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Abstract

We present an unsupervised, shape-based method for
joint clustering of multiple image segmentations. Given two
or more closely-related images, such as nearby frames in
a video sequence or images of the same scene taken under
different lighting conditions, our method generates a joint
segmentation of the images. We introduce a novel contour-
based representation that allows us to cast the shape-based
joint clustering problem as a quadratic semi-assignment
problem. Our score function is additive. We use complex-
valued affinities to assess the quality of matching the edge
elements at the exterior bounding contour of clusters, while
ignoring the contributions of elements that fall in the inte-
rior of the clusters. We further combine this contour-based
score with region information and use a linear program-
ming relaxation to solve for the joint clusters. We evaluate
our approach on the occlusion boundary data-set of Stein
et al.

1. Introduction

We present a method that combines contour- and region-
based information to produce a joint clustering of two
or more closely-related images. By “closely-related”, we
mean that the same objects are present in the images and
that the objects roughly maintain their shapes, e.g., nearby
frames in a video sequence, images of the same scene taken
under varying illumination, or adjacent tissue slices in 3-
dimensional biomedical images.

Since accurate segmentations are often difficult to ob-
tain, a large number of recent methods utilize “super-
pixels,” i.e., regions obtained by oversegmentation of the
input image. In this work we consider the problem of
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Figure 1: Co-clustering super-pixels. Oversegmentations
of two consecutive frames from the ‘squirrel3’ sequence
[14] are generated using a watershed transform (first and
second rows). Our shape-based co-clustering method seeks
to maximize the agreement between clusters of super-pixels
across images. The result obtained by our algorithm is
shown in the bottom row. Each segment is shown with its
average color and surrounded by a white outline.

co-clustering oversegmentations to improve segmentation
quality. Consider the problem of combining information
from automatic superpixel maps generated independently
for consecutive frames of a video sequence. We assume
that true object boundaries persist in most of the frames,
while the false boundaries will be random and unlikely to
be consistent in all the frames.

Specifically, we approach the problem of co-clustering
of segments (super-pixels) by defining a quadratic optimiza-
tion function with complex-valued affinities in order to op-
timally match the bounding contour elements of the clus-
tered segments. We achieve this by defining a measure that
is additive with respect to segments. For a union of seg-
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ments, this measure sums the score of matching the con-
tour elements at the exterior bounding contour of the union
while ignoring the contributions of elements that fall in
the interior of the union. This measure can then be com-
bined with analogous measures that utilize region informa-
tion. To optimize our measure we follow the convex re-
laxations of [19] and cast our problem as a linear program
with a number of variables that depends only on the number
of segments. Furthermore our optimization determines the
number of clusters automatically. We evaluate our approach
on the “Video Dataset for Occlusion/Object Boundary De-
tection” benchmark [13]. Figure 1 illustrates our results,
showing two video frames from the benchmark, their seg-
mentation to super-pixels, and our co-clustering results.

2. Related work
The problem of co-clustering of image segments was re-

cently addressed in [19], where it was posed as a convex op-
timization problem and applied to electron microscopy im-
ages. There the co-clustering aimed to maximize agreement
between clusters of segments across images. The agreement
was measured using mere region information. The authors
suggested two measures: pixel area overlap and merge-
confidences computed by a boosted classifier. The latter
compares the color histograms of the segments, while the
former maximizes the pixel overlap between corresponding
segments (or, equivalently, minimizes the symmetric differ-
ence). These measures may not be ideal for shape compar-
ison, however. Shapes often differ by the composition of
their (possibly narrow) protrusions. Such protrusions may
be semantically important, but they contribute very little to
the pixel-wise difference. Furthermore, even small transla-
tions of the same shape can result in a large drop in pixel
overlap.

Closely-related to segment co-clustering is the problem
of co-segmentation, first introduced by [10] and studied by
e.g., [6, 8]. See [18] for a good recent overview of the prob-
lem and existing methods. These methods take as input two
or more images containing a single common foreground ob-
ject with varying backgrounds, and attempt to segment the
foreground object from the background.

Co-segmentation algorithms are best-suited for handling
images whose content differs significantly, but whose com-
mon object maintains its color/texture. Our formulation, in
contrast, allows for multiple common objects. It aims to
generate a full image segmentation identifying all of the ob-
jects in the image. Our method is designed to handle closely
related images, such as two consecutive video-frames, in
which the objects undergo only moderate deformation. Co-
segmentation algorithms would generally fail on such in-
put, since in consecutive frames the background objects also
maintain their appearance.

The problem we address is also related to motion seg-

mentation. However, unlike many motion segmentation
studies ([3, 7]), we do not assume parametric motion for
the individual segments.

In other related work, [1] segments multiple images
while simultaneously learning class models. [16] seeks
to match segments across images by optimizing their “co-
saliency” using inter and intra image interactions. Fi-
nally, [17] provides an elegant shape representation based
on chord histograms and employs it within an SDP opti-
mization framework to detect model shapes in superpixel
maps.

3. Joint Clustering Formulation
Let {I(i)}Ni=1 be a sequence of closely-related images in

which the same objects are present and roughly maintain
their shapes. For simplicity, let us assume that all images
are defined on the same domain Ω ∈ R2. Let {P (i)}Ni=1

be partitions of Ω generated by segmenting the respective
images. Each of these segmentations is of the form P (i) =

{S(i)
1 , S

(i)
2 , ..., S

(i)
ni }, so that Ω = ·∪ni

j=1S
(i)
j , and ni is the

number of segments in P (i).
A joint clustering of all segments in all images ∪Ni=1P

(i),
is defined by a binary-valued matrix X of size n× c where
n =

∑N
i=1 ni is the total number of segments in all im-

ages and c is the number of clusters in the joint clustering.
A column xk of the matrix X = (x1, x2, · · · , xc) corre-
sponds to a single cluster, which consists of subsets of seg-
ments from the different images. Each xk is a concatena-

tion xk =
(
x
(1)T
k , x

(2)T
k , · · · , x(N)T

k

)T
, where each x(i)k of

size ni indicates the segments from image i that participate
in cluster k. By requiring X to have unit norm rows, we
enforce the constraints that each segment is assigned to ex-
actly one cluster.

We measure the quality of a cluster by considering the in-
tra and inter image interactions between the subsets of seg-
ments chosen from each image. We construct a complex-
valued Hermitian affinity matrix

Q =

 Q(1,1) · · · Q(1,N)

...
. . .

...
Q(N,1) · · · Q(N,N)

 (1)

of size n × n with N2 blocks. The score associated with a
clustering matrix X is given by

tr(XTQX) =

c∑
k=1

xTkQxk =

c∑
k=1

n∑
i=1

n∑
j=1

x
(i)T
k Q(i,j)x

(j)
k .

(2)
The diagonal-block terms x(i)Tk Q(i,i)x

(i)
k measure the inter-

actions amongst a subset of segments from the same im-
age. The off-diagonal-block terms x(i)Tk Q(i,j)x

(j)
k for i 6= j
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(a) (b) (c) (d)
Figure 2: Shape vs. symmetric difference. Two frames
taken from an x-ray cardiac image sequence (2a), their over-
segmentations (2b) and the result of our shape-based joint
clustering algorithm (2c). 2d shows the symmetric differ-
ence (blue and light blue) and the intersection (red) of the
clusters corresponding to the main arteries in the two im-
ages, indicating that a method based on region overlap is
likely to fail to cluster them correctly. Our shape-based
method is better-suited to this example than the symmetric
difference approach of [19].

measure interactions between two distinct subsets of the
segments from images i and j which participate in cluster
k.

3.1. Inter Image Interactions

Recall that we assume that each pair of over-
segmentations (P (i), P (j)) roughly agree on the correct ob-
ject boundaries, but disagree otherwise. We wish to con-
struct an inter-image interaction matrix that (1) encourages
agreement on the boundary edges of the correct segmenta-
tion and (2) allows for moderate translations and deforma-
tions even when such distortions affect the area of overlap
of the correct segments across images. Figure 2 illustrates
possible shortcomings of a measure that relies on the area
of overlap of the segments rather than on the shape-based
approach.

We therefore propose a novel method that seeks to match
the bounding edge elements of unions of segments in a clus-
ter. Key to our method is the use of an additive score func-
tion. This function sums the scores of matching the individ-
ual contour elements of segments, such that only the ele-
ments in the exterior bounding contours of the union partic-
ipate in determining the score, while the elements that fall
in the interior of the union cancel out.

Definition Let P = {S1, ..., Sn} be a segmentation and
{bJ}J⊆{1,...,n} be a representation of the subsets of seg-
ments. We call {bJ} an additive representation if

bJ1∪J2
= bJ1

+ bJ2
(3)

eiφφφφ

eiθ

0

ei(θ+ππππ))))

union

eiφφφφ

0
+ =

Figure 3: Additive representation. A segment, or a union
of segments, is represented by a complex-valued vector.
Non-zero entries represent the angle of the normal to the
edge elements along a segment’s contour. The blue and
green segments share a common boundary. Therefore, their
representations share non-zero entries for edge elements at
the common portion of the boundary. However, the normal
angles at these common boundaries differ by π. As a result
when the two representation vectors are added, the entries
of the shared edge elements vanish. These are exactly the
edge elements in the interior of the union. Consequently the
resulting vector represents only those edge elements which
lie along the exterior boundary of the entire union.

for all disjoint subsets J1, J2 ⊆ {1, . . . , n}, J1 ∩ J2 = ∅.

We construct an additive representation as follows. Con-
sider in each image a set of qi edge elements, densely sam-
pled along the boundaries of the segments in P (i). We de-
scribe the union of a subset of segments S(i)

J = ∪j∈JS(i)
j

using a vector b(i)J ∈ Cqi with complex-valued elements.
For each contour element k ∈ {1, . . . , qi} that bounds the
union S

(i)
J we set b(i)J = eıθk , where ı =

√
−1 and θk

is the angle between the outward-pointing normal of S(i)
J

at the kth contour element and the X-axis. Let B(i) =(
b
(i)
1 , b

(i)
2 , · · · , b(i)ni

)
of size qi × ni be a matrix describ-

ing the segments in image i. Each column b(i)j of the matrix
B(i) describes the orientations of all the edges along the
contour of segment S(i)

j . In general, we allow each contour
element to participate in exactly two segments, one with
eıθk and the other pointing in the opposite direction, i.e.
eı(π+θk) = −eıθk . The rest of the elements in B(i) are set
to zero.

Note that our suggested representation is indeed addi-
tive. Consider the union of two segments, S′ = S1 ∪ S2.
In terms of the boundary elements, the corresponding op-
eration is b′ = b

(k)
1 + b

(k)
2 . Boundary elements exclusive

to either of the two segments are retained with no change,
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while boundary elements common to them have opposing
normals and cancel to zero. This idea is illustrated in Fig-
ure 3. More generally, consider the application B(i)x(i)

where x(i) ∈ {0, 1}ni indicates a subset of segments in
P (i). Let C = ∪{j|x(i)

j =1}S
(i)
j . Then B(i)x(i) is a vector in

Cqi whose elements encode the outward normal angles of
the bounding contour of C. The internal contours are elimi-
nated, since for such contour elements, eıθk +eı(π+θk) = 0.

To encode potential matches between contour elements
in a pair of images I(i) and I(j) with qi and qj contour ele-
ments respectively we define a real qi×qj matrixW (i,j). In
an idealized setting in which qi = qj and we have a one-to-
one correspondence between the contour elements, W (i,j)

would be a permutation matrix. In general, however, we do
not commit to a specific one-to-one correspondence; instead
we assign soft values to W (i,j). Details on the construction
of W (i,j) are provided in Section 3.1.1.

A compatible segmentation of I(i) and I(j) should be
one in which many contour elements in I(i) find good
matches in I(j). A good match between contour elements
is one for which the score in W (i,j) is high and the orienta-
tions of the elements are similar. We capture both require-
ments in the bilinear form

(B(i)x(i))HW (i,j)(B(j)x(j)), (4)

where XH denotes the Hermitian transpose of X . In this
form, B(i)x(i) represents the bounding contour elements of
the union of the segments in I(i) indicated by x(i). For each
two contour elements k in I(i) and l in I(j) this form pro-
duces a term of the form

e−ıθkW
(i,j)
k,l eıθl = W

(i,j)
k,l eı(θl−θk), (5)

where the minus sign in the leftmost exponent is due to
the Hermitian conjugate. Equation (4) sums these terms
for all pairs of elements. If we now add (4) to its
Hermitian transpose, i.e., (B(i)x(i))HW (i,j)(B(j)x(j)) +
(B(j)x(j))HW (j,i)(B(i)x(i)) where W (j,i) = W (i,j)T , we
obtain for every pair of contour elements k and l a real-
valued term proportional to the cosine of the angle between
them, W (i,j)

k,l cos(θl − θk).
We can now ready define the inter image interaction ma-

trix:
Q(i,j) = B(i)HW (i,j)B(j). (6)

The ni × nj matrix Q(i,j) encodes the interaction between
the input segments of I(i) and I(j). Consequently, once the
Q(i,j)’s are computed, the rest of the optimization depends
only on the number of segments and is independent of the
number of boundary elements.

We should emphasize, that Q(i,j) is a complex-valued
matrix whose entries summarize the interactions between
all the contour elements in each pair of segments in a way

that is ready for additive manipulations, as per our defini-
tion. Consequently, once we apply Q(i,j) to a pair of indi-
cator vectors, i.e., x(i)HQ(i,j)x(j), it will sum the complex-
valued scores for all pairs of segments indicated by x(i) and
x(j). Due to the additivity property, all the interactions that
involve contour elements in the interior of the unions of
these segments will vanish, and only the interactions be-
tween pairs of contour elements on the exterior boundaries
of the unions of these segments will contribute to the score.

Finally, we define Q(j,i) = Q(i,j)H , ensuring that the
score function in Equation (2) is real.

3.1.1 Inter Image Correspondence

The matrix W (i,j), which encodes the correspondence be-
tween contour elements in images I(i) and I(j), plays a crit-
ical role in our framework; the accuracy of our clustering
will increase if we assign high scores to the correct cor-
respondences. However, identifying the correct correspon-
dences prior to optimization can be difficult, and so we will
set W (i,j) with soft values to allow multiple matching op-
tions for each contour element. Our experimental results
demonstrate that our formulation is able to cope with such
matching ambiguities.

Ideally we would like the qi rows and qj columns of
W (i,j) to encode a matching probability for each edge-
element in one image with all the edge elements in the
other image. To achieve this we initialize W (i,j)(k, l) =
exp

(
(fk − fl)TΣ−1(fk − fl)

)
, where fk and fl are feature

vectors computed for contour elements k and l in images i
and j respectively. The feature vectors are concatenations
of multiple cues. Σ is a diagonal matrix with weights pro-
portional to the estimated variances of the cues. We use a
HOG-type descriptor [5] along with the edge direction and
its location. Affinities between descriptors at a distance of
more than 10 pixels are truncated to 0. Finally, for smooth-
ing we add a small positive constant to all entries of W .

Since we want the rows and columns oof W (i,j) to en-
code matching probabilities we apply an iterative procedure
of normalizing the row sums to 1/qi and the column sums
to 1/qj alternately. In [12] it is shown that when all the el-
ements of W are strictly positive such a procedure is guar-
anteed to converge to a matrix with any prescribed row and
column sums. When W is square (qi = qj) this procedure
will produce a (scaled) doubly stochastic matrix. According
to the Birkhoff–von Neumann theorem, doubly stochastic
matrices are convex combinations of permutation matrices,
and so they can be interpreted as mixtures of possible one-
to-one matchings.

3.2. Intra Image Interactions

The intra image interaction matrix Q(j,j) can be used to
encode the affinity between different segments within image
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I(j). This matrix plays an analogous role to affinity matrices
in standard segmentation algorithms.

Below we use an affinity matrix whose entries are prod-
ucts of two terms. The first term stipulates that two seg-
ments are more likely to be clustered when their shared
bounding contour is longer. The second term determines
the likelihood of a clustering based on the similarity be-
tween the segments. For two segments S(j)

k and S
(j)
l in

P (j) (1 ≤ k, l ≤ nj) let v(j)k,l denote the length of the com-

mon boundary of S(j)
k and S(j)

l . Let u(j)k,l further express our
belief that segments k and l belong to the same cluster. (For
example, in Section 5.1 we construct u(j)k,l by assessing the

similarity of S(j)
k and S(j)

l in both color and motion.) We
then set

Q
(j,j)
k,l = λv

(j)
k,lu

(j)
k,l . (7)

Q(j,j) is nj × nj real symmetric, and λ ≥ 0 is a preset
parameter that controls the fragmentation of the final clus-
tering result. Higher values of λ lead to a smaller number of
clusters by encouraging mergers between similar segments
with long common boundaries.

3.3. Optimization of the Clustering Objective

Using (2) our optimization objective is

max
X

tr(XTQX)

s.t. Xi,j ∈ {0, 1} ∀i, j
∑
j

Xij = 1 ∀i. (8)

This is a Quadratic Semi-Assignment Problem (QSAP)
[19], and can be written as

max
Y

tr(QY )

s.t. : Y � 0 , Yij ∈ {0, 1} and Yii = 1, (9)

where Y = XXT is of (unknown) rank c. The require-
ment that every segment participate in exactly one cluster is
expressed in the constraint Yii = 1.

In [2] Charikar et al. present a Linear Programming
relaxation for QSAPs. They compute the optimization
function from distances between segments in the cluster
space. Metric properties are imposed on the distances be-
tween the segments using linear constraints that enforce
non-negativity, symmetry, and triangular inequality.

The LP relaxation has a crucial limitation for practical
applications – the number of triangular inequalities grows
as O(n3) where n is the number of input segments. [19]
presents a further relaxation by enforcing the metric prop-
erty only within cliques in an adjacency graph on the seg-
ments. They showed that for the problem of co-clustering
image segments, this bounds the number of constraints to
O(n2), and in practice is almost linear in n. Both their and

our experiments indicate that the method is very efficient
with good empirical performance. Denoting by D the ma-
trix of segment distance, di,j = 0 implies that segment i and
j should belong to the same cluster. Our final optimization
problem becomes

min
D

∑
i,j

qi,jdi,j

s.t. 0 ≤ di,j ≤ 1

di,i = 0 ∀i, di,j = dj,i ∀i, j
di,j ≤ di,k + dk,j ∀ei,j , ei,k, ek,j ∈ A, (10)

where A encodes the reduced sparse connectivity. In our
case, A is the region adjacency graph computed from the
input segmentation maps.

We note that the approach of [19] was subject to trivial
solutions which had to be avoided by adding a regulariz-
ing parameter. For example, the minimal symmetric dif-
ference between clusters is trivially obtained when all seg-
ments are put into one cluster. In contrast, our approach
of co-clustering maximizes the sum of support for segment
boundary elements remaining after the mergers, and natu-
rally avoids trivial mergers. The trivial solution of putting
all segments into one cluster eliminates all boundary ele-
ments from the optimization so their contribution vanishes.
The trivial solution of making no mergers at all leaves the
objects in the image fragmented - decreasing the total sup-
port. The optimal operating point therefore lies somewhere
in between these two ends of the spectrum.

3.4. Co-clustering Example

We conclude this section by illustrating the contributions
of the components of the co-clustering framework. Figure 4
shows an application of our framework to simultaneously
segment multiple objects taken under different lighting con-
ditions. The scene has strong variation in color, reflectance,
shadows and shading. Our approach correctly matches the
segments corresponding to the orange and dinosaur across
the images, and obtains the correct segmentation. Notice
that the intra-image regional affinities on their own are in-
sufficient to handle the deep shadows cast on the dinosaur,
and shape information on its own is insufficient to handle
cases when the false boundaries in the oversegmentation
happen to coincide. However, taken together, these two
cues obtain the correct segmentation.

4. Segmentation of Video Frames
To obtain a segmentation result on a designated refer-

ence frame from a sequence, we suggest a two-step process
with clustering as a sub-routine. The process is illustrated
in Fig. 5.

First, for each frame I(i), we compute a boundary map
using gPb [9]. For each frame, a superpixel map, P (i)

w , is
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(a) Input images (b) Initial super-pixels (c) Joint clustering (d) Only intra (e) Only inter

Figure 4: Lighting example. The dinosaur and the orange were photographed under different lighting conditions 4a. The
input oversegmentations can be seen in 4b. There are 247 super-pixels for image 1 and 320 for image 2. The result of our
joint-clustering algorithm is shown in 4c. The dinosaur and the orange are common to both images and are put in distinct
segments; in contrast, their shadows are merged with the background as they shift under illumination variation.. Results
obtained by restricting the method to use the intra-image affinities or inter-image alone are shown in 4d, and 4e respectively.

computed by running watershed on the boundary map. In
addition, m randomized oversegmentations are computed
by randomly seeding watershed, denoted by P (i)

rw ’s.
Next, the randomized oversegmentations, P (i)

rw ’s, are co-
clustered with P (i)

w . The co-clustering procedures result in
m co-occurrence matrices {Y (i)

j }mj=1. The consensus seg-

ment map frame i is obtained by Ỹ (i) = 1
m

∑m
j=1 Ỹ

(i)
j ≥ τ

where Ỹ (i)
j is the sub-matrix of Y (i)

j corresponding to the

super-pixels of P (i)
w . The parameter 0 ≤ τ ≤ 1 is a thresh-

old on the fraction of joint clustering results which should
agree on a merge. Note that the idea of using multiple seg-
mentations of a single input image for reliable image analy-
sis has been gaining ground in the community, e.g., [11, 4].
Unlike our method, however, these works do not produce
full image segmentations.

In the second stage, subsets of frames are jointly-
clustered along with the reference frame. The co-clustering
result with the highest optimization objective value (2) is
chosen as the final segment map.

Combining multiple randomized segmentations for each
frame provides two advantages: (1) robustness to possi-
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Figure 5: Schematic of joint clustering schedule.

ble false mergers in any few random oversegmentations,
and (2) helps reduce repetition of false segment bound-
aries in different frames. Joint clustering of segmentations
across frames emphasizes object boundaries that persist un-
der small movements and camera motion.

5. Experimental Results

5.1. Video Dataset for Occlusion/Object Boundary
Detection

We evaluate our framework on the “Video Dataset for
Occlusion/Object Boundary Detection” of Stein and Hebert
[13]. This dataset is appropriate because unlike other seg-
mentation benchmarks it includes more than one image per
object.

The dataset includes 30 short image sequences, and is
quite challenging, with a variety of indoor and outdoor
scene types, significant noise and compression artifacts, un-
constrained handheld camera motions, and some moving
objects. The occlusion boundaries are labeled as ground
truth in the reference (middle) frame of each sequence. The
task is to detect the occlusion boundaries delineating the
foreground objects.

We use the procedure described in Section 4 to gener-
ate a segmentation of the reference frame in each sequence,
comparing the result to the provided ground truth. For the
inter-frame stage we use the global alignment provided with
the dataset. We generate results on all 38 objects for which
[14] report segmentation results.

Motion cues are necessary in order to detect the occlu-
sion boundaries. Accurate motion estimation is not a trivial
task. The segmentation results reported in [14] rely on oc-
clusion boundaries detected using two sophisticated motion
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cues [13]. For our experiments we use a very simple motion
cue, namely the median optical flow within a segment. We
then set our intra-image affinities to

u
(j)
k,l =

1

2

[
exp

(
−‖dk − dl‖2

σ2
c

)
+ exp

(
−‖fk − fl‖2

σ2
f

)]
,

(11)
where dk is the normalized L∗a∗b∗ color histogram of seg-
ment k, and fk is the median optical flow inside it computed
using [15]. We use σc = 0.3 and σf = 0.1.

5.2. Segmentation Evaluation

We compare our results to those reported in [14] us-
ing their evaluation methodology. For any two unions of
subsets of segments R and G define their consistency as
c(R,G) = |R∩G|

|R∪G| . The efficiency is defined as the size of
the minimal subset of segments, R, required to achieve a
specified desired consistency, cd, according to the ground
truth object segmentation, G. Formally,

ecd(S,G) = min |R|, s.t. c(R,G) ≥ cd. (12)

In [14] the authors generate a sequence of 19 increasingly
finer segmentations for each image, with the number of seg-
ments varying between 2 and 20. For each object and for
each of ten desired consistency levels, from 0.5 to 0.95, they
report an efficiency value. This efficiency is the minimizer
of Equation 12 over all subsets of segments and over all 19
different segmentations in the collection.

Our algorithm determines the number of clusters auto-
matically. Therefore, we use settings of parameters τ and
λ to generate a sequence of increasingly finer segmenta-
tions. The higher the value of τ , the stricter the merg-
ing of randomized segmentations. Higher values of λ en-
courage mergers within a frame. We use a fixed set Θ =
{(τi, λi)}19i=1

1 to generate the segmentation sequences for
all objects. Θ was selected from a range of subsets of size
19, as the one that produced the best results.

We present a quantitative summary of our results com-
pared to those reported by [14] in Figure 6. Note that for
the majority of the objects our method achieves the same
consistency levels with fewer segments. Some of our seg-
mentation results can be seen in Figure 7 alongside those of
Stein et al. More detailed graphs and the full quantitative
and qualitative results and comparison can be found in the
attached material.

We also compare to a method based on area of overlap
following [19]. We reproduce the experimental schedule
substituting our shape-based inter-image complex-valued
affinities with [0, 1]-valued affinities measuring the ratio be-
tween area of intersection and area of union. A summary of

1
Θ = {(.5, .25)(.5, 1.25)(.5, 2)(.5, 4.5)(.6, .25)(.6, 1.25)(.6, 1.75)(.7, 1.75)(.7, 2)

(.7, 4.5)(.8, 1.25)(.8, 2.5)(.8, 4.5)(.9, .25)(.9, 1.25)(.9, 1.75)(.9, 2)(.9, 2.5)(.9, 4.5)}

10

4
22

2

Our method

Stein et al.

Inconclusive

Equal

Figure 6: Quantitative segmentation results. Here we
compare segmentation results to those of [14]. The pie chart
shows a partition of the 38 objects. On 22 objects we out-
perform [14], in that we do at least as good at all consistency
levels and do better on at least one consistency level. In 10
of the cases [14] outperforms our results in the same sense.
For 4 objects the result is inconclusive (i.e. we do better
at some values while [14] is better at others.) Finally, on
two objects we have identical performance. The bar chart
on the right shows the average efficiency gain. We mea-
sure for each object, and each consistency level, how many
segments less than the result reported in [14] we needed,
in order to achieve at least the designated consistency level.
The average is over all objects in the data-set.

this comparison is shown in Figure 8. Overall consistency
bins and all objects our method achieves an average effi-
ciency of 2.81 compared to 3.21 achieved by [14] and 3.37
achieved by the overlap method.

We note that the authors of [14] compare their method to
three others, “Color Distribution Affinity”, Multiscale N-
Cuts, and the Berkeley Segmentation Engine (BSE). For
clarity of presentation we do not show those results in
the current comparison, and concentrate on the comparison
to the method of [14] which significantly outperforms all
three.

Running un-optimized Matlab code on a 1GB laptop we
compute a co-clustering result on a pair of images with hun-
dreds of super-pixels in less than a minute. For the linear
program we use the open-source solver lp solve.

6. Conclusion
We presented an approach to jointly segment multiple

closely-related images by combining contour and region in-
formation, and applied our approach to video data. The

4

7
24

3

Our method

Overlap 

Inconclusive

Equal

Figure 8: Comparison to a method based on area of over-
lap. Format identical to that of Figure 6.
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Figure 7: Segmentation results. This figure shows segmentation results on a number of sequences from [13]. The top row
shows the reference frame from each sequence. The second row shows the ground truth segmentation of a designated object
in each image. In the third row we show the segmentation result of [14] corresponding to the highest consistency achieved
by their method for each one of the objects. We extracted these images from the attached material of that paper. Similarly we
show our highest consistency results in the fourth row. Finally in the bottom row we report the minimal number of segments
needed to achieve a desired consistency level. Our results (in blue) are compared to [14] (in green) at the top 5 consistency
levels (between 0.75 and 0.95). Lower values indicate that a given consistency was achieved with fewer segments. The
highest bars have a value of 10 segments, this value was assigned to consistency levels that could not be attained.

problem was posed as quadratic optimization and solved
using LP relaxation. We proposed an additive representa-
tion for segment boundary contours such that when taking
the unions of segments, only the exterior bounding contour
portions contribute to the score, while the contributions of
boundaries common to the merged segments are eliminated
from the optimization. While we have presented this repre-
sentation in the context of co-clustering of image segments,
we believe it can also be applied in other domains of com-
puter vision. In future work we plan to explore how to in-
corporate into our approach top-down cues such as those
available from object detections or user input.

References
[1] B. Alexe, T. Deselaers, and V. Ferrari. ClassCut for Unsupervised

Class Segmentation. ECCV, 2010. 2386
[2] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualita-

tive information. Journal of Computer and System Sciences, 71(3),
2005. 2389

[3] J. Costeira and T. Kanade. A multibody factorization method for
independently moving objects. IJCV, 29(3), 1998. 2386

[4] I. Endres and D. Hoiem. Category independent object proposals. In
ECCV, 2010. 2390

[5] D. Glasner and G. Shakhnarovich. Nonparametric voting architec-
ture for object detection. TTI-C Technical Report, (1), 2011. 2388

[6] D. Hochbaum and V. Singh. An efficient algorithm for co-
segmentation. In ICCV, 2009. 2386

[7] M. Irani, B. Rousso, and S. Peleg. Computing occluding and trans-
parent motions. IJCV, 12(1), 1994. 2386

[8] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image
co-segmentation. In CVPR, 2010. 2386
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