Number Theory/Théorie des nombres

The automorphism group of the Drinfeld half-plane

Vladimir G. BERKOVICH

Abstract — Let k be a local non-Archimedean field. We prove that the group
of analytic automorphisms of the Drinfeld half-plane Q¢ of dimension d — 1 over
k coincides with PGL4(k). This is applied to prove the Rigidity Conjecture of
Mustafin which states that, if I'y and I's are torsion free discrete subgroups of
PGLg4(k), then the quotient spaces Fl\Qd and FQ\Qd are isomorphic if and only
if I'y and I'y are conjugate.

Le groupe des automorphismes du demi-plan de Drinfeld

Résumé — Soit k un corps local non archimédien. Nous prouvons que le
groupe des automorphismes analytiques du demi-plan de Drinfeld de dimension
d—1 sur k coincide avec PGL4(k). Cela est appliqué pour prouver la conjecture
de rigidité de Mustafin qui affirme que, si I'1 and I's sont des sous-groupes
discrets sans torsion de PGLg4(k), alors les espaces quotients T'1\Q% et T'o\ Q4
sont isomorphes si et seulement si les sous-groupes I'1 and I's sont conjugués.

Version francaise abrégée — Soient k un corps local non archimédien et d > 2. Le demi-
plan de Drinfeld de dimension d—1 sur k est un espace k-analytique Q¢ qui est le sous-ensemble
ouvert des points de 'espace projectif P~! non contenus dans les hyperplans definis sur k.
L’espace Q% est un analogue non archimédien du demi-plan de Poincaré. 11 est lié étroitement
a 'immeuble de Bruhat-Tits B¢ de SLg4(k), et il est utilisé dans I’étude de 1'uniformisation par
des sous-groupes discrets de PGL4(k) et des représentations de GL4(k) (voir [4], [5], [6]). Le
résultat principal de cette note est le suivant.

Théoreme 1. — Pour tout corps non archimédien K sur k, on a
PGLy(k)SAutg (QRK)

La démonstration est donnée dans le cadre de géométrie analytique de [1] et [2]. Nous
construisons une immersion PGLg4(k)-équivariante B¢ — QIR K qui est inverse & Papplication
7 QIRK — Qf — B¢ de [4] et, donc, nous permet & identifier B¢ avec son image dans
QIRK. (Une telle immersion est construite dans [1], §5, pour touts les groupes reductifs
déployés.) Nous prouvons que B¢ est ’ensemble des points maximaux de QK relativement
a l'ordre partiel suivant : = <y si |[f(z)| < |f(y)| pour toute f € O(Q4®K). On en deduit
que tout automorphisme analytique ¢ de Q?®K induit un automorphisme simplicial de B¢ et
que poT = T o . Apres, pour tout appartement A de B¢ nous construisons une retraction
Q9®K — A. Nous prouvons que cette retraction induite une retraction simpliciale 74 : B — A
et que poTy = T,(p) 0 pour tout automorphisme simplicial ¢ de B?. Cela reduit le théoreme

1 & la verification du fait que toute fonction analytique bornée sur Q¢®K est constante.

Pour un sous-groupe discret I' € PGLy(k), on désigne par Xt 1'éspace quotient I'\Q9 et,
pour des sous-groupes I', I's € PGL4(k), on désigne par C(I'1, ') 'ensemble des g € PGL4(k)
avec gI' g~ =Ts.

Théoreme 2. — Soient 'y and I's des sous-groupes discrets sans torsion de PGL4(k).
Alors, pour tout corps non archimédien K sur k, il y a une bijection canonique

C(I'1,Ty) /T SIsomk (X1, &K, Xp,OK) .
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SiT'y =Ty = {1}, c’est le théoreme 1. Si I'y and I'y sont co-compacts dans PGL4(k) et
K =k, c’est la conjecture de rigidité de Mustafin qui affirme que Xr, et X, sont isomorphes
si et seulement si les sous-groupes I'; and I'y sont conjugués. Rappelons ([6], §4) que dans ce
cas Xr, et X, sont les espaces analytiques associés a des variétés projectives sur k£ et que
I’ensemble C'(I'1,T'2) est fini. Dans le cadre de géométrie analytique de [1] et [2], le théoréme 2
est une conséquence immédiate du théoreme 1. En fait, des espaces analytiques sont localement
compacts et localement connexes par arc, I'espace Q?®@K est simplement connexe (et méme
contractible) et, donc, Q@K est un revétement universel des espaces X1, ®K et Xp,®K. La
demonstration du théoreme 2 est, simplement, un rappel de quelques faits fondamentals sur la
factorisation des espaces analytiques par une action des groupes discretes, mis dans le cadre de
[1] et [2]. Ces faits ont une forme particulierement simple et naturelle pour la classe des espaces
analytique bons ([2], §1), c’est-a-dire, tels que tout leur point a un voisinage affinoide. (Par
exemple, tout sous-ensemble ouvert de I’espace analytique associé a une variété algébrique est
bon.)

Introduction. — Let k be a local non-Archimedean field and d > 2. The Drinfeld half-
plane over k of dimension d — 1 is a k-analytic space Q¢ which is the open subset of the
projective space P%~1 that consists of all points not lying in any hyperplane defined over k.
The space Q¢ is a non-Archimedean analog of the Poincaré half-plane. It is closely related to
the Bruhat-Tits building B¢ of SLg(k), and is used in the study of uniformization by discrete
subgroups of PGL4(K) and representations of GLg(k) (see [4], [5], [6]). The main result of
this note is the following

Theorem 1. — For any non-Archimidean field K over k, one has
PGLy(k)SAutg (QRK)

The proof is given in the framework of the analytic geometry from [1] and [2]. We construct
a PGLg(k)-equivariant embedding B — Q9®K which is inverse to the map 7 : Q@K —
Q% — B? from [4] and, therefore, allows us to identify B¢ with its image in Q¢®K. (Such an
embedding is Constructed in [1], §5, for an arbitrary split reductive group.) We show that B¢
is the set of all maximal points of Q¢®@K with respect to the following partial ordering: = < y
if |f(z )] <|f(y)| for all f € O(Q!®K). This is used to show that any analytic automorphism
¢ of Q@K induces a simplicial automorphism of B¢ and that poT = 7o . Furthermore,
for each apartment A of B¢ we construct a retraction map Q@K — A. We show that thls
retraction induces a simplicial retraction 74 : B* — A and that p o7y = To(n) © @ for any
simplicial automorphism ¢ of B%. This reduces Theorem 1 to the verification of the fact that
any bounded analytic function on Q¢®K is constant.

For a discrete subgroup I' € PGL4(k) let Xt denote the quotient space I'\Q¢, and for
subgroups I't, 'y C PGL4(k) let C(I'1,I'2) denote the set {g € PGLq(k)|gT197" = T2}

Theorem 2. — Let T'y and Ty be torsion free discrete subgroups of PGL4(k). Then for any
non-Archimedean field K over k there is a canonical bijection

C(T'1,T)/T1 Slsomg (Xp, K, Xr,OK) .

If 'y =Ty = {1}, this is Theorem 1. If I'y and I'y are cocompact in PGL4(k) and K = k,
this is the Rigidity Conjecture of Mustafin that states that X, and X, are isomorphic if and
only if the subgroups I'y and T's are conjugate in PGL4(k). Recall ([6], §4) that in this case
Xr, and Xr, are the analytifications of projective varieties over k and the set C(I'y,I'2)/I'; is
finite. In the framework of [1] and [2], Theorem 2 is an immediate consequence of Theorem 1.
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In fact, analytic spaces are locally compact and locally arcwise connected, the space Q!®K is
simply connected (and even contractible) and, therefore, QYR K is a universal covering of the
spaces XI‘1®K and X, QK. The proof of Theorem 2 is simply a recall of basic facts on the
factorisation of analytic spaces by an action of discrete groups. These facts have an especially
simple and natural form for the class of good analytic spaces ([2], §1), i.e., those ones in which
every point has an affinoid neighborhood. (For example, any open subset of the analytification
of an algebraic variety is good.)

Proof of Theorem 1. — For a k-analytic space X we set Xx = X®K. We introduce a
partial ordering on the space Xk as follows: = <y if |f(z)| < |f(y)| for all analytic functions
f € O(Xk). Notice that if x <y then |f(x)| = |f(y)| for all f € O(Xk)*.

1. Recall (see [1], §1.5) that the affine space A% is the space of multiplicative seminorms on
the ring of polynomials Ry := K[Tp,...,Tq—1] that extend the valuation on K. The following
simple fact describes fibres of the canonical morphism A% \{0} — P% 1.

The images of two points 2,y € A%\{0} coincide in P%! if and only if there exists \ > 0
such that for allm > 0 and all f € R, i, where R,, i is the space of homogeneous polynomials
in Ry of degree n, one has |f(y)| = A\"|f(x)|.

2. Let V be the space of norms on the k-vector space Ry = R; j, endowed with the weakest
topology with respect to which all real valued functions on N of the form N — N(f), where
[ € Ry, are continuous. The group R acts on N, and it is known that the quotient space

B®:= N /R is the Bruhat-Tits building of the group SLq(k) ([3], §10, p. 238). Let Q4. denote
the preimage of Q% in A%\{0}. Then the continuous GLg(k)-equivariant map 7 : Q% — N
that takes a point of Q‘Il(, which is a multiplicative seminorm on Ry, to its restriction on
R; (canonically embedded in Rk) induces, by Step 1, a continuous GLg4(k)-equivariant map
T: Q%l{ — B4,

Let now N € N. Since the field & is locally compact, there is an orthogonal basis eg, . .., eq_1
of Ry, i.e., such that N(Z?_Ol ase;) = max |a;|N(e;). Let j(N) be the point of Q% defined by

1(>°, ave”)(j(N))| = max|a,|N(e)”. By Step 1, j induces a GLg(k)-equivariant continuous
map j : B* — Q4 with 70j = 1z4. It follows B¢ is homeomorphic to its image j(B¢), and the
set j(B%) is closed in Q% . In what follows we identify B¢ with j(B%) and consider 7 : Q4. — B<
as a retraction map.

3. (1) x < 7(x) for all x € Q%;
(2) if z,y € B and x # y, then none of the inequalities x < y and y < x is true.

We fix an apartment A of B¢ as follows. Let Ty, ..., Ty_1 be a fixed basis of R;, and let A
be the set of norms on Ry of the form N(Zfz_ol a;T;) = max|a;|r; for (ro,...,rq—1) € (R%)%
The apartment A is the image of A in B%.

(2) Since each pair of points of B is contained in an apartment and the group SL4(k) acts
transitively on the set of apartments, we may assume that z,y € A. In this case we can find

among the functions t;_-tl, where t; = g:—(; are the coordinate functions on A4~!, such f and g

that |f(z)] <|f(y)| and |g(z)| > |g(y].
(1) Tt suffices to verify that for x € B¢ the set 771(x) is an affinoid domain in Q% and z is a

unique maximal point of 771(x). Since SL4(k) acts transitively on the set of chambers of B,
we may assume that z is contained in the chamber A := {y € A[1 > [t1(y)| > ... > [ta—1(y)| >
q '}, where ¢ = |7~ !| and 7 is a uniformizing element of k. Assume first that = is contained

in the interior A of A, ie., 1 > [ti(z)] > ... > |[ta_1(z)] > ¢~'. Then 771(z) is the closed
annulus A(z) :={y € ACIl{_lﬂti(y)\ = |t;(z)], 1 <i < d—1}, and z is a unique maximal point of
A(x). Indeed, if ¢ # j, then the equality |a||t;(x)| = |5]|t;(x)| for a, B € k* is impossible, and
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therefore for y € A(x) one has |(Zf:_11 a;t;)(y)| = max|a;||t;(z)|, i.e., 771(z) = A(z). Each
analytic function f on A(z) has a unique representation in the form ) _ 41 a,t”, where
a, € K and |a,||[t(z)|” — 0 for |v| — oco. The norm ||f|| = max|a,||[t(x)|” is multiplicative
on O(A(z)), and the point x corresponds to this norm. In the general case, we take linear
polynomials L4, ..., L,, of the form 2?21 a;t; + Zf:_iﬂ 7 ta;t;, where 1 < n < d—1 and,
for each 1 < ¢ < d — 1, a; runs through representatives of the residue field of k in the ring of
integers. Then 7 !(z) = {y € A(z)||L;(y)| = |L;(2)|,1 < j < m}. The latter is an affinoid
domain in A(z), and each analytic function on 77!(z) can be approximated by a function of
the form f/L, where f € O(A(z)) and L = L' ... L™ (see [1], 2.2.2). It follows that z is a
unique maximal point of 771(x).

4. Let ¢ be a K-analytic automorphism of Q%. Our purpose is to show ¢ is induced by
an element of GL4(k). First of all, we claim that ¢ induces a simplicial automorphism of the
building B* and ¢ ot = 7o . Indeed, from Step 3 it follows that ¢ induces a homeomorphism
of B% in itself and ¢ o7 = 7o . It follows that ¢ takes chamber interiors to chamber interiors
and, therefore, chambers to chambers. To verify the claim, it suffices to show that the maps
between the chamber interiors are affine. For this it suffices to show that for any f € O(Q%)*
the function B* — R : z — log, |f(z)| is affine on each chamber interior. Since the group
SLg4(k) acts transitively on the set of chambers, the latter fact should be verified only for

the chamber A from Step 3. But any invertible analytic function on 77(A) is of the form
atPt ... t5* 7 (1 + h) with a € K*, n; € Z and an analytic function h such that |h(y)| < 1 for

all y € 7_1(1).

5. Since the group SLg4(k) acts transitively on the set of apartments, we may assume that
©(A) = A for the apartment A from Step 3. Furthermore, since any simplicial automorphism
of A is induced by an element of the normalizer of the torus corresponding to A, we may
assume that go‘ A = 1a. We have to show that in this case ¢ is induced by a diagonal matrix

whose non-zero entries are units of k. For this we introduce a retraction map 75 : Q% — A
which is the restriction of the retraction map (AL \{0})?=! — A for which |(3_ a,t*)(a(z))| =
max |a,||t(x)|”. We claim that Tp o p = Tp. Since poT =T o @ and T o T = Ty, it suffices to
verify the above equality only for the restrictions of the both maps to B.

5.1. The retraction map 75 : B¢ — A is simplicial.

Let A’ be a chamber of BY, and let g = (a;j)o<ij<a—1 € SLa(k) be such that g(A) = A/,

Then for x € A one has |t;(g(x))| = Joig, b5, @] here to = 1 and j; is the minimal j with

a0t (2)]7
= max |a; ;|. The claim follows.

|ai

5.2. By Step 5.1, it suffices to verify that 7 (¢(x)) = 7a(x) only for zero-dimensional sim-
plices (vertices) of BY. We claim that the above equality holds for any simplicial automorphism
@ of B¢ with go‘ A = 1a. To show this, it is convenient to use the interpretation of the vertices of

B4 as the similarity classes {M} of lattices M C R;. Namely, if a vertex x corresponds to the
class of anorm N € N, then z = {M}, where M = {f € Ri|N(f) <1}. Let M C Ry be a lat-
tice. From the definition of 7, it follows that 7o ({M}) = {L}, where the lattice L is generated
by nT;, 0 < i < d—1, and n; are such that #™T; € M\wM. Let L’ be a sublattice of M with
{L'} € A. Then L' is generated by 7T}, 0 < i < d—1, and since L' C M one has n} > n;, i.e.,
L' C L. In particular, if L' # L, then [M : L] < [M : L']. Tt follows that 7o ({M}) is the class
of the lattice L C M with {L} € A for which [M : L] is minimal. Thus, to prove our claim, it
suffices to show that the function ({M},{L}) — min{[M : L]|M € {M},L € {L} and L C M}
is invariant under all automorphisms of B%. But this is clear because this function is invariant
under SLg(k) and any pair of points in B? is contained in one apartment.

6. Since [t;(z)| = [t;(Ta(z))| for all z € (AL\{0})?~L, from Step 5 it follows that |p*t;(z)| =
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t;(z)] for all x € Q% and therefore the invertible analytic functions (p*t;)/t; on Q% are
bounded. Theorem 1 now follows from the following lemma.

Lemma 3. — Any bounded analytic function on Q% is constant.

Proof. The lemma follows by induction from the following statement applied to the projec-
tion (to the first d — 2 coordinates) Q% — Q%1 Let X be a reduced K-analytic space, and Y
an open subset of X x P, such that its complement is contained in a union of Zariski closed
subsets and the projection ¢ : Y — X is surjective. Then any analytic function f € O(Y)
bounded on the fibres of ¢ is of the form ¢*g for some g € O(X). Since the statement is
local with respect to the G-topology of X, we may assume that X = M(A) is K-affinoid. If
A = K, the statement is well known. We also remark that in this case the set Y contains the
closed annulus A(r, 1) := {y € Ak|r < |t(y)| < 7'} for some 0 < r < r’. It follows that, in
the general case, for each point x € X we can replace X by an affinoid neighborhood of x and
assume that Y contains the affinoid domain V' = X x A(r,r) for some r > 0. The function
f|,, has a unique representation in the form ° _ g;t', where g; € A and ||g||r" — 0 for
1 — t+o00. Using the assumptions, we get f = go. "

Remarks. — (i) The reasoning from Step 3 shows that the retraction map 7 : Q¢ — B? is
proper.

(ii) The simplicial retraction map 75 : BY — A sends the chambers that are not contained
in A to simplices of smaller dimension. Indeed, if dim(75(A’)) = d—1 (in the situation of Step
5.1), then for i # [ one should have j; # j;. This easily implies that A" = g(A) C A.

(iii) It follows from the proof that the retraction map 75 : BY — A is defined for every
apartment A of BY and one has ¢ o 7y = To(n) © @ for any automorphism ¢ of B4

Proof of Theorem 2. — All the analytic spaces considered are assumed to be Hausdorff.
Recall that an action of a group I' on a locally compact space X is said to be discrete if for
any compact subset V' C X the set I'y := {y € T|y(V) NV # 0} is finite. For such an action
the quotient space I'\ X is locally compact. Furthermore, the above action is said to be free
if I'; = {1} for all z € X. For such an action the canonical map X — I'\ X is a topological
covering map.

Let a group I' act discretely on a K-analytic space X. We say that the quotient space
I\ X exists if one can endow the topological space I'\ X with a K-analytic space structure and
construct a morphism p : X — I'\ X such that, for any morphism ¢ from X to a K-analytic
space Y with p oy = ¢ for all 4y € T', there exists a unique morphism ¢ : T\X — Y with
@ = op. We say that an affinoid domain V' C X is I'-marked if the set I'y, is a group and
v(V) =V for all vy € I'yy. A morphism p : T — S is said to be an analytic covering if each
point of S has an open neighborhood U such that p~*(U) = [[,; Vi and all of the induced
maps V; — U are isomorphisms.

Lemma 4. — Assume that either (1) the action of ' on X is free, or (2) the space X is
separated and each point of X has a neighborhood of the form V; U ... UYV,, where V; are
I'-marked affinoid domains. Then the quotient space I'\ X exists. In the case (1), p: X — I'\X
is an analytic covering.

Proof. — Let 7 be (1) the family of all affinoid domains V' C X with v(V)NV = 0 for v # 1,
and (2) the family of all I'-marked affinoid domains. It follows from the assumptions that 7 is
a net stable under the action of I, and therefore o := {p(V)|V € 7} is a net on I'\X. Using
the fact that the subalgebra of invariants of a K-affinoid algebra under a finite automorphism
group is K-affinoid ([4], 6.3; [1], 2.1.14), one constructs in the evident way a K-affinoid atlas
with the net o that gives rise to the required K-analytic space structure on I'\ X. "

Corollary 5. IfT acts discretely on a good separated K -analytic space X, then the quotient
space T'\ X exists, and T'\ X is a good separated K-analytic space.
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Proof. Tt suffices to show that each point € X has a I'-marked affinoid neighborhood. Let
>} be a compact neighborhood of z with I'y =T',. If U is an affinoid neighborhood of x with
UcCZX, then V=nN,er,v(U) is a I'-marked affinoid neighborhood of x with I'y =T',. .

Let us return to our situation.

Lemma 6. — (i) The following properties of a subgroup I' C PGL4(k) are equivalent:
(a) the action of T on Q4 is discrete (resp. discrete and free);
(b) the action of T' on B? is discrete (resp. discrete and free);
(c) T' is discrete (resp. torsion free and discrete) in PGL4(k).
(ii) The following properties of a discrete subgroup I' C PGL4(k) are equivalent:
(a) the K-analytic space T'\Q% is proper;
(b) the topological space T'\B* is compact;
(c) T' is cocompact in PGL4(k).

Proof. — Everything easily follows from the facts that the retraction map 7 : Q% — B¢
is PGL4(k)-equivariant and proper, the fixed point set of any compact subgroup of PGLg4(k)
on B? is nonempty, and the vertices of B? correspond bijectively to the right cosets of the
compact subgroup PGL4(k°) C PGL4(k), where k° is the ring of integers of k. .

Theorem 2 now follows in the evident way from Theorem 1, the fact ([1], §6.1) that the
space Q4 is simply connected (and even contractible) and the following

Lemma 7. — Let p: Y — X be an analytic covering. Then for any morphism ¢ : Y’ — X
with simply connected Y’ and for any pair of points y € Y, 3/ € Y/ with p(y) = ¢(y) there
exists a unique morphism v : Y’ — Y with ¢ = po and y = (y').

Proof. — Since analytic spaces are locally compact and locally arcwise connected, then such
1 exists and is unique, at least, as a map of topological spaces. We may assume that ¢ is
represented by a strong morphism (see [2], §1) (Y',B',0') — (X, A,7), where the net 7 is
such that for any V € 7 one has p~(V) = [[,.; Wi and W;=V. The family o of all affinoid
domains W C Y with p(W) C V for some V € 7 is a net on Y, and for any W’ € ¢’ there
exists W € o with o(W’') C W. Then p is defined by a strong morphism (Y, B,0) — (X, A, 1),
and there is an evident strong morphism (Y',B’,0’) — (Y,B,0) that defines the required
morphism . .

Remark. — One can construct a PGLg(k)-equivariant homotopy between the identity map
on Q% and the retraction map 7: Q% — B¢ C Q4. It follows that, for any discrete subgroup
I C PGLy4(k), T\B? is a strong deformation retract of T'\ Q4.
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