a rigid object is determined from an uncalibrated collec-
tion of its views. Below we follow up on this analogy and
use a procedure based on Tomasi and Kanade’s factoriza-
tion method [23] (abbreviated below to TK-factorization) to
construct a 3D class model. For completeness we briefly
review this procedure below.

Given a set of images taken from different viewpoints
around an object, along with the 2D locations of corre-
sponding points across these images, the TK-factorization
recovers the camera motion and the original 3D locations
of the points. We begin by constructing a 2f × p matrix
M , which we call the measurement matrix. M includes
the x and y coordinates of the p feature points in the f
images organized such that all corresponding locations of
a feature form a column in M . The coordinates are first
centered around a common origin, e.g., by subtracting the
mean location in each image. We then expressM as a prod-
uct M ≈ RS where the 3 × p matrix S, called the shape
matrix, includes the recovered 3D positions of the feature
points, and the 2f × 3 matrix R, called the transformation
matrix, includes the transformations that map these 3D po-
sitions to their projected locations in each of the images. We
set those matrices toR = U3

√
∆3A and S = A−1

√
∆3V

T
3 ,

where M = U∆V T is the Singular Value Decomposition
of M , ∆3 is a 3 × 3 diagonal matrix containing the largest
three singular values of M , U3 and V3 include the three left
(respectively right) dominant singular vectors of M , and A
is an invertible 3 × 3 ambiguity matrix. The components
of A are determined by exploiting the expected orthogonal
structure in R. Specifically, let rx and ry denote a pair of
rows in U3

√
∆3 that correspond to a single image. We seek

A that solves (
rx

ry

)
AAT

(
rx

ry

)T

= sI2

simultaneously for all images, where I2 representing the 2×
2 identity matrix, and s > 0 is an unknown scaling factor.

There are several difficulties in applying the TK-
factorization to our problem. Perhaps the most important
problem concerns the strict rank assumption made by the

TK-factorization, which is appropriate when the images in-
clude orthographic views of a single, rigid object, but may
break in the presence of significant intra-class variations.
This concern limits the applicability of the TK-factorization
to classes of fairly tight shapes. Nevertheless, we demon-
strate in our experiments that the TK-factorization can in-
deed be used to construct 3D models for common classes
of objects sustaining reasonable shape variations. Apply-
ing the TK-factorization method is difficult also because
it requires a solution to a correspondence problem, which
is generally hard, particularly when the objects appear-
ing in the training images differ by both viewpoint and
shape. Finally, the TK-factorization must deal with signifi-
cant amounts of missing data, due to self occlusion. Below
we introduce an attempt to overcome these difficulties.

In the sequel we assume we are given a training set that
includes segmented images of class objects seen from dif-
ferent viewpoints. The training set is comprised of two sub-
sets. The first subset, which we call the initial set, includes
images of a single class instance (i.e., a specific car model)
seen from different viewpoints. The initial set will be used
to construct a 3D model for this specific class instance that
will serve as an initial model for the class. The remaining
set includes images of other class instances seen from dif-
ferent viewpoints, where in particular each pair of images
may differ simultaneously in both instance and viewpoint.
Those images will be used to refine the initial model.

3.1. Model initialization

Our first goal at this stage is to use the initial set to con-
struct a 3D model for a specific class instance. We assume
we can roughly center the images of the initial set around
the center of their segmented region. Then, to initialize the
reconstruction process we select a small collection of fea-
ture points and manually mark their locations in all the im-
ages in the initial set. This produces a measurement matrix
MI of size 2fI × pI , where fI denotes the number of im-
ages in the initial set and pI the number of selected feature
points. MI includes the x and y coordinates of the marked
points, along with many missing entries due to self occlu-
sion.

To recover the 3D position of the marked points we pro-
ceed by recovering a rank 3 approximation toMI using [25]
(initialized with the algorithm of [11]), which accounts for
the missing entries. We seek a rank 3 approximation in
this case since the images are roughly centered. We then
use the TK-factorization [23] to recover the corresponding
transformation and shape matrices RI and SI . Finally, we
extend the model by adding many more points from each
image of the initial set. For each image we apply the Harris
corner detector [8] and associate with the detected points a
depth value by interpolating the depth values of the man-
ually marked points. By using interpolation we avoid the



need to resolve correspondences between features in differ-
ent images. This step provides us with a rich (albeit approx-
imate) 3D model of a specific class instance.

3.2. Constructing a 3D class model

Given the initial model we turn to constructing a 3D class
model. Our aim at this stage is to extend the measurement
matrix MI by appending additional rows for all the remain-
ing training images. This we can do if we solve a corre-
spondence problem between each of the remaining training
images and (at least one) of the initial images.

We match a training image to the initial images as fol-
lows. Given a training image It we seek the most similar
image in the initial set, denoted II(t), using the method of
implicit 2D shape models [13]. For every image Ii of the
initial set we produce a voting map Vi as follows. We begin
by overlaying a grid with an inter-distance of 4 pixels and
use every grid point as a feature. We then compare every
pair of features (et, lt) ∈ It and (ei, li) ∈ Ii and vote for a
center location at lt−li with weight proportional to |et−ei|.
The sought image II(t) is then selected to be the image of
the initial set that gave rise to the highest peak.

Next we assign correspondences to the pair It and II(t).
We consider the location of the highest peak in VI(t) and
identify pairs of features that voted for that location. To ob-
tain additional correspondences we repeat this process by
adding the correspondences found between It and the views
nearest to II(t) (we used four nearest views in our experi-
ments).

Following this process we obtain a new measurement
matrix M̃ that includes the locations of feature points in the
initial set (MI ) as well as new correspondences extracted
from the training images. However, M̃ may still contain
significant amounts of missing data due to occlusions and
lack of sufficient matches. Solving for the missing data can
be difficult in this case since M̃ may deviate from low rank
due to intra-class variations. We approach this problem by
initializing the search for a low rank approximation of [25]
by filling in the missing values in M̃ with corresponding
values fromRISI . Once a low rank approximation, denoted
M , is found, we proceed by applying the TK-factorization
algorithm toM , recovering a transformation matrixR and a
shape matrix S. Note that this step of factorization is meant
to recover the 3D information of the class. Finally, we use
the recovered shape matrix to fill in the location parameters
Lj of the model.

3.3. Determining visibility

The transformation matrix R produced by the TK-
factorization for the entire training data can be used to infer
the viewpoint from which each object is viewed in each im-
age. This information, along with the missing entries in the

measurement matrix, can be used to determine the visibility
model.

To determine the viewpoint of each training image from
R we first note that although the TK-factorization uses the
anticipated orthogonal structure of R to remove ambigui-
ties, it does not enforce such a structure, and so the obtained
rows may not be orthogonal as desired. Therefore, to asso-
ciate a similarity transformation with each training image
we apply an orthogonalization process. Given two rows of
R, denoted rx and ry , that correspond to a single training
image we seek the nearest pair of vectors r̃x and r̃y that are
both orthogonal and have equal norms, i.e.,

min
r̃x,r̃y

‖rx − r̃x‖2 + ‖ry − r̃y‖2

such that
‖r̃x‖ = ‖r̃y‖ and r̃T

x r̃y = 0.

Such a pair is expressed in closed form [1] by(
r̃x

r̃y

)T

=
1

2∆

(
2∆ + ‖rx‖2 −rT

x ry

−rT
x ry 2∆ + ‖ry‖2

)(
rx

ry

)T

,

with ∆ =
√
‖rx‖2‖ry‖2 − (rT

x ry)2. The pair of vectors
r̃x and r̃y obtained represent the first two rows of a scaled
rotation in 3D. The viewpoint corresponding to this rotation
is given by

v =
r̃x

‖r̃x‖
× r̃y

‖r̃y‖
.

Finally, to determine the visibility model, for each fea-
ture (column of M ) we consider all its non-missing entries,
corresponding to the training images in which it was ob-
served. We then determine the visibility region by selecting
the half space whose intersection with the viewing sphere
creates the minimal region that includes all the viewpoints
in which the feature was observed from. For a feature
(Ej , Lj) let v1,v2, ... denote the set of viewpoints from
which it was observed. Denote by v̄ the viewpoint in the
direction of the mean of those viewpoints. Then we set
the visible region to include all the viewpoints v in the set
{v|v̄T v ≥ mink v̄T vk − ε} for some constant ε > 0.

4. Pose estimation
Given a test image we can use the model to estimate

the pose of an object by evaluating P (T |I). Computing
P (T |I), however, can be demanding since T is a 3D sim-
ilarity transformation, and so this probability distribution
is defined over a 6-dimensional parameter domain. Rather
than discretizing this domain we chose to evaluate the prob-
ability in regions of this domain suggested by the data. This
we do by applying a RANSAC procedure [7, 10] as follows.

Given a test image I we first overlay a grid over the im-
age with distance of 4 pixels between grid points. Using



Figure 1. Example images from the initial set.

Figure 2. Example images from the remaining training set.

Figure 3. Recovery of camera positions for the training set. Cam-
era positions recovered for the initial set are marked in red, and
positions recovered for the remaining training images are marked
in blue.

every grid point as a feature (ei, li) we compare its appear-
ance (normalized SIFT descriptor) to each of the model fea-
tures. We then select the best matching model feature, i.e.,
maxj match(ei, Ej). Next, we go through the list of best
matches and enumerate triplets of k best matching pairs.
For each such triplet we compute a 3D-to-2D similarity
transformation and evaluate P (T |I).

5. Experiments

We used our method to construct an implicit shape model
for sedan cars. Our training set consisted of 86 segmented
images of cars. 21 of the 86 training images, which included
images of the same car (Mazda3 model) seen from different
viewpoints, were used as the initial set. The remaining 65
images of the training set included images of different car
models seen in different viewpoints. Very few of the re-
maining images were of the same car model. Some of the
training images (available in [27]) can be seen in Figures 1
and 2. We initialized the training by selecting 18 identifi-
able features and marking their location manually in each
of the 21 images of the initial set. We then applied the pro-

Figure 4. Pose estimation results for the car dataset of [19]. For
the eight views labeled in the dataset (frontal, left, back, right, and
intermediate views) we show a view confusion matrix (left) and a
histogram of view error (right).

Figure 5. Pose estimation results for the PASCAL VOC 2007 car
dataset [4]. Here we compare our pose estimations with a manual
labeling relating each of the cars in the dataset to its nearest view
among the 21 images of the initial set and their mirror (left/right)
reflections. Left: a confusion matrix. For the sake of presentation
each 4 images are placed in a single bin, obtaining an average
bin size of 36◦. Right: a histogram of view errors. The peak
around zero indicates that most images were matched either to or
near their most similar pose. The small peak near 20 signifies the
common 180◦ confusion.

cedure described in Section 3 constructing first a 3D model
for the Mazda3 car, and then extending it by constructing a
model for the full training set. Following this procedure we
obtained a model with about 1800 features covering differ-
ent viewpoints and class instances, each associated with a
3D location and a collection of appearances. We further re-
covered a viewpoint for each training image and used those
viewpoints to construct a visibility region for each feature.
Fig. 3 shows the viewpoints recovered for the training im-
ages. It can be seen that the viewpoints are roughly copla-
nar, spanning a range of 180◦ from frontal to rear views.



Figure 6. Pose estimation examples. The figure shows green bounding boxes around cars identified by our method. Ground truth bounding
boxes are shown in red. In addition, below each image we show the car from the initial set whose view was found closest by our method.

Figure 7. Pose estimation errors. The figure shows green bounding boxes around cars identified by our method. Ground truth bounding
boxes are shown in red. Below each image we show the car from the initial set whose view was considered closest by our method.

We used our model to estimate the pose of cars in the
dataset of 3D object categories of [19] and the PASCAL
VOC 2007 car dataset [4]. For the first dataset only we en-
riched the model by adding the images of 5 out of the 10
cars in the dataset to the training set. Then, for each image
of the remaining 5 cars, we used our model to detect the
single most likely transformation according to our voting
scheme. We first produced four scalings for each test image
I , by factors of 0.5, 1/

√
2, 1, and

√
2, and flipped the im-

age about the vertical axis to account for right/left reversals,
producing overall 8 copies of I . For each of these 8 copies
we overlaid a grid of distance 4 pixels between grid points
and produced for each grid point a SIFT descriptor [15]. We
further normalized each descriptor by dividing its entries by
their sum (adding ε = 0.2 to avoid noisy responses in uni-
form regions).

We next produced a collection of correspondences of
triplets of points, as we describe in Section 4, with k =

100, and recovered for each triplet a 3D-to-2D similarity
transformation. We excluded near singular transformations,
transformations with scale outside the range [0.4, 2.5], and
transformations for which either one of the basis pair or
more than 80% of the model features were not visible. For
each of the remaining transformations we then evaluated
P (T |I) and selected the single transformation that gave the
highest score over all four scalings. Finally, we placed a
bounding box by fitting the smallest box that included more
than 95% of the entire transformed and projected 3D model
points. Of the 160 test images (5 objects, 16 viewpoints, 2
scalings) our method detected 98 cars (61.25%) (compared
to classification rates between 45-75% reported in [19, 20]).
Fig. 4 shows a histogram of view errors and confusion ma-
trix relative to ground truth labeling of 8 different car direc-
tions. Most of the detected cars were classified correctly or
fell into the neighboring bin. A few additional mistakes re-
sulted in 180◦ errors (e.g., front/back confusion or right/left



Figure 8. Detection errors. Our detection in green vs. ground truth in red.

Figure 9. Depth values of features predicted by the model. Color values vary from red (closer to the camera) to blue (further from the
camera).

Figure 10. Part labels propagated from the model based on the voting.

reversal).

We next used our model (trained only with the origi-
nal 86 images) to estimate the pose of cars in the PASCAL
2007 VOC car database. We used the car test set presented
for the detection challenge, excluding test images in which
there was no car of more than 7000 pixels in size, obtain-
ing 490 images. We used the same procedure to detect the
single most likely transformation in each image according
to our voting scheme. Overall our method found 188 cars
in the 490 images (38.3%) with average precision rate of
0.261. We then evaluated the accuracy of our pose esti-

mation by automatically selecting, for each of the detected
cars, the image from the initial set with pose closest to the
one found by our method. Quantitative results are shown in
Fig. 5 and some examples of the results obtained with our
pose estimation procedure are shown in Figures 6-8. For
the quantitative assessment we manually labelled each of
the test images with the image of the initial set that appear
visually to be pictured from the nearest viewing angle. This
data is available in [27]. As our initial set consists of 21
images spanning 180 degrees, this labelling represents an
average accuracy of 9◦. We then compared our pose esti-



mation results with the manual labellings. The results are
shown in the histogram and confusion matrix in Fig. 5. As
can be seen, most car images were associated with one of
the 3 nearest viewing angles, with most errors occuring by
180◦ rotation (e.g., confusing front and rear views of cars
or left/right reversals). Note that achieving highly accurate
pose estimations can be difficult since viewpoint variations
can often be traded with intra-class variations.

To further demonstrate the utility of our 3D model we
estimated the depth values of image features predicted by
our 3D model. These depth values can be seen in Fig. 9.
Finally, we manually labeled features in the 3D model that
correspond to semantic parts of cars, e.g., the wheels, win-
dows, headlights, mirrors, etc. Then, for the test images
we set the 2D location of these labels based on the votings.
Fig. 10 shows the location of parts identified using the pro-
jected models. It can be seen that both the depth values and
part labels are in fairly good agreement with the image.

6. Conclusion
Computer vision systems are expected to handle 3D ob-

jects whose appearance can vary both due to viewing direc-
tion and to intra-class variations. In this paper we have pre-
sented a system for pose estimation of class instances. Re-
lying on the framework of implicit shape models, we have
introduced a voting procedure that allows for 3D transfor-
mations and projection and accounts for self occlusion. We
have further used factorization to construct a model from
training images. Our results indicate that, despite signif-
icant intra-class variations, our voting procedure in many
cases is capable of recovering the pose of objects to a rea-
sonable accuracy. Our future objectives include construct-
ing generative class models of rigid 3D objects and enhanc-
ing these models to allow articulations or deformations.
Acknowledgment: We thank Gregory Shakhnarovich,
Nathan Srebro, and David Jacobs for useful discussions.
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