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Abstract

We describe an approach to category-level detection and viewpoint estima-
tion for rigid 3D objects from single 2D images. In contrast to many existing
methods, we directly integrate 3D reasoning with an appearance-based voting
architecture. Our method relies on a nonparametric representation of a joint
distribution of shape and appearance of the object class. Our voting method
employs a novel parametrization of joint detection and viewpoint hypothe-
sis space, allowing efficient accumulation of evidence. We combine this with
a re-scoring and refinement mechanism, using an ensemble of view-specific
Support Vector Machines. We evaluate the performance of our approach in
detection and pose estimation of cars on a number of benchmark datasets.
Finally we introduce the “Weizmann Cars ViewPoint” (WCVP) dataset, a
benchmark for evaluating continuous pose estimation.

Keywords: Viewpoint-Aware, Object Detection, Pose Estimation, 3D
Model, Viewpoint Estimation, Structure from Motion

1. Introduction

The problem of category-level object detection has been at the forefront
of computer vision research in recent years. One of the main difficulties in
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the detection task stems from variability in the objects’ appearance due to
viewpoint variation (or equivalently pose variation). While most existing
methods treat the detection task as that of 2D pattern recognition, there is
an increasing interest in methods that explicitly account for view variation
and that combine detection with pose estimation. This paper presents an
approach that integrates detection and pose estimation using 3D class mod-
els of rigid objects and demonstrates this approach on the problem of car
detection.

Building a viewpoint-aware detector presents a number of challenges. The
first question is how to acquire a 3D representation of a class. The recent
availability of CAD models, 3D cameras, and robust structure-from-motion
(SfM) software have simplified this problem. Using SfM methods or 3D cam-
eras makes it straightforward to relate the available 3D representations to the
appearance of objects in training images. Secondly, finding the pose of an
object at test time requires search in the 6D space of possible Euclidean trans-
formations. This can be accomplished by searching exhaustively through a
discrete binning of this 6D space. An alternative is to use a combinatorial
search e.g., RANSAC [1] procedure. Both options, however, can be compu-
tationally expensive. Finally, how should detection and pose estimation be
integrated? Pose estimation can deteriorate significantly when detection is
inaccurate. Can detection be improved if pose estimation is integrated into
the process?

We suggest an approach that combines a nonparametric voting proce-
dure with discriminative re-scoring for detection and pose estimation of rigid
objects.

We address the challenge of building a 3D class model by applying state-
of-the-art SfM reconstruction software [2, 3] to a set of training images that
we have collected. A 3D point cloud is reconstructed for each scene and
the car of interest is manually segmented. The class model is composed by
registering and merging these point clouds in 3D. Further details regarding
the construction of the model can be found in Section 5. A notable advantage
of using SfM is that it provides us with correspondences between an accurate
3D shape model (see Figure 5) and 2D appearance in real images. We model
the within class variability by using multiple exemplars in a non-parametric
model. By performing a simple registration of the point clouds in 3D we are
able to circumvent the difficult problem of finding correspondences between
parts across different class instances. The registered point clouds can be seen
in Figure 4 (d).
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At test time we wish to infer the location and pose of a class instance or
equivalently the most likely transformation which relates the 3D model to the
2D projection in the test image. We use a nonparametric voting procedure,
by searching the database for patches similar to ones seen in the input image.
Each match generates a vote, in the spirit of [4] and other methods inspired by
Hough transform. However, here the vote implies not only a bounding box,
as is done, e.g., in [4], but a full 6DOF weak perspective transformation of the
object. The 6DOF voting mechanism relates detection and pose estimation
starting at the very early stages of the visual processing. In addition to
providing a natural framework to estimate viewpoint, this serves to improve
the localization performance of the detector, by constraining the detections to
be consistent with a specific viewpoint estimate. Specifically, if the detector
proposes a hypothesized detection of a car seen from a particular viewpoint,
we should expect that all the features that support it are consistent with
that viewpoint. Intuitively, this is a built-in verification mechanism.

The voting mechanism outlined above, and described in detail in Sec 3,
serves as the first stage of detection. It can be thought of as an atten-
tion mechanism, generating a relatively small set of hypothesized object de-
tections, each with a specific hypothesized 3D pose. In line with previous
work [5] we follow the voting phase by a discriminative stage. The second
stage, refines the hypothesized detections, and ranks them by applying a set
of Support Vector Machines, each trained to score detections in a sector of
viewpoints. At test time we use the pose estimation generated by the voting
procedure to index the correct SVM. Thus, this final stage of verification is
also viewpoint-aware. Overall, this process allows us to improve and refine
our candidate detections.

We focus our experiments on cars and apply our algorithm to four datasets:
Pascal 2007, Stanford 3Dpose dataset [6], EPFL car data set [7] and a new
benchmark introduced here the “Weizmann Cars ViewPoint” dataset.

2. Background

A common approach for coping with viewpoint variability is to use mul-
tiple, independent 2D models. In this multiview approach one describes the
appearance of an object class at a discrete set of representative viewpoints.
These algorithms (e.g.,[8, 9, 7, 10] ) implicitly assume that the 2D appear-
ance of an object near the representative views varies smoothly and that
local descriptors are robust enough to handle these appearance variations.
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Extensions to the popular Deformable Part Model (DPM) [9] which allow
for viewpoint estimation have been suggested in [11] and in the recent work
of Pepik et al. [12]. Both works consider a model in which the mixture com-
ponents are identified with a discrete set of viewpoints. [11] further suggest
continuous viewpoint estimation by learning a linear model around each of
the discrete representative views. [12] extend the DPM by modeling contin-
uous part locations in 3D. Their method produces state-of-the-art detection
and pose estimation results on the Stanford 3Dpose dataset in which the task
is to classify test images into one of a discrete set of viewpoints. They do
not report results on a continuous viewpoint estimation task.

Another line of studies [6, 13, 14] approaches the problem of view variation
by building 2D multi-part representations and establishing correspondences
among the parts across different class views. The resulting model accounts
for a dense, multiview representation and is capable of recognizing unseen
views.

Many of the algorithms which explicitly model 3D shape utilize 3D CAD
models [15, 16, 17, 18, 12, 19]. These works take different approaches to gen-
erate correspondences between the 3D CAD models and the 2D appearances
which can be matched to the test images.

The approach in [15, 16, 18] is to generate non-photorealistic renderings
of the CAD models from which they extract features (e.g., edges) or learn
2D detectors which can then used to find matches in real images. The ren-
dering approach maintains an exact correspondence between 3D shape and
2D appearance, but the resulting 2D appearance models are not as powerful
as those learned from real 2D images.

The authors of [17, 12, 19] also take advantage of real images as part
of their training data. The approach described in [17] is to learn 3D shape
models and 2D appearance models separately. The 3D and 2D models are
then linked by a rough correspondence which is established between bounding
boxes extracted from real images and from ones which are rendered using
the 3D CAD. The bounding boxes are partitioned into blocks centered on a
regular grid and correspondence is determined by the grid coordinates.

In their 3D parts model the authors of [12] suggest a Deformable Part
Model with 3D volumetric parts. These are parameterized as axis aligned
fixed size 3D bounding cubes. The 2D appearance templates are learned
from non-photorealistic renderings of CAD models. Their framework also
allows for the inclusion of real training images as part of training.

The work described in [19] suggests modeling 3D objects using “aspect
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parts”. These are defined as a portion of the object whose entire surface is
either visible or occluded from any viewpoint. Correspondence between 3D
configurations of aspect parts and their appearance in the image is modeled as
a conditional random field. Rather than using multiple appearance templates
the authors suggest applying homographies to rectify parts to a canonical
viewpoint. To generate correspondences between the 3D aspect-parts and
their appearances in 2D images the authors rely on extensive hand labeled
part annotations of the training data.

In other work, Arie-Nachimson and Basri [20] construct a 3D model by
employing an SfM process on the entire training set of class images. An
advantage of this approach is that the SfM provides coresspondences be-
tween 3D shape and 2D appearance. However, their method requires finding
correspondences between parts as they appear in different class instances.

Villamizar et al.[21] present a two-step approach. In the first step a
Hough-based pose estimator identifies candidate detections along with their
pose estimates. In the second step these are validated using pose-specific
classifiers. In both steps their method uses a common set of Random Fern
features which are also shared between the classifiers.

Sun et al. [22] suggest the use of depth information, and train models
using depth maps acquired with a range camera. Detections are generated
by depth-encoded voting. Pose estimation is then achieved by registering the
inferred point cloud and a 3D CAD model.

Payet and Todorovic [23] learn a collection of 2D shape templates describ-
ing the appearance of the object contours at a discrete set of viewpoints. At
test time, the learned templates are matched to the image contours while
allowing for an arbitrary affine projection. The matching problem is ap-
proximated using a convex relaxation. The parameters of the chosen affine
projection serve as a continuous estimate of the pose in 3D while the best
matching template identifies a discrete estimate.

Finally, a hybrid 2D-3D model is suggested in [24]. The model con-
sists of stick-like 2D and 3D primitives. The learning selects 3D primitives
to describe viewpoint varying parts and 2D primitives where appearance is
viewpoint invariant.

In contrast to related work, we propose a simple and flexible method to
construct rich, nonparametric 3D class models. State-of-the-art SfM soft-
ware allows us to model 3D shape without requiring a library of CAD mod-
els. It also provides us with accurate correspondence between 3D shape and
real-world 2D appearances. Our method does not need costly manual part
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annotation, in-fact it manages to bypass the difficult problem of finding cor-
respondences between parts in 2D, by solving an easy global registration
problem in 3D. Finally, unlike works which are restricted to discrete pose
classification, our method optimizes over a continuous 6D transformation
space and is able to generate accurate continuous pose-estimates.

3. Nonparametric detection and pose estimation

We approach the problem of object detection and pose estimation in two
stages. First we apply nonparametric voting to produce a bank of candidate
detections along with their estimated poses. Then we apply a discriminative
re-scoring procedure designed to improve the detection and pose estimation
results. In this section we describe the construction of a 3D model and the
voting in the 6D space of possible pose variables. The re-scoring step is
described in Section 4.

Hough-like voting procedures have proved effective in object detection
both in 2D [4] and in 3D methods [20, 22]. Their success is due to the
frequent resemblance of corresponding visual elements across instances of a
class. Thus, for example, an image region similar to a stored patch depicting
the appearance of a bottom left windshield corner in a previously seen car
may indicate the presence of a windshield corner of a (possibly different)
car in the test image. Moreover, since appearance can change significantly
with viewpoint, such a match may also indicate the viewpoint from which
the car is observed. Naturally, such evidence would not be very reliable,
as we confine ourselves to small regions. Voting allows us to overcome this
by accumulating information from a large number of regions and identifying
constellations of patches that cooperatively look like parts of previously seen
class instances. These patches are seen from similar viewpoints, and arranged
in positions consistent with each other under that viewpoint.

3.1. Model representation

The object category of interest is represented by a set of 3D models of
object instances. Each single model consists of a cloud of 3D points in a
class-centered coordinate frame, i.e., the 3D models of the different class in-
stances are aligned to produce consistent poses. Along with these 3D models
we store a collection of regions obtained from the set of training images at
different scales. Each image region (patch) is associated with a particular 3D
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position and a particular viewpoint and scale. These patches are the basic el-
ements of our nonparametric model. Each patch is described by a 3D feature
represented as a tuple f 3 = 〈e, l, t,x〉, where e is a descriptor of the patch
appearance, l is the 3D location of the associated keypoint, and t and x are
related to the training image from which the patch associated with f 3 was
extracted. t indexes the image and scale, and x is the location of the patch
in that image. Note that multiple features will share the same 3D location
l, but will have different t values (indicating that they come from different
images at different scales) and possibly different appearance e (see Figure 1
). We will refer to the entire collection of 3D features f 3

1 , . . . , f
3
D pooled from

all the models as the 3D database. Preservation of multiple instances in the
model allows us to mix and match parts from different instances, without po-
tential loss of discriminative information associated with quantization, which
has been pointed out in [25].

3.2. Pose-sensitive voting

The voting step lies at the core of our method: it allows us to detect and
determine the pose of a class instance by identifying constellations of local
features which suggest a consistent location and pose. In this work we use
the full 6 DOF continuous voting space. This choice allows us to produce
continuous pose estimates and to identify novel poses which were not part of
our training data. On the other hand, working in a high dimensional space,
introduces some new challenges which we must address. Two immediate
issues are representation and efficiency.

The approach suggested by Arie-Nachimson and Basri [20] is to evaluate
a finite set of samples from the 6D pose space. These samples are deter-
mined by enumeration of triplets of matches between features from the test
image and the database. We take a less restrictive approach and allow in-
dividual features to cast votes independently. We extract a dense sample
of patches from the test image and match these patches to the database of
model patches. Each match between a patch from the test image and a patch
from the database suggests a hypothesis for the 6 DOF transformation re-
lating the model and an instance in the test image. The detection problem
now reduces to identifying consistent subsets amongst this set of votes in a
high dimensional space. The large number of votes and the high dimension
of the voting space make this a challenging problem.

To identify the consistent subsets we suggest using mean-shift clustering;
however the application is not straightforward. First we must deal with the

7



Figure 1: 2D appearances An example of the different 2D appearances {e} of a 3D point
l (denoted as a green dot) as seen from different view-points and scales (corresponding to
different training image indices t)
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issue of representation: the 6 DOF space of Euclidean transformations is
not uniform, the units of the rotation parameters have nothing to do with
the units of the scale or translation parameters. To overcome this issue we
suggest a novel representation. A transformation is parametrized by its effect
on a fixed set of 4 designated points. This produces an embedding which
makes the votes amenable to clustering using a Euclidean norm. We provide
further details of the suggested representation below. Second, as is typical
of nonparametric models, most of the computation occurs at test time. This
emphasizes the need for an efficient vote clustering method, towards this end
we suggest a number of heuristics to speed up mean-shift clustering, these
are described in Section 5.2.

Our voting procedure proceeds as follows. The image is covered by an
overlapping grid of patches; each patch corresponds to a 2D feature repre-
sented by f 2 = 〈e,x〉 where e is the descriptor extracted from the patch, and
x is the 2D coordinates of the patch.

An input feature f 2
i = 〈ei,xi〉 “solicits” votes from the instance models,

as follows. We find the K nearest neighbors of ei among the descriptors of
model patches, and consider the corresponding 3D features to be the matches
for f 2

i . Without loss of generality, let these be f 3
1 , . . . , f

3
K . A match f 2

i =
〈ei,xi〉 → f 3

k = 〈ek, lk, tk,xk〉 implies a hypothesized 6DOF transformation
Ti,k, as explained below.

Projection model. In this work we consider the weak perspective projection
model: an object undergoes isotropic scaling, 3D rotation and 2D translation
parallel to the image plane, followed by orthographic projection onto the im-
age plane. The scaling is equivalent to translation along the axis orthogonal
to image plane prior to projection. Projective transformations in this fam-
ily have six degrees of freedom (DOF): two for in-plane translation, one for
scaling, and three for rotation.

We assume that an object point’s appearance is invariant under transla-
tion but varies under rotation and scale. We can thus hypothesize that since
the patch of f 2

i is similar to that of f 3
k , the corresponding object point is

viewed from the same viewpoint and at the same scale (equivalently transla-
tion along the optical axis z). Thus, four out of six DOF of Ti,k can be inferred
directly from f 3

k (by looking up the scale and viewpoint of the training image
indexed by tk). The remaining two parameters of translation parallel to the
image plane are recovered from the equation

Ti,k(lk) = xi. (1)
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Vote representation. We now need to turn the estimated Ti,k into a vote
in a space representing the possible transformations. Keeping in mind the
eventual need to identify peaks and evaluate similarity between votes we
avoid the natural representation as a 6-vector with 3 entries parametrizing
a rotation, 2 for translation and one for scale. The problem with such a
representation is that the space SO(3)×R3 is not isotropic. For example the
units of the rotation parameters are not comparable to the translation or the
scale. Using such a representation we cannot cluster points using a Euclidean
norm. Instead we suggest a novel parameterization which amounts to an
embedding in an 8 dimensional Euclidean space which is amenable to mean-
shift clustering with a Euclidean norm. The parameterization is described
below and also summarized in Figure. 2.

Let {pdes
j }4j=1 denote a set of 4 designated points in R3. We use 4 vertices

of a cube of side length one half, centered at the origin. We represent Ti,k as
a point in R8:

V (i, k) = [Ti,k(p
des
1 )T , . . . , Ti,k(p

des
m )T ]T , (2)

where
Ti,k(p

des
j ) = xi +

(
xtkj − xk

)
. (3)

Here xtkj is the projection of the j’th designated point onto the training image
indexed by tk. This is illustrated in Fig. 3.

Since our embedding represents a family of transformations with 6DOF
in an 8 dimensional space not all points in the new representation correspond
to a valid transformation. That is, not every point in R8 is obtainable as a
projection of the designated points in the weak perspective model. To ad-
dress this issue we map any point V ∈ R8 to a “corrected” point Ṽ ∈ R8

that corresponds to a valid transformation. The new point Ṽ is obtained as
the projection of the 4 designated points using a weak perspective transfor-
mation which minimizes the reprojection error. Finding this transformation
is equivalent to the problem of camera calibration from correspondences be-
tween image points and their known 3D counterparts. In our case 4 image
points are given by V and their counterparts are the 4 designated points in
R3. We compute the transformation using the method of [26] as implemented
in the “camera calibration toolbox”, and use it to project the designated
points onto the test image. The concatanation of the projections gives us
the “corrected” point Ṽ .
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Figure 2: Parameterization. We suggest to parameterize the 6DOF transformation
which relates the 3D model to an instance in a 2D image by the action of the transformation
on a set of 4 fixed designated points. The 4 designated points are shown, superimposed
over the 3D model. Different cameras project the points to different locations in the image
plane. The concatenation of the coordinates of these projections defines our 8 dimensional
representation.
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The number of designated points we use determines the dimension of the
voting space. Therefore we would like to keep it as close to the minimal
dimension which is 6. When using only 3 points the transformation is de-
termined up to a reflection ambiguity. We avoid this ambiguity by adding a
fourth point.

We position the points so as to maximize numerical stability when solving
the camera calibration problem. The points are evenly spread out at a fixed
distance from the origin to avoid bias. The distance is chosen so that the
points are on the same scale as the 3D model.

Note that the weak perspective assumption allows us to store the locations
of the projections of designated points in each training image and simply
apply the translation part of Ti,k at test time to generate a vote. We denote
by V the set of all the votes cast by features of the input image; if the number
of 2D features extracted from the input image is N0 then |V| = K ·N0.

3.3. Vote consolidation

Once all votes have been cast, we seek peaks as modes of the estimated
density of votes, subject to pose consistency. These can be found by the
mean-shift algorithm which climbs the estimated density surface from each
vote. We found this to be somewhat slow in practice, and therefore resorted
to a multi-stage approximation, described in some detail in Section 5.

Vote clustering. Finally, we form vote clusters by a greedy procedure. The
top ranked mode V ′1 is associated with the first cluster. By solving a camera
calibration problem as described in Section 3.2 we compute a point Ṽ ′ ∈ R8

which corresponds to the closest valid transformation (i.e. it is obtainable
as a projection of the designated points in the weak perspective model). We
associate with the first cluster all votes that are sufficiently similar to Ṽ ′1 in
the location of the detected object and the estimated viewpoint (see Section 5
for more details about this similarity). All points which have been associated
with the first cluster are culled from the vote set V . The second cluster is
generated in a similar manner. We identify the highest ranking mode which
has not yet been culled: V ′2 . We compute the corrected mode Ṽ ′2 and assign
all votes which are still in V and sufficiently similar to Ṽ ′2 to the cluster. The
process continues until we have the reached some pre-determined number of
clusters or until V is empty.
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Figure 3: Voting process. Four patches from the test image (top left) are matched to
database patches. The matching patches are shown with the corresponding color on the
right column. Each match generates a vote in 6D pose space. We parameterize a point
in pose space as a projection of designated points in 3D onto the image plane. These
projections are shown here as dotted triangles. The red, green and blue votes correspond
to a true detection, the cast pose votes are well clustered in pose space (bottom left) while
the yellow match casts a false vote.
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4. Verification, refinement, and rescoring

So far we have described the voting procedure which generates a set of
candidate detections. In the second stage of our algorithm each one of these
candidates is further processed. The location of the bounding box is refined.
Each detection is assigned a score that reflects our confidence in it. And
finally, viewpoint estimates are possibly corrected.

The overall objective of the second stage is to improve the precision-
recall performance. We cast this as a scoring problem: given a region b in
the image, we assign a score value S(b) which is higher the more likely we
deem b to be the bounding box of an object instance. This score can be used
to classify the region, by thresholding S, and to rank detections, ordering by
decreasing value of S.

SVM scoring. We use Support Vector Machine (SVM) to estimate the score
S(b). A region b is represented as a feature vector h(b) which is a con-
catenation of histograms of oriented gradients computed over a pyramid of
spatial bins. We train the SVM on a set of feature vectors {bn} computed
from labeled example regions. Details are given in Section 5. Once trained,
the SVM score is computed as

S(b) =
∑
n∈SV

αnK(h(b), h(bn)) (4)

where αn are positive coefficients, SV is a subset of indices of training exam-
ples and K is an RBF kernel function

K(x, x′) = exp

{
− 1

σ2
‖(x− x′)‖22

}
. (5)

Viewpoint specific training. We can either train a single SVM, or a set of
SVMs, designating a separate machine per sector in the viewpoint sphere.
Our motivation for choosing the latter is related to the observation, shared
by [27], that pose changes may be better fit by a mixture of appearance-
based models. In this case, we provide a different set of positive examples
to each SVM - namely those in which the correct viewpoint falls within the
associated viewpoint region. The set of negative examples is shared across
SVMs.

At test time we use the viewpoint estimated by the voting procedure
to determine which SVM to apply. Given a candidate detection with an
estimated viewpoint, we compute the score of the SVM “responsible” for
that viewpoint.
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Refinement. Inspired by [9] we also use the SVM scoring to refine the de-
tection bounding box via local search. Given the initial bounding box b
generated by the voting, we consider a set of perturbed versions of b, ob-
tained by a fixed set of shifts and scale changes relative to b. Each of these
is scored, and the version with the highest score is used.

Symmetry. For symmetric objects we also evaluate the SVM responsible for
the symmetric viewpoint. For example in the case of cars we evaluate the
SVM corresponding to the 180 degree reversal of viewpoint. This is due
to the empirical observation that the errors “flipping” the object along the
symmetry axis seem to be far more frequent than other errors in viewpoint
estimation. The higher SVM score is used as the detection score and the pose
is flipped if this score was produced by the SVM responsible to the flipped
direction.

5. Experiments

We evaluate our approach on the problem of car detection. Below we
describe the training data and the model obtained, and report the results on
a number of benchmark data sets.

5.1. Training data and the model

Data collection and initial model building. We collected and processed 22
sets of images of different car models. A set consists of approximately 70
images on average, of one car taken from different viewpoints which cover a
full rotation around the car. The pictures were taken in an unconstrained
outdoor setting using a hand-held camera. There are significant illumination
changes, many images include cars in the background, and in some images
the car is cropped or occluded. See Figure 4 (a).

Model construction and alignment. We use Bundler [2] and PMVS2 soft-
ware [3] to turn a collection of images of an instance from the class into
a model. PMVS2 generates a dense point cloud representing the complete
scene. We manually segment this point cloud to extract the car. The an-
notation was generating using Meshlab [28] and took about 2 minutes per
model. Note that the accuracy of this segmentation is not very important
and in fact inclusion of some background points in the model can actually
improve detection by modeling the context. For example cars tend to appear
on roads so a road patch could contribute to identifying a car. However, in

15



(a) car images (b) 3D scene

(c) instance models (d) class model

Figure 4: Model construction. We construct the model from multiple sets of car images,
some example frames from two different sequences can be seen in (a). Using Bundler we
reconstruct a 3D scene (b). The car of interest is manually segmented and aligned (c).
Finally a view of the class model is shown in (d).
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this work we do not explore the use of context. This procedure yields a set of
models with coordinate frames that are somewhat arbitrary. We transform
the coordinates so that the object centroid is at the origin, and the coordi-
nate frame is aligned with the three principal components of the 3D point
cloud (enforcing a left-handed system to avoid ambiguities) for each instance.
We then manually identify an image of each instance that is closest to an
(arbitrarily defined) canonical viewpoint, and refine the alignment. Finally,
each point cloud is scaled so that the extent along a selected dimension is 1
(for cars we use the width). Note that this process modifies the values of l,
but not e or x, of the 3D features; it also modifies the viewpoint assigned to
a specific image and scale indexed by t. See Figure 4.

Reconstruction accuracy. To verify the accuracy of our reconstructions we
compared one of the reconstructed models to a publicly available CAD model
of the same car 1. We used the Iterative Closest Point algorithm [29] as
implemented in MeshLab (with manual initialization) to align the two models
and then measured the errors. The median error was 1.6cm which is less than
a percent of the car’s width. Figure 5 shows the two point clouds.

Figure 5: Comparing CAD and SfM. We compare a CAD model (left) to the point
cloud reconstructed using [2] and [3]. Using ICP we align the two models and measure
the errors. The median error is 1.6cm, less than one percent of the car’s width.

Pruning. Combined with high image resolution and the relatively dense sam-
pling of the viewpoints in our data, the initial output from PMVS2 contains

1We used the model “Volkswagen Golf 2009 N280111” downloaded from www.

archive3d.net where it was posted by the user Billy Main.
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an extremely large number of 3D keypoints sampled very densely in some re-
gions, and, consequently, of patches. We concluded that this density increases
computational burden on a nonparametric detector without significant ben-
efit. Thus we chose to prune the database. For each model, we divided the
3D bounding box of the cloud of 3D keypoints constructed by PMVS2 into
equal sized cells. In each cell, we used the estimation of the normal direction
as produced by PMVS2 to select a small number of representative keypoints.
We binned the points according to the octant in which their normal resides
and selected one representative from each bin as the one closest to the cell
center. The pruned database consists, for each model, of the 3D features
corresponding to these representatives.

Efficient similarity search. Even after the pruning described above, the 3D
database remained prohibitively large for a brute force similarity search. In-
stead, we used the ANN library by Mount and Arya [30], and built a data
structure allowing sublinear time approximate nearest neighbor search. The
metric used on descriptors was `2.

5.2. Implementation details

Patch descriptors. We use a descriptor [31] which is similar to the HoG
descriptors used extensively in the literature. Given a reference point x, we
take the square region with side B ∗C, with x at its left corner. This region
is partitioned into a grid of B×B square blocks of size C×C pixels. Within
each block, we compute intensity gradient at each pixel, bin the gradient
orientations into P orientation bins, and compute the histogram of total
gradient magnitudes within each bin. Finally, all B2 such histograms for the
region are divided by the total gradient energy averaged over the B2 blocks,
truncated at 1, and concatenated. Parameters B, P and C are set to 3, 5
and 8 respectively, producing 45-dimensional descriptors.

Finding modes of vote density. Along with the feature matching, the mean-
shift procedure is the bottleneck in terms of computation at test time. To
minimize this computation we suggest a number of heuristics to speed up
mean-shift clustering. First, for each recorded vote Vi we compute a kernel
density estimate (KDE) p̂(Vi) using RBF kernels in the R8 vote representation
space. We select the n votes with the highest value of p̂, these points are likely
to be close to the modes of the probability p̂. To avoid a bias which might
be caused by selecting only these points we add an additional n′ randomly
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selected votes. For example in a distribution with one very strong mode and
another weak mode, it is possible that all of the n highest KDE value points
will lead to the strong mode. The addition of n′ random points allows for
finding the weaker mode. Next, by applying mean-shift (computed over the
density implied by all of the votes) we find the mode associated with each of
the selected n+ n′ votes. These n+ n′ modes are then ordered according to
their densities (again estimated by KDE, using all the votes).

Vote clustering. We used two criteria, the conjunction of which implies suffi-
cient similarity between a vote and a cluster prototype. First, let the bound-
ing box implied by Ṽ ′ be b′, and the viewpoint be represented by a unit norm
vector r′. The bounding box implied by a transformation is the bounding
box of the projection of the model onto the test image.

A vote Vi with bounding box bi and viewpoint vector ri is similar to Ṽ ′

if
o(bi,b

′) ≥ 0.5 and |∠(ri, r
′)| ≤ π/8, (6)

where the bounding box overlap is defined by

o(bi,b
′) =

bi
⋂

b′

|bi
⋃

b′|
, (7)

and ∠(ri, r
′) is the angle between two 3D vectors.

SVM training and application. A region b is represented by a histogram of
oriented gradients, computed over a pyramid of spatial partitions similar
to [32]. At the first level, we simply compute the histogram of gradient
orientations over the entire region, binned into P orientations. At the second
level, we partition the region into 2 × 2 subregions, and compute the four
histograms, one per subregion, and similarly for the third level producing 16
histograms. The histograms for all levels are concatenated to form a single
descriptor for the region. A region is considered positive if its overlap with
the bounding box of a known object detection, as defined in Equation (7), is
above 0.5, and negative if the overlap is below 0.2.

To refine detections, we consider vertical shifts by {0,±0.2·H} pixels, and
horizontal shifts by {0,±0.2 ·W} where H and W are the height and width
of b. For each combination of shifts, we scale the bounding box around its
center by {80%, 90%, 100%, 110%, 120%}. This results in 45 bounding boxes
(one of which is the original b), among which we choose the one with the
highest value of SVM score S.
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5.3. Results

We present detection (localization) and pose estimation results on three
publicly available datasets:

The car category of the Pascal VOC 2007 challenge [33], the car cate-
gory of the Stanford 3Dpose dataset of [6] and the EPFL multi-view cars
dataset [7]. We also introduce the “Weizmann Cars ViewPoint” dataset for
continuous viewpoint estimation and report our pose estimation results as
baseline results for the benchmark.

Pascal VOC detection results. We evaluate the detection performance of our
detector on the car category of the Pascal VOC 2007 data-set. The reported
average precision (AP) scores were computed using the Pascal VOC 2007
evaluation protocol. The average precision is the area under the precision-
recall curve.

As a baseline for detection evaluation we use our voting mechanism in a
redundant “2D mode”. In the “2D mode” each match generates a vote for
the location of a 2 dimensional bounding box. 3D voting slightly outperforms
the 2D voting with an AP of 16.29% compared to 15.86%.

We train an SVM classifier as described in Section 4, for positive examples
we use windows from the Stanford 3Dpose dataset, the EPFL dataset, our
car dataset and the training images in the car category of Pascal VOC2007.
Negative examples were taken from the training subset of Pascal VOC2007.
The view-independent SVM classifier increases the AP for both 2D and 3D
voting. The 3D retains a slight advantage with 27.97% compared to the 2D
score of 24.34%.

In the final experiment we apply viewpoint specific SVM classifiers to
the 3D votes. We train the classifiers as described in Section 4, using the
same training data used in the view independent training but omitting the
Pascal positive training examples, which are not labeled with (sufficiently
fine) viewpoint information. The pose estimated by the 3D-voting is used to
index the different classifiers. The combination of 3D voting and 8-viewpoint
specific SVM classifiers produces the best result with an AP of 32.03%. Note
that this score is achieved without any positive training examples from Pascal.
Our AP score of 32.03% is an improvement compared to the AP score of
21.8% reported in [22]. That result was achieved using different training
data. Namely, the authors collected images of 5 cars from 8 viewpoints
and used these to transfer approximate depth information to Pascal training
images which were then used to train their detector.
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Our result is also better than 24.9% reported by [12] for their DPM-
3D-Const model when trained using synthetic images only. However their
DPM-3D-Const model achieves a much better result of 63.1% when real
Pascal images are also used during training.

Our AP results are summarized in Table 1 and the recall precision curves
are shown in Figure 6(a). To reduce effects of additional training data we
excluded all positive examples from the Stanford 3Dpose dataset, and the
EPFL dataset and reran this last experiment using only positive examples
from our own dataset without using any positive Pascal training images. The
AP decreased from 32.03% to 29.43%.

2D voting 2D voting
+ SVM

3D voting 3D voting
+ SVM

3D voting +
8view-SVM

AP 15.86% 24.34% 16.29% 27.97% 32.03%

Table 1: Pascal VOC 2007 cars. Average precision achieved by our detectors compared
to a 2D baseline.
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Pose estimation on Pascal. The Pascal data includes only coarse pose labels
(frontal / rear / right / left). Arie-Nachimson and Basri [20] augmented the
pose labels on a subset of the 2007 test category. They labeled approximately
200 car instances with one of 40 labels which correspond to an approximately
uniform sample of azimuth angles. In their paper they report differences
between the labels of their estimated pose and the ground truth labels for 188
objects. We detected 180 of these objects, and compared our pose estimation
to theirs, see Figure 6(b).

Stanford 3Dpose dataset. The Stanford 3Dpose dataset was introduced by [6]
to evaluate detection and pose estimation. The car category includes 10 sets
of car images, each set includes 48 images taken at 3 scales, 8 viewpoints
and 2 different elevations. We follow [16], and use sets 1-5 for training and
sets 6-10 for testing. We train an SVM using sets 1-5 along with positive
examples from our own dataset, negative examples are taken from Pascal.
AP scores were computed using the Pascal VOC2010 evaluation protocol and
are summarized in Table 2. The combination of 3D voting and an 8-view

voting voting + SVM voting + 8view-SVM
AP 90.17% 94.85% 99.16%
AA 83.88% 85.28%

Table 2: Results on Stanford 3Dpose cars. Average Precision (AP) and Average
Accuracy (AA) for pose estimation. Average Accuracy is computed by normalizing the
columns of the confusion matrix to sum to 1 and taking the mean value on the diagonal.

SVM produces an AP result of 99.16%
Our average classification accuracy results are given in Table 2. A confu-

sion matrix and label differences are presented in Figure 7.
When the proceedings version of this paper [34] was published our results

of AP = 99.16% and AA = 85.28 were an improvement over the best pervi-
ously published ones of [16] which were AP = 89.8% and AA = 81%. Since
then further improvements have been achieved by [12] who report the best
results to date, AP = 99.9% and AA = 97.9%.

EPFL car data set. The EPFL multiview car dataset was introduced in [7].
The dataset was acquired at a car show, 20 different models were imaged
every 3 to 4 degree while the cars were rotating to produce a total of ap-
proximately 2000 images. We train 8-view SVM classifiers using the positive
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Figure 7: Stanford 3Dpose cars - pose estimation. A confusion matrix and a his-
togram of label differences. Average accuracy is 85.28%.

examples from the first 10 models along with images from our dataset and
from the Stanford 3Dpose dataset. Negative examples were taken from Pas-
cal training images.

We ran our 3D-voting followed by SVM on the last 10 models achieving
an average precision of 89.54% (measured using Pascal VOC 2010 evaluation
protocol). We then evaluate our pose estimates on the true detections. We
achieve a median angular error of 24.83 degrees. We show a histogram of
the angular errors in our pose estimates in Figure 8(a). A similar histogram
is shown in [7], however our results are not directly comparable since they
report pose estimates on all of the windows which were considered by their
classifier and overlapped the ground truth by more than one half.

5.4. Weizmann Cars ViewPoint Dataset

In this work we introduce a new benchmark for continuous viewpoint
estimation which we call the “Weizmann Cars ViewPoint” dataset. The
dataset is avialable for download at http://www.wisdom.weizmann.ac.il/

~vision/WCVP.
We use the training data which we collected to build our 3D model to

establish a benchmark which measures performance of continuous viewpoint
estimates. Publicly available datasets which have been used to benchmark
pose estimation algorithms such as Pascal, Stanford 3Dpose and EPFL are
restricted to discrete pose classification tasks. The suggested dataset which
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Figure 8: Pose estimation results.

was generated using SfM [2] associates a continuous viewpoint label with
each image. The need for a such a benchmark has already been identified in
[18] where the authors manually aligned a CAD model to real images of a
single car taken from various viewpoints.

In our dataset we have 1539 images of cars, composed of 22 sets. Each set
consists of approximately 70 images and shows a different car model. The
pictures were taken in an unconstrained outdoor setting using a hand-held
camera. There are significant illumination changes, and in some images the
car is cropped or occluded. Unlike other datasets such as EPFL and Stanford
3Dpose, many images in our dataset also include cars in the background, see
Figure 4 (a). These less restricted conditions make for a more challenging
detection task.

Denote the set of images by {xi}i∈I where

I = {(1, 1), (1, 2), . . . , (1, 65), . . . , (22, 56)}

is a set of pairs of indices, the first is a car index and the second an image
index. Each image is associated with an annotation yi = (BBi, vpi). Here
BBi = (mincoli,minrowi,maxcoli,maxrowi) is a 4 vector indicating the
coordinates of the bounding box of the car in the image and vpi = (θi, φi) is a
two vector representing the azimuth and elevation of the camera respectively.
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Azimuth angles are in the range [−180◦, 180◦] where 0◦ corresponds to a back
view car and 90◦ to a right facing car. Elevation angles are in the range
[−90◦, 90◦]. There is a single annotation yi associated with an image xi and
this annotation always refers to the largest car in the image, more precisely
the car whose bounding box in the image has the largest area.

estimation task. The estimation task is to generate a set {v̂pi}i∈I = {(θ̂i, φ̂i)}i∈I
of predictions for the viewpoints. We partition the 22 car models into three
sets of size 7,7 and 8 and generate a corresponding partition of the images
I = I1 ∪ I2 ∪ I3. We go over these three subsets using one as a test set and
the other two as training. Thus, in order to generate a pose estimate v̂pi for
some i ∈ Ip we allow the use of all pairs (xj, yj){j∈Iq |q 6=p}

evaluation. We score an estimate by generating a vector of azimuth errors
and a vector of elevation errors

errθi = min{θ̂i − θi (mod 360), θi − θ̂i (mod 360)} (8)

errφi = |φ̂i − φi| (9)

We summarize each one of these error vectors with three statistics, the
median the mean and the standard deviation The median provides a measure
which damps the effect of flipped estimates which are quite common. As a
more detailed summary of the errors we also generate 46 bin histograms of
these vectors.

Pose estimation on our car dataset. We conclude with a pose estimation
experiment intended to serve as a baseline result on the WCVP dataset. We
ran our method on the 1539 images in the dataset and extracted viewpoint
estimates from the single top scoring detection for each image. The results
are summarized in Table 3

azimuth elevation
median 12.25◦ 5.41◦

mean 36.44◦ 8.66◦

std 55.32◦ 8.18◦

Table 3: Results on Weizmann Cars ViewPoint. Statistics of azimuth and elevation
errors achieved by our method.
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46 bin histograms of the azimuth and elevation errors are shown in Fig-
ures 8(b) and 8(c).

Effect of pose estimate on detection. Of course the pose estimates generated
in the voting stage are not always accurate. When the pose estimate is in-
correct we will apply the wrong viewpoint specific classifier. We ran a few
experiments to study the effect of choosing the wrong classifier. Interestingly
we observed that even when we use the wrong classifier, it can still improve
detection. We chose 100 candidate detections generated by the voting pro-
cedure on images from the Stanford 3Dpose data. We chose detections for
which the pose estimate was accurate but the bounding box was not (i.e. its
overlap with the ground truth bounding box as defined in Equation (7) was
smaller than 0.5). When we applied the refinement process using 8 viewpoint
specific classifiers, 56 of the bounding boxes were successfully corrected. We
then applied the same refinement process but instead of using the classifier
corresponding to the pose estimate we picked one at random, this procedure
still corrected 46 of the bounding boxes.

6. Conclusions

In this paper we have described an approach that handles detection and
viewpoint estimation as a joint task, and integrates reasoning about appear-
ance and shape of the objects in a “native” way. Along the way we have
made a number of choices that stand in contrast to related work in the lit-
erature. One is the construction of a nonparametric model, which maintains
multiple instances of objects and multiple features without quantization or
clustering. Another is to reason about detection and viewpoint jointly in a
6D parameter space, and to parameterize hypotheses in this space by means
of projecting a set of designated points. Finally, we use the viewpoint esti-
mate provided by the voting method to apply viewpoint-aware verification
and refinement mechanism. We believe that these choices all serve to im-
prove performance of the detector, as demonstrated in our experiments. In
addition we introduce the ”Weizmann Cars ViewPoint” (WCVP) dataset a
new benchmark for measuring the performance of algorithms for continuous
viewpoint estimation.

In future, we would like to extend our framework to other object cate-
gories, in particular non-rigid ones. We believe that the voting process can
be significantly improved in terms of accuracy as well as efficiency. Better
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similarity measures such as those proposed in [35, 36] should be explored. In
the current system each vote counts equally. An interesting direction is to
assign weights to the 3D database elements. Discriminative learning of these
weights can lead to improved performance [5]. Finally, techniques such as
Locality Sensitive Hashing [37], Vocabulary Trees [38] or Decision Forests [39]
can be used to improve efficiency.
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