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0 Introduction

Let k be a field complete with respect to a non-Archimedean valuation, k� its ring of
integers, and k̃ its residue field. Every formal scheme X locally finitely presented over
k� has a closed fiber Xs , which is a scheme of locally finite type over k̃, and a generic
fiber Xη, which is a strictly k-analytic space (in the sense of [Ber2]) whose underlying
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topological space is a paracompact locally compact space of dimension dim(Xη), and
there is a reduction map π : Xη → Xs .

Given a formal scheme X for which there is a sequence of morphisms from a certain

class X = (X = Xl
fl−1→ · · · f1→ X1

f0→ X0 = Spf(k�)), in [Ber7] we constructed a
strong deformation retraction of the generic fiber Xη to a closed subset S(X) called
the skeleton of X. (The morphisms from that class are called poly-stable, such a
sequence X is called a poly-stable fibration, and such a formal scheme X is called
pluri-stable.) We also constructed a canonical homeomorphism between the skeleton
S(X) and the geometric realization of a simplicial set associated with the closed fiber
of X. This homotopy description of the spaces Xη together with the results of J. de
Jong from [deJ] were used in [Ber7] to prove that in the case, when the valuation on
k is nontrivial, any strictly analytic subdomain of a smooth k-analytic space is locally
contractible.

In our work in progress on integration on p-adic analytic spaces, the following
stronger property turns out to play an important role. Assume that the valuation on
k is nontrivial, and let X be a strictly analytic domain in a smooth k-analytic space.
Then each point x ∈ X has a fundamental system of open neighborhoods V such that:
(a) there is a contraction� of V to a point x0 ∈ V ; (b) there is an increasing sequence
of compact strictly analytic domains X1 ⊂ X2 ⊂ · · · ⊂ V which exhaust V and are
preserved under �; (b) for any bigger non-Archimedean field K , V ⊗̂K has a finite
number of connected components and � lifts to a contraction of each of them to a
point over x0; and (d) there is a finite separable extension L of k such that, if K from
(c) contains L, then the map V ⊗̂K → V ⊗̂L induces a bijection between the sets of
connected components.

One of the main purposes of this paper is to prove the above property. The proof
is based on a further study of the skeleton S(X) for those poly-stable fibrations X in
which all of the poly-stable morphisms fi : Xi+1 → Xi are so called nondegenerate.
This study has an independent interest. It turns out that S(X) depends only on X = Xl
(it is therefore denoted by S(X)), and that it is provided with a canonical piecewise
linear structure of a special type. This piecewise linear structure on the skeleton
S(X) is closely related to the analytic structure on the generic fiber Xη, and is in fact
reflected in many familiar properties and objects related to analytic functions (such as
the growth and Newton polygon of an analytic function). We now give a summary of
the material which follows.

In §1, we introduce and study a subcategory of the category of piecewise linear
spaces. The exposition is slightly non-traditional in the sense that the model vector
space for us is the multiplicative group (R∗+)n provided with the following action of
R: (s, (t1, . . . , tn)) �→ (ts1 , . . . , t

s
n). Similarly, linear functions considered are maps

to R∗+ of the form (t1, . . . , tn) �→ rt
s1
1 . . . t

sn
n . The subcategory introduced consists

of the piecewise linear spaces which are built from the polytopes defined by linear
inequalities with certain restrictions on their coefficients. Namely, the coefficients at
the linear terms are required to belong to a sub-semiring S ⊂ R, and the constant terms
are required to belong to a submonoid R ⊂ R∗+ such that for any r ∈ R and s ∈ S
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one has rs ∈ R. The polytopes defined in such a way are called RS-polytopes, and
the spaces obtained are called piecewise RS-linear. If S = R and R = R∗+, one gets
the whole category of piecewise linear spaces. The skeleton S(X) of a nondegenerate
pluri-stable formal scheme over k� is provided (in §5) with a piecewise RZ+ -linear
structure for R = |k∗| ∩ [0, 1].

There is at least a formal similarity between piecewise linear and k-analytic spaces.
Namely, both are provided with a Grothendieck topology formed by piecewise linear
subspaces in the former and by analytic subdomains in the latter. Coverings are defined
in the same way: a family {Yi}i∈I of subspaces of Y is a covering if every point y ∈ Y
has a neighborhood of the form Yi1 ∪ · · · ∪Yin with y ∈ Yi1 ∩ · · · ∩Yin . In §6, a direct
relation between the Grothendieck topologies on S(X) and Xη is established, and it is
very important for applications in §7 and §8.

To describe the constructions of §2 and §3, recall that in [Ber7] we associated with
the closed fiber of a poly-stable fibration X over k� of length l a polysimplicial set,
i.e., an object of the category��Ens of contravariant functors from a certain category
� to the category of sets Ens. (The simplicial set mentioned at the beginning of the
introduction was in fact derived from the latter.) If l = 1, we associated with the
formal scheme X = X1 itself a more refined object, an R-colored polysimplicial set,
i.e., an object of the category ��REns, where the category �R was associated with a
submonoid R ⊂ [0, 1]. (In the case considered, R = |k| ∩ [0, 1].) The geometric
realization of an R-colored polysimplicial set was provided with an extra structure, a
monoid of continuous functions to [0, 1] (which were eventually related to the absolute
values of the functions from the monoid O(X) ∩O(Xη)

∗).
Let R be a category provided with a geometric realization functor that takes an

object A to a pair (|A|,MA), where |A| is a topological space and MA is a semiring
of continuous functions on |A| with values in [0, 1]. (The semirings are considered
with the usual multiplication and the following addition: f +̇g = max(f, g).) In §2,
we construct a category �R provided with a similar geometric realization functor.
It gives rise to a category of R-colored polysimplicial sets ��REns and a similar
geometric realization functor on it. If R is a one point category with the geometric
realization functor that takes the only object of R to a one point space with a submonoid
R ⊂ [0, 1], one gets the category�R introduced in [Ber7, §4]. The only difference is
that the monoids, considered in loc. cit., are submonoids of the semirings considered
here, but the former can be characterized inside the latter.

In §3, we study the category obtained by iteration of the latter construction.
Namely, given a submonoid R ⊂ [0, 1], we set �R,1 = �R and �R,l = ��R,l−1

for l ≥ 2. In this way we get the category ��R,lEns of R-colored polysimplicial sets
of length l. The main facts established here are as follows. The geometric realization
of an R-colored polysimplicial set of length l is always Hausdorff and, if the set is
locally finite and 0 �∈ R, the geometric realization is provided with a canonical piece-
wise RZ+ -linear structure so that the semiring associated with it consists of certain
piecewise RZ+ -linear functions.
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In §4, we recall the notion of a poly-stable morphism and introduce an additional
property of nondegenerateness. (A pluri-stable formal scheme over k� is nondegener-
ate if and only if its generic fiber is a normal strictly k-analytic space.) We introduce a
partial ordering on the generic fiber Xη of a formal scheme X locally finitely presented
over k�, and prove that the skeleton S(X) of a nondegenerate poly-stable fibration X
of length l coincides with the set of maximal points with respect to the ordering on
Xl,η. This implies that S(X) depends only on Xl , and so the skeleton S(X) of a nonde-
generate pluri-stable formal scheme X is well defined. We also recall the construction
of the retraction map τ : Xη → S(X), which in general depends on the choice of X
with Xl = X, and introduce a class of so called strongly nondegenerate pluri-stable
formal schemes for which τ does not depend on the choice of X.

In §5, we associate with every nondegenerate poly-stable fibration X over k� of
length l a locally finite R-colored polysimplicial set D(X) of length l, where R =
|k∗| ∩ [0, 1], and construct a canonical homeomorphism |D(X)| ∼→ S(X) such that,
for any f ∈ O′(Xl ), the function x �→ |f (x)| on S(X) is contained in the semiring
MX associated with the geometric realization of D(X). (Here O′(X) is the set of all
f ∈ O(X) whose restriction to every connected component of X is not zero.) This
provides the skeleton S(X) with a piecewise RZ+ -linear structure and a semiring of
piecewise RZ+ -linear functions MX.

In §6.1, we prove that the latter depend only on Xl , i.e., given a nondegenerate
pluri-stable formal scheme X over k�, a piecewise RZ+ -linear structure on S(X) and
a semiring of piecewise RZ+ -linear functions MX on it are well defined and, for
any f ∈ O′(X), the function x �→ |f (x)| on S(X) is contained in MX. We also
prove that any pluri-stable morphism ϕ : X′ → X from a similar formal scheme
X′ gives rise to a piecewise RZ+ -linear map S(X′) → S(X) and it takes functions
from MX to functions from MX′ . In §6.2, we get a first application of the above
results whose elementary particular case tells the following. Given a compact strictly
analytic domain X in the analytification of a separated scheme of finite type over k
and invertible analytic functions f1, . . . , fn on X, the image of the mapping X →
(R∗+)n : x �→ (|f1(x)|, . . . , |fn(x)|) is a finite union of RZ+ -polytopes of dimension
at most dim(X). (This result was recently extended by A. Ducros to arbitrary compact
strictly k-analytic spaces.) Moreover, if such X is connected, the quotient group
O(X)∗/(k∗O(X)1) is finitely generated, where O(X)1 = {f ∈ O(X)∗ | |f (x)| = 1
for all x ∈ X}.

Let X be a nondegenerate pluri-stable formal scheme over k�. In §6.3, we prove
that, for any strictly analytic subdomain V ⊂ Xη, the intersection V ∩ S(X) is a
piecewise RZ+ -linear subspace of S(X) and, for any analytic function f ∈ O′(V ),
the function x �→ |f (x)| on V ∩ S(X) is piecewise |k∗|Z+ -linear. In particular, the
canonical embedding S(X) ↪→ Xη is continuous with respect to the Grothendieck
topologies of S(X) and Xη formed by piecewise RZ+ -linear subspaces and strictly
analytic subdomains, respectively. In §6.4, we prove that the retraction map τ :
Xη → S(X) is continuous with respect to the same Grothendieck topologies on S(X)
and Xη. (This result is used in §7 and §8.) We also prove that, given an arbitrary
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morphism ϕ : X′ → X from a similar formal scheme X′ over k�, the composition

map S(X′) ϕ→ Xη
τ→ S(X) is piecewise (

√|k∗|)Q+ -linear, where
√|k∗| = {α ∈ R∗+ |

αn ∈ |k∗| for some n ≥ 1}.
In §7, we prove the property mentioned at the beginning of the introduction.
In §8, we prove results which have a direct relation to p-adic integration. Assume

that the characteristic of k is zero. The sheaf of constant functions cX on a reduced

strictly k-analytic space X is the étale sheaf of k-vector spaces Ker(OX
d→ 	1

X). If
k is algebraically closed, it is the constant sheaf kX associated with k, but in general
it is much bigger. Assume X is smooth. It is well known that the de Rham complex

OX
d→ 	1

X

d→ 	2
X

d→ · · · is not exact. On the other hand, the similar de Rham
complex for the sheaf of naive analytic functions (i.e., the functions analytic in an open
neighborhood of each point from the dense subset X0 = {x ∈ X | [H(x) : k] <∞})
is exact, but the kernel of the first differential is too large. One of the purposes of
a p-adic integration theory is to find an intermediate class of functions between the
analytic and naive analytic ones such that the corresponding de Rham complex is an
exact resolution of the sheaf of constant functions cX. It is what was essentially done
by R. Coleman in [Col] and [CoSh] for smooth k-analytic curves. In our generalization
of his work, the following two facts are of crucial importance. The first one (Theorem
8.2.1) tells that each point of X has a fundamental system of open neighborhoods V
such that Hn(V, cX) = 0 for all n ≥ 1. The second one (Corollary 8.3.3) tells that,
given a nondegenerate strictly pluri-stable formal scheme X over k�, an irreducible
component Y ⊂ Xs , and a Zariski closed subset Z ⊂ Xη, then for X = π−1(Y)\Z
one has Hn(X, cX) = 0 for all n ≥ 1.

To give some idea on how these two facts are used (in our work in progress), notice
that, if the above integration theory exists and X is a smooth k-analytic space with
H 1(X, cX) = 0, then every closed analytic one-form on X has a primitive (of course,
in a bigger class of functions) which is defined uniquely up to an element of c(X).
The second of the above facts provides a class of spaces (of the form X = π−1(Y))
where one constructs such a primitive. The construction depends on X and Y (and not
only on X), and the first fact is used to show that the primitive constructed actually
depends only on X.

In another work in progress, we generalize many of the results of this paper to the
whole class of pluri-stable formal schemes. In particular, we show that the skeleton
S(X) always depends only on X = Xl , but in the general case S(X) is provided with
a so called piecewise monomial structure which is more general than the piecewise
linear structure considered here (see Remark 1.3.2(ii)). It is for that reason certain
constructions in §2, §3 and §5 are considered in a more general setting.

I am very grateful to the referee for many corrections, suggestions and remarks
that significantly improved the paper.
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1 Piecewise RS-linear spaces

1.1 RS-polytopes

Recall that a (compact) polytope in a vector space is the convex hull of a finite set
of points. This object is a building block of the classical notion of a piecewise linear
space. A basic fact is that a compact subset of a vector space is a polytope if and only
if it can be defined by a finite number of linear inequalities (see [Zie, Theorem 1.1]).

We say that a set is a semiring if it is a commutative monoid by multiplication
and addition related by the identity a(b + c) = ab + ac and which contains 1. An
example of a semiring is the set of all continuous non-negative real valued functions on
a topological space provided with the usual multiplication and the following addition:
f +̇g = max(f, g). In this section we consider only sub-semirings of the field of real
numbers R.

Let S be a sub-semiring of R that contains 0, and letR be a nonempty S-submonoid
of R∗+, i.e., it is a nonempty submonoid of R∗+ such that for any r ∈ R and s ∈ S one
has rs ∈ R. The simplest example is S = R and R = R∗+, and the main examples
considered in the paper are provided by a non-Archimedean field k and are as follows:
S = Z+ and R = |k∗| ∩ [0, 1] or |k∗|, and S = Q+ and R = √|k∗| = {α ∈ R∗+ |
αn ∈ |k∗| for some n ≥ 1}. IfR = {1} (e.g., if the valuation on k is trivial), everything
we are going to consider is trivial, but has a meaning.

We denote by S̃ (resp. S) the subring (resp. subfield) of R generated by S and by
R̃ (resp. R) the S̃-submodule (resp. S-vector subspace) of R∗+ generated byR, and we
denote by 〈R〉 the convex hull ofR in R∗+, which is also an S-submonoid of R∗+. (Here
are all possible values of 〈R〉: {1}, [1,∞[, ]0, 1] and R∗+.) For n ≥ 0, we denote by
An(RS) the S-monoid of functions on (R∗+)n of the form (t1, . . . , tn) �→ rt

s1
1 . . . t

sn
n ,

where r ∈ R and s1, . . . , sn ∈ S, and, for a subset V ⊂ (R∗+)n, we denote byAV (RS)
the set of the restrictions to V of the functions from An(RS).

An RS-polytope in (R∗+)n is a compact subset of 〈R〉n which is defined by a finite
system of inequalities of the form f (t) ≤ g(t) with f, g ∈ An(RS). Of course, any
RS-polytope is also an RS-polytope. An easy criterion for the latter is as follows.

A point of (R∗+)n is said to be an R-point if all of its coordinates are contained
in R, and a line in (R∗+)n is said to be S-rational if there exist s1, . . . , sn ∈ S such
that, for some (and therefore every) pair of distinct points x = (x1, . . . , xn) and
y = (y1, . . . , yn) of the line, one has xi

yi
= t si with t ∈ R∗+, 1 ≤ i ≤ n. Notice that, if

the above x and y are R-points, then t ∈ R and, in fact, f (y)
f (x)
∈ R for all f ∈ An(RS).

1.1.1 Lemma. The following properties of a polytope V ⊂ (R∗+)n are equivalent:

(a) V is an RS-polytope;

(b) V is defined by a finite system of inequalities of the form f (t) ≤ g(t) with
f, g ∈ An(RS);
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(c) all vertices of V are R-points and all edges of V are S-rational.

Notice that if dimS(R) = 1 then the second property in (c) follows from the first
one.

Proof. The equivalence of (a) and (b) is trivial, and the equivalence of (b) and (c) is a
simple linear algebra. ��

1.1.2 Corollary. Let V be anRS-polytope in (R∗+)n. Then any subset of V , which is
defined by a finite system of inequalities of the form t s11 . . . t

sn
n ≤ r with s1, . . . , sn ∈ S

and r ∈ R, is an RS-polytope. In particular, all faces of V and the intersection of two
RS-polytopes are RS-polytopes. ��

An (abstract) RS-polytope is a topological spaceX provided with a set of continu-
ous functionsAX for which there exists a homeomorphism ϕ : X ∼→ V , where V is an
RS-polytope in (R∗+)n, such that ϕ∗ induces a bijectionAV (RS)

∼→ AX. For example,
a subset V ⊂ (R∗+)n provided with the set of functions AV (RS) is an (abstract) RS-
polytope if and only if V is an RS-polytope in (R∗+)n. A morphism of RS-polytopes
ψ : X′ → X is a continuous map that takes functions fromAX to functions fromAX′ .
In this way we get a category of RS-polytopes.

For example, there is an evident anti-equivalence between the category of zero
dimensional RS-polytopes and the category of S-monoids R ⊂ R′ ⊂ 〈R〉 ∩R, which
are generated over S by R and a finite number of elements, and with inclusions as
morphisms. In particular, if the S-monoid R is not divisible, the minimal dimension
of an affine space which contains a zero dimensional RS-polytope isomorphic to a
given one may be sufficiently large.

A subset Y of an RS-polytope X is said to be an RS-polytope in X if one of the
above maps ϕ takes it to an RS-polytope in V . Such a subset is provided with the
evident RS-polytope structure.

1.1.3 Corollary. Let ϕ : X′ → X be a morphism of RS-polytopes. Then

(i) the image ϕ(X′) is an RS-polytope in X;

(ii) ϕ induces an isomorphism X′ ∼→ ϕ(X′) if and only if the map AX → AX′ is
surjective;

(iii) for any RS-polytope Y inX, the preimage ϕ−1(Y ) is an RS-polytope inX′, and
the induced map ϕ−1(Y )→ Y is a morphism of RS-polytopes. ��

A morphism of RS-polytopes ϕ : X′ → X is said to be an immersion if it satisfies
the equivalent properties of Corollary 1.1.3(ii).
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1.2 RS-polyhedra

An RS-polyhedron in (R∗+)n is a finite union of RS-polytopes. Let V be an RS-
polyhedron. A continuous function f : V → R∗+ is said to be piecewise RS-linear
if V can be represented as a union of RS-polytopes V = V1 ∪ · · · ∪ Vk such that
f |Vi ∈ AVi (RS) for all 1 ≤ i ≤ k. Let PV (RS) denote the set of all piecewise
RS-linear functions on V . From Corollary 1.1.2 it follows that, given f1, . . . , fm ∈
PV (RS), one can find RS-polytopes V1, . . . , Vk ⊂ V such that V = V1 ∪ · · · ∪ Vk
and fi |Vj ∈ AVj (RS) for all 1 ≤ i ≤ m and 1 ≤ j ≤ k. In particular, PV (RS) is an
S-monoid, and it contains the functions max{f1, . . . , fn} and min{f1, . . . , fn}.

1.2.1 Lemma. Let V ⊂ (R∗+)n and U ⊂ (R∗+)m be RS-polyhedra. Then the
following properties of a continuous map ϕ : V → U are equivalent:

(a) there exist RS-polytopes V1, . . . , Vk ⊂ V and U1, . . . , Uk ⊂ U such that V =
V1 ∪ · · · ∪ Vk and ϕ induces morphisms of RS-polytopes Vi → Ui , 1 ≤ i ≤ k;

(b) ϕ∗ takes functions from PU(RS) to PV (RS).

Proof. The implication (a)�⇒(b) easily follows from Corollary 1.1.3(iii). Assume
that ϕ∗ takes functions from PU(RS) to PV (RS), and let f1, . . . , fm be the preim-
ages of the coordinate functions on (R∗+)m in PV (RS). We can find RS-polytopes
V1, . . . , Vk ⊂ V such that V = V1 ∪ · · · ∪ Vk and fi |Vj ∈ AVj (RS) for all 1 ≤ i ≤ m
and 1 ≤ j ≤ k. Then the image Ui of each Vi under ϕ is an RS-polytope in (R∗+)m,
which is contained in U , and the induced maps Vi → Ui are morphisms of RS-
polytopes. ��

A continuous map between RS-polyhedra ϕ : V ′ → V is said to be piecewise
RS-linear if it possesses the equivalent properties of Lemma 1.2.1.

An (abstract) RS-polyhedron is a topological space X provided with a set of con-
tinuous functions PX for which there exists a homeomorphism ϕ : X ∼→ V , where
V is an RS-polyhedron in (R∗+)n, such that ϕ∗ induces a bijection PV (RS)

∼→ PX.
A morphism of RS-polyhedra ϕ : X′ → X is a continuous map that takes functions
from PX to functions from PX′ . A subset Y of an RS-polyhedron X is said to be
an RS-polyhedron in X if the above map ϕ takes it to an RS-polyhedron in V . This
property of Y does not depend on the choice of ϕ, and in this case Y is provided with
the evident RS-polyhedron structure.

1.2.2 Lemma. Let ϕ : X′ → X be a morphism of RS-polyhedra. Then

(i) the image ϕ(X′) is an RS-polyhedron in X;

(ii) for any RS-polyhedron Y in X, ϕ−1(Y ) is an RS-polyhedron in X′, and the
induced map ϕ−1(Y )→ Y is a morphism of RS-polyhedra. ��
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We say that a morphism ofRS-polyhedra ϕ : X′ → X is an immersion if it induces
an isomorphism X′ ∼→ ϕ(X′).

1.2.3 Lemma. The following properties of a morphism ofRS-polyhedraϕ : X′ → X

are equivalent:

(a) ϕ is an isomorphism (resp. an immersion);

(b) for every RS-polyhedron Y in X, the induced morphism ϕ−1(Y ) → Y is an
isomorphism (resp. an immersion);

(c) there exists a finite covering of X by RS-polyhedra {Yi} such that the induced
morphisms ϕ−1(Yi)→ Yi are isomorphisms (resp. immersions). ��

Notice that, if a morphism of RS-polytopes is an isomorphism (resp. immersion)
as a morphism of RS-polyhedra, then it is an isomorphism (resp. immersion) as a
morphism of RS-polytopes.

1.3 Piecewise RS-linear spaces

Let X be a locally compact space. (All locally compact spaces are assumed to be
Hausdorff.) An RS-polyhedron chart on X is a compact subset V ⊂ X provided with
an RS-polyhedron structure. Two charts U and V are said to be compatible if U ∩ V
is an RS-polyhedron in U as well as in V , and the RS-polyhedron structures on it
induced from U and V are the same. An piecewise RS-linear atlas on X is a family
τ of compatible RS-polyhedron charts with the property that every point x ∈ X has a
neighborhood of the form V1 ∪ · · · ∪ Vn with V1, . . . , Vn ∈ τ .

Given a piecewise RS-linear atlas τ on X, we say that an RS-polyhedron chart on
X is compatible with τ if it is compatible with every chart from τ . Two piecewise RS-
linear atlases on X are said to be compatible if every chart of one atlas is compatible
with the other atlas. From Lemma 1.2.3 it follows that, if two RS-polyhedron charts
are compatible with a piecewise RS-linear atlas, then they are compatible. It follows
that compatibility is an equivalence relation on the set of piecewise RS-linear atlases
on X.

A piecewiseRS-linear space is a locally compact spaceX provided with an equiv-
alence class of piecewise RS-linear atlases. Notice that each equivalence class has a
unique maximal atlas. It consists of all RS-polyhedron charts which are compatible
with some (and, therefore, with any) piecewise RS-linear atlas from the equivalence
class. The charts from the maximal atlas will be calledRS-polyhedra inX. A function
f : X→ R∗+ is said to be piecewiseRS-linear if its restriction to everyRS-polyhedron
Y in X is contained in PY . The set of such functions on X will be denoted by PX.

A morphism of piecewise RS-linear spaces is a continuous map ϕ : X′ → X with
the following property. There exist piecewise RS-linear atlases τ on X and τ ′ on X′
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that define the piecewise RS-linear structures on X and X′ and such that for every
V ′ ∈ τ ′ there exists V ∈ τ for which ϕ(V ′) ⊂ V and the induced map V ′ → V is a
morphism of RS-polyhedra. Notice that in this case, for every pair of RS-polyhedra
V ⊂ X and V ′ ⊂ X with ϕ(V ′) ⊂ V , the induced map V ′ → V is a morphism of
RS-polyhedra. It follows that one can compose piecewise RS-linear morphisms, and
so we get a category of piecewise RS-linear spaces PLRS . This category admits finite
direct products.

A subset Y of a piecewise RS-linear space X is said to be a piecewise RS-linear
subspace if every point y ∈ Y has a neighborhood in Y of the formV1∪· · ·∪Vn, where
V1, . . . , Vn are RS-polyhedra in X. Such a subset Y is locally closed in X, and has a
canonical structure of a piecewise RS-linear space. Given a morphism of piecewise
RS-linear spaces ϕ : X′ → X, the preimage of any piecewise RS-linear subspace of
X is a piecewise RS-linear subspace of X′. If ϕ is proper, then the image ϕ(X′) is a
piecewise RS-linear subspace of X. The morphism ϕ is said to be an immersion if it
induces an isomorphism between X′ and a piecewise RS-linear subspace of X.

Let X be a piecewise RS-linear space. The family of its piecewise RS-linear
subspaces can be considered as a category, and it gives rise to a Grothendieck topology
XG generated by the pretopology in which the set of coverings of a piecewise RS-
linear subspace Y consists of families {Yi}i∈I of piecewise RS-linear subspaces of
Y such that every point y ∈ Y has a neighborhood of the form Yi1 ∪ · · · ∪ Yin with
y ∈ Yi1∩· · ·∩Yin . Since all open subsets ofX are piecewiseRS-linear subspaces, there
is a morphism of sites XG → X. Moreover, every morphism of piecewise RS-linear
spaces ϕ : X′ → X gives rise to a morphisms of sitesX′G → XG. The correspondence
Y �→ PY is a sheaf in the Grothendieck topologyXG, denoted by PXG . Its restriction
to the usual topology of X will be denoted by PX. More generally, for any piecewise
RS-linear space X′, the correspondence Y �→ Hom(Y,X′) is a sheaf of sets on XG.

A morphism of piecewise RS-linear spaces ϕ : Y → X is said to be a G-local
immersion (G stands for Grothendieck topology) if for every point y ∈ Y there exist
RS-polyhedra V1, . . . , Vn ⊂ Y such that V1 ∪ · · · ∪ Vn is a neighborhood of y in Y
and all of the induced morphisms Vi → X are immersions. Notice that a G-local
immersion ϕ : Y → X, which induces a homeomorphism of Y with its image in X,
is an immersion.

If S′ is a sub-semiring of R that contains S and R′ is an S′-submonoid of R∗+ that

containsR, then there is the evident functor PLRS → PLR
′

S′ . Of course, this functor does
not change the underlying topological spaces, but it can change their Grothendieck
topology. From Corollary 1.1.2 it follows that the Grothendieck topology is not
changed if S′ ⊂ S and R′ ⊂ R.

Let {Xi}i∈I be a family of piecewise RS-linear spaces, and suppose that, for each
pair i, j ∈ I , we are given a piecewise RS-linear subspace Xij ⊂ Xi and an isomor-

phism νij : Xij ∼→ Xji so thatXii = Xi , νij (Xij∩Xil) = Xji∩Xjl and νil = νjl �νij
on Xij ∩Xil . In this case one can construct a topological space X obtained by gluing
of Xi along Xij . (It is the quotient space X̃/E, where X̃ is the disjoint union

∐
i Xi
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andE is the equivalence relation on X̃ defined by the system {νij }.) Let µi denote the
induced map Xi → X.

1.3.1 Lemma. In each of the following cases, there exists a unique piecewise
RS-linear structure on X such that all µi are immersions:

(a) all Xij are open in Xi and X is Hausdorff;

(b) for any i ∈ I , all Xij are closed in Xi and the number of j ∈ I with Xij �= ∅
is finite.

Furthermore, in the case (a), all µi(Xi) are open inX and, in the case (b), all µi(Xi)
are closed in X.

In the situation of the lemma, X is said to be obtained by gluing of Xi along Xij .

Proof. In the case (a), the equivalence relation E is open (see [Bou, Ch. I, §9, n� 6])
and, therefore, all µi(Xi) are open in X. In the case (b), the equivalence relation E
is closed (see loc. cit., n� 7) and, therefore, all µi(Xi) are closed in X, µi induce
homeomorphisms Xi

∼→ µi(Xi), and X is Hausdorff.
Let τ denote the family of all subsets V ⊂ X for which there exists i ∈ I such

that V ⊂ µi(Xi) and µ−1
i (V ) is an RS-polyhedron in Xi (in this case µ−1

i (V ) is an
RS-polyhedron in Xj for every j with V ⊂ µj (Xj )). The family τ is a piecewise
RS-linear atlas on X and, for the piecewise RS-linear space structure on X it defines,
all µi are immersions. That the piecewise RS-linear structure on X with the latter
property is unique is trivial. ��

1.3.2 Remarks. (i) The definition of a piecewise linear space given in this subsection
is an easy version of the definition of a non-Archimedean analytic space in [Ber2].
Both are examples of a global object defined by gluing local objects (affinoid spaces in
the former and polyhedra in the latter) which are closed subsets. The main difference
between our definition and that in [Hud] is in the freeing of the requirement that
every point has a neighborhood isomorphic to a polyhedron. The latter property
(appropriately adjusted) is established in the following subsection and used in §7 (see
also Remark 1.4.5).

(ii) If R = {1}, then any RS-polyhedron is a point and any piecewise RS-linear
space is a discrete topological space with the only one piecewise RS-linear function
which takes value 1.

(iii) The piecewise monomial spaces introduced in our work in progress and men-
tioned in the introduction are glued from certain compact subsets of Rn+ which are
defined by a finite number of inequalities f (t) ≤ g(t) with f and g of the form
rt
s1
1 . . . t

sn
n , where si are elements of a sub-semiring S ⊂ R and r are elements of an

S-submonoid R ⊂ R+ such that if 0 ∈ R then S ⊂ R+.
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1.4 An embedding property

1.4.1 Proposition. Every point of a piecewise RS-linear space has a compact
piecewise RS-linear neighborhood which admits a piecewise RS-linear isomorphism
with an RS-polyhedron.

The statement is trivial if R = {1}, and so we assume that R �= {1}.
LetX be anRS-polyhedron in (R∗+)n. AnRS-polytopal subdivision ofX is a finite

family τ of RS-polytopes that coverX and are such that (1) if V ∈ τ , then all faces of
V are contained in τ , and (2) if U,V ∈ τ , then U ∩ V is a face in U and in V . The
subdivision τ is a refinement of a similar subdivision τ ′ if each V ∈ τ is contained in
some V ′ ∈ τ ′. If τ is a family of subsets of a set and U is a subset of the same set,
then τ |U denotes the family {V ∈ τ | V ⊂ U}.

1.4.2 Lemma. Let X be an RS-polyhedron in (R∗+)n, and let σ be a finite family of
RS-polyhedra in X. Then there exists an RS-polytopal subdivision τ of X such that
for every U ∈ σ the following is true:

(a) τ |U is an RS-polytopal subdivision of U ;

(b) if V ∈ τ , then U ∩ V is a face in V .

Proof. Step 1. There exists τ that satisfies (a). Indeed, replacing each polyhedron
U ∈ σ by a finite set ofRS-polytopes whose union isU , we may assume that σ consists
of RS-polytopes. We may also assume that σ contains a finite set of RS-polytopes
whose union isX. For eachU ∈ σ , we fix a finite setF(U) of pairs (f, g) of functions
from An(RS) such that U = {x ∈ (R∗+)n | f (x) ≤ g(x) for all (f, g) ∈ F(U)}. Let
F be the union of F(U) for all U ∈ σ . Then the required RS-polytopal subdivision
τ consists of the polytopes W for which there exist subsets T ⊂ σ and F≤, F≥ ⊂ F
with F≤ ∩ F≥ = ∅ such that W is the set of all points x ∈ ⋂

U∈T U satisfying the
inequalities f (x) ≤ g(x) for (f, g) ∈ F≤ and f (x) ≥ g(x) for (f, g) ∈ F≥ and the
equalities f (x) = g(x) for (f, g) ∈ F\(F≤ ∪ F≥).

Indeed, let W(T, F≤, F≥) denote the above polytope. Since W(T ′, F ′≤, F ′≥) ∩
W(T ′′, F ′′≤, F ′′≥) = W(T ′ ∪ T ′′, F ′≤ ∩ F ′′≤, F ′≥ ∩ F ′′≥), it suffices to check that, if
W ′ = W(T ′, F ′≤, F ′≥) is contained in W = W(T, F≤, F≥), then W ′ is a face of
W . For this we can replace T ′ by T ′ ∪ T , F ′≤ by F ′≤ ∩ F≤ and F ′≥ by F ′≥ ∩ F≥ and,
therefore, we may assume that T ′ ⊃ T ,F ′≤ ⊂ F≤ andF ′≥ ⊂ F≥. SinceW(T, F ′≤, F ′≥)
is evidently a face of W , we may assume that F ′≤ = F≤ and F ′≥ = F≥. It remains,
therefore, to consider the case when T ′ = T ∪ {U} for some U ∈ σ . In this case, one
has W ′ = W(T, F≤, F≥\F(U)), and the latter is evidently a face of W .

Step 2. If τ satisfies (a), there exists a refinement of τ that satisfies (b). If U ∈ σ
and V ∈ τ , U ∩ V is a union of faces of V . Let M(V,U) denote the set of the
faces of V in V ∩ U which are maximal by inclusion. For each pair of distinct faces
W1,W2 ∈ M(V,U) of V , we fix a hyperplane L ⊂ (R∗+)n defined by an equation
f (x) = g(x) with f, g ∈ An(RS) and such that L ∩ W1 = L ∩ W2 = W1 ∩ W2
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and, for every pair of points x1 ∈ W1\W2 and x2 ∈ W2\W1, the interval connecting
them intersects L. Let σ ′ be the union of σ , τ and of {L ∩ X} for all quadruples
(U, V,W1,W2) as above. By Step 1, there exists an RS-polytopal subdivision τ ′
of X with the property (a) for σ ′. We claim that τ ′ satisfies the property (b) for σ .
Indeed, suppose there existU ∈ σ and V ′ ∈ τ ′ for which there exist two distinct faces
W ′1,W ′2 ∈ M(V ′, U), and let V ∈ τ contain V ′. Then W ′1 and W ′2 cannot lie in one
face of V in V ∩U because they are maximal among the faces of V ′ in V ′ ∩U . Thus,
there exist two distinct faces W1,W2 ∈ M(V,U) such that W ′1 ⊂ W1, W ′2 ⊂ W2,
W ′1 �⊂ W1 ∩W2 and W ′2 �⊂ W1 ∩W2. Let x1 and x2 be points from the interiors of
W ′1 and W ′2, respectively, which do not lie in W1 ∩W2, and let L be the hyperplane
associated with (U, V,W1,W2). ThenL contains a point from the interval connecting
x1 and x2. Such a point lies in the interior of a face of V ′ that contains W ′1 and W ′2.
Since τ ′|L∩X is a subdivision of L ∩X, it follows that W ′1,W ′2 ⊂ L. This contradicts
the equalities L ∩W1 = L ∩W2 = W1 ∩W2. ��

An RS-polytopal subdivision τ is said to be simplicial if all polytopes from τ are
simplices.

1.4.3 Lemma. If dimS(R) = 1, then any RS-polytopal subdivision of an RS-poly-
hedron X ⊂ (R∗+)n has an RS-simplicial refinement with the same set of vertices.

Proof. The assumption implies that the convex hull of any subset of the set of vertices
of an RS-polytope is an RS-polytope and, therefore, the proof of the corresponding
classical fact (see [RoSa, Proposition 2.9]) is applicable. (The same reasoning will be
used in the proof of Lemma 1.4.4 below.) ��
Proof of Proposition 1.4.1. First of all, we may assume that S is a field and, therefore,
R is a vector space over S. It suffices to show that every point x of a piecewise
RS-linear space X, which is a union of two RS-polyhedra X′ and X′′, has an RS-
polyhedron neighborhood. Of course, we may assume that x ∈ X′ ∩X′′. Let R′ be a
fixed one-dimensional S-vector subspace of R. We claim that there exists a compact
piecewiseRS-linear neighborhood of x, which is isomorphic to a piecewiseR′S-linear
space.

(1) By Lemma 1.4.2, there exists an RS-polytopal subdivision τ ′ of X′ with the
properties (a) and (b) for σ = {X′ ∩X′′}. Furthermore, we can find an RS-polytopal
subdivision τ ′′ of X′′ with the properties (a) and (b) for σ = τ ′|X′∩X′′ .

(2) Let W be the minimal polytope from τ ′′ that contains the point x, and let τ be
the family of all polytopes from τ ′ ∪ τ ′′ that contain W . (Notice that τ is preserved
under intersections.) Then

⋃
V∈τ V is a neighborhood of x in X. The point x lies

in the interior W̊ of W . Let x0 be a fixed R-point in W̊ . We say that a point y from
the above union is marked if for some (and therefore any) V ∈ τ with y ∈ V one
has f (y)

f (x0)
∈ R′ for all f ∈ AV (RS). A polytope in V ∈ τ is said to be special if

it contains the point x0 and all its vertices are marked points, and a polyhedron in V
is said to be special if it is a finite union of special polytopes. Notice that a line in
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V passing through two different marked points is S-rational and, by Lemma 1.1.1,
special polytopes are RS-polytopes, and special polyhedra are RS-polyhedra. Notice
also that a polytope, which is special as a polyhedron, is special as a polytope.

(3) We are going to construct for every V ∈ τ a special polyhedron Ṽ ⊂ V ,
which is a neighborhood of the point x in V and such that if U ∈ τ and U ⊂ V

then Ũ = Ṽ ∩ U . The construction is made inductively and, at the beginning, for
polytopes from τ ∩ τ ′′. First of all, since the set of marked points is dense in W̊ , we
can find a special polytope W̃ ⊂ W , which is a neighborhood of the point x inW and
is contained in W̊ . Let V be a bigger polytope from τ ∩ τ ′′, and assume that Ũ are
already constructed for allU ∈ τ ∩ τ ′′ withU ⊂ V̇ , where V̇ = V \V̊ is the boundary
of V . Then the polyhedron V1 = ∪Ũ , where the union is taken over all U ∈ τ ∩ τ ′′
with U ⊂ V̇ , is a neighborhood of the point x in V̇ . We take an arbitrary marked
point y ∈ V̊ and define Ṽ as the join of y and V1 in V (i.e., the set {λy + µz}, where
z ∈ V1, λ,µ ≥ 0 and λ+ µ = 1). After the special polyhedra Ṽ are constructed for
all V ∈ τ ∩ τ ′′, we continue the same construction for polytopes V ∈ τ ∩ τ ′. Namely,
assume first that V ⊂ X′ ∩ X′′. Then V is a union of some U ∈ τ ′′, and we define
Ṽ as the union ∪Ũ , taken over all U ∈ τ ∩ τ ′′ with U ⊂ V . Assume now that V is
minimal among those polytopes from τ ∩ τ ′ that contain a point from X\X′′. Then
the intersection V ′′ = V ∩X′′ is a face of V of smaller dimension. It follows that the
special polyhedron Ṽ ′′ is a neighborhood of the point x in the boundary V̇ of V . We
take an arbitrary special point y ∈ V̊ and define Ṽ as the join of y and Ṽ ′′ in V . If a
polytope V ∈ τ ∩τ ′ is not minimal among those, that contain a point fromX\X′′, and
the special polyhedra Ũ are constructed for all U ∈ τ ∩ τ ′ with U ⊂ V̇ , we denote by
V1 the union of the corresponding Ũ ’s and define Ṽ as the join of some special point
y ∈ V̊ and V1.

(4) The union Y =⋃
V∈τ Ṽ is a compact piecewiseRS-linear neighborhood of the

point x in X. We claim that Y is isomorphic to a piecewise R′S-linear space. Indeed,
assume that V ∈ τ is an RS-polytope in (R∗+)n, and let the coordinates of the point x0
be (α1, . . . , αn). Then the automorphism ϕ of (R∗+)n : (y1, . . . , yn) �→ (

y1
α1
, . . . ,

yn
αn
)

takes marked points toR′-points and, therefore, it takes every special polytopeU in V
to anR′S-polytope ϕ(U) in ϕ(V ). Moreover, ϕ induces a bijection betweenAϕ(U)(R′S)
and the subspace of AU(RS) consisting of functions of the form y �→ r ′ f (y)

f (x0)
with

r ′ ∈ R′ and f ∈ AV (RS). It follows that this R′S-polytope structure on U does not
depend on the embedding of V in a vector space, and it gives rise to R′S-polyhedron
structures on special polyhedra inV . Moreover, ifV ′, V ′′ ∈ τ , then theR′S-polyhedron
structures on special polyhedra in V ′ ∩ V ′′, induced from V ′ and V ′′, are compatible.
In this way we get a piecewise R′S-linear structure on Y .

The proposition now follows from the following lemma, which is a straightforward
generalization of the classical result for S = R and R = R∗+.

1.4.4 Lemma. If S is a field and dimS(R) = 1, then any compact piecewise RS-
linear space is isomorphic to an RS-polyhedron.
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Proof. It suffices to show that a compact piecewise RS-linear space X, which is a
union of two RS-polyhedra X′ and X′′, is isomorphic to an RS-polyhedron.

(A) An RS-polytope chart on X is a compact subset V ⊂ X provided with an
RS-polytope structure which gives rise to an RS-polyhedron in X. Two RS-polytope
charts U and V are said to be compatible if U ∩ V is an RS-polytope in U as well as
in V , and the RS-polytope structures on it induced from U and V are the same. We
claim that X can be covered by a finite family τ of RS-simplex charts such that (1) if
V ∈ τ , then all faces of V are contained in τ , and (2) ifU,V ∈ τ , thenU ∩V is a face
in U and in V . Indeed, by Lemma 1.4.2, there exists an RS-polytopal subdivision
τ ′ of X′ with the properties (a) and (b) for σ = {X′ ∩ X′′}, and we can find an
RS-polytopal subdivision τ ′′ of X′′ with the properties (a) and (b) for σ = τ ′|X′∩X′′ .
Since dimS(R) = 1, we may apply Lemma 1.4.3 and assume that τ ′′ is simplicial.
Let V1, . . . , Vm be all of the polytopes from τ ′, which are not contained in X′ ∩ X′′
and such that if Vi is a face of Vj then i ≤ j . We set Y1 = X′′ and Yi+1 = Yi ∪ Vi ,
and provide as follows each Yi with a family of RS-simplex charts τi possessing the
properties (1) and (2) and such that τ1 = τ ′′ and τi+1|Yi = τi for all 1 ≤ i ≤ m. For
this we fix an ordering of the set of the vertices in τ ′ outsideX′ ∩X′′, and assume that,
for some 1 ≤ i ≤ m, τi is already constructed. If x is the first vertex of Vi outside
X′ ∩ X′′, we define τi+1 as consisting of all simplices from τi and the joins of x and
U ∈ τi with U ⊂ V̇i . (The latter are RS-simplices since dimS(R) = 1.) The family
τ = τm+1 on Ym+1 = X is the required one.

(B) Let {x1, . . . , xn+1} be the set of all vertices in τ , and let {y1, . . . , yn+1} be a
set of independent R-points in (R∗+)n. For a simplex V ∈ τ , let ϕ(V ) be the RS-
simplex in (R∗+)n, which is the convex hull of those points from {y1, . . . , yn+1}which
corresponds to the vertices of V . Then the correspondence xi �→ yi gives rise to an
isomorphism between X and the RS-polyhedron which is the union of all ϕ(V ) with
V ∈ τ . ��

1.4.5 Remarks. (i) It is not true in general that every point of a piecewise RS-
linear space has a compact piecewise RS-linear neighborhood isomorphic to an RS-
polyhedron. For example, assume that S = Z+ and R is an arbitrary submonoid of
R∗+ that contains a number 0 < r < 1, and let W be the triangle in (R∗+)2 defined
by the inequalities t1 ≤ 1 and r ≤ t2 ≤ t1. If U1 and U2 are the edges of W defined
by the equalities t2 = r and t1 = t2, respectively, there is an isomorphism U1

∼→ U2
that takes a point (t1, r) to the point (t1, t1), and it defines an involutive automorphism
ϕ of V = U1 ∪ U2. Let X be the piecewise RZ+ -linear space obtained by gluing
of two copies of W along the isomorphism ϕ of V (see Lemma 1.3.1). Then the
point x = (r, r) has no an RZ+ -polyhedron neighborhood in X. Indeed, let f be
a piecewise RZ+ -linear function in a neighborhood of x in X. The preimage of the
neighborhood in W contains a triangle W ′ defined in W by the inequality t1 ≤ r ′ for
some r ′ ∈ R with r < r ′ < 1, and one has f (y) = f (ϕ(y)) for all y ∈ W ′ ∩ U1.
But the restriction of f to a vertical interval in W ′ (defined by the equality t1 = α

for r < α ≤ r ′) is nondecreasing as a function on t2. It follows that the restriction of
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f to each vertical interval is constant. Since piecewise RZ+ -linear functions separate
points of an RZ+ -polyhedron, the point x has no an RZ+ -polyhedron neighborhood.

(ii) Although Proposition 1.4.1 is enough for an application in §7, it would be
interesting to know if its statement is true for S̃ and R̃ (instead of S and R), and if
Lemma 1.4.4 is true without the assumption dimS(R) = 1.

2 R-colored polysimplicial sets

2.1 Categories with a geometric realization functor

Given a topological space X, the set of all non-negative real valued functions on X
forms a semiring with respect to the usual multiplication and the following addition:
f +̇g = max(f, g). We denote by Topsr the category of the pairs (X,M) consisting
of a topological space X and a semiring M of continuous functions on X with values
in [0, 1] such that 1 ∈ M . The set of morphisms Hom((X′,M ′), (X,M)) consists of
the continuous maps X′ → X that take functions from M to M ′. The category Topsr

admits direct limits.
Let R be a small category provided with a functor R→ Topsr : A �→ (|A|,MA)

(which will be called a geometric realization functor). In this section we introduce
certain categories which are related to R and also provided with a geometric realization
functor. The first example is the category R�Ens of contravariant functors from R
to the category of sets Ens. The category R can be considered as its full subcategory
under the fully faithful functor R → R�Ens : A �→ RA that takes an object to the
contravariant functor represented by it. The geometric realization functor R�Ens →
Topsr : C �→ (|C|,MC) is the one that extends R → Topsr to the functor which
commutes with direct limits. For an object A ∈ Ob(R) and an element c ∈ CA,
where CA is the value of C at A, we denote by σc the corresponding map |A| → |C|.

2.2 The category �R

Recall the definition of the category � from [Ber7, §3]. First of all, for a tuple
n = (n0, . . . ,np) with either p = n0 = 0 or p ≥ 0 and ni ≥ 1 for all 0 ≤ i ≤ p, let
[n] denote the set [n0] × · · · × [np], where [n] = {0, 1, . . . , n}. The set [n] ∈ Ob(�)
is endowed with a metric as follows. The distance between two elements i and j of
[n] is the number of distinct coordinates of i and j . Objects of the category � are
the sets [n] for the tuples n as above, and morphisms are isometric maps. By [Ber7,
Lemma 3.1], each isometric map γ : [n′] → [n] can be described as follows. First
of all, we set ω(n) = [p], if [n] �= [0], and ω(n) = ∅, otherwise. Then there is
a pair (f, α) consisting of an injective map f : ω(n′) → [p] and α = {αi}0≤i≤p,
where αi is an injective map [n′

f−1(i)
] → [ni] for i ∈ Im(f ), and is a map [0] → [ni]
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for i �∈ Im(f ). The map γ takes an element i′ = (i′0, . . . ,i′p′) ∈ [n′] to the element
i = (i0, . . . ,ip) ∈ [n] with ij = αj (i

′
f−1(j)

) for j ∈ Im(f ), and ij = αj (0) for

j �∈ Im(f ). It follows that, for every subset J ⊂ ω(n), the morphism γ : [n′] → [n]
gives rise to a morphism [n′

f−1(J )
] → [nJ ], where nJ denotes the tuple (nj0 , . . . , njt )

if J = {j0, . . . , jt } is non-empty and j0 < · · · < jt , and the zero tuple 0, otherwise.
Assume we are given a category R and a functor R→ Topsr : A �→ (|A|,MA) (as

in §2.1). We introduce as follows a category�R, whose objects are denoted by [n]A,r ,
and a functor �R → Topsr : [n]A,r �→ (�n

A,r ,M
n
A,r). First of all, the objects [n]A,r

correspond to the following data: [n] = [n0] × · · · × [np] ∈ Ob(�), A ∈ Ob(R)

and r = (r0, . . . , rp) ∈ Mp+1
A , which satisfy the condition that r0 = 1, if [n] = [0],

and ri �= 1 for all 0 ≤ i ≤ p, if [n] �= [0]. Given an object [n]A,r and a morphism
ψ : A′ → A, let J (ψ, r) denote the set of all j ∈ ω(n) with rj (x) < 1 for some
x ∈ Im(|ψ |), where |ψ | is the map |A′| → |A|. A morphism [n′]A′,r ′ → [n]A,r is a
pair consisting of a morphism ψ : A′ → A in R and a morphism γ : [n′] → [nJ ] in
�, where J = J (ψ, r), which satisfy the following condition: if γ is associated with
a pair (f, α) as above, then r ′j = |ψ |∗(rf (j)) for all j ∈ ω(n′).

Furthermore, we set

�n
A,r = {(x, t) ∈ |A| × [0, 1][n] | ti0 . . . tini = ri(x), 0 ≤ i ≤ p}

and denote by Mn
A,r the semiring of continuous functions on �n

A,r generated by all
functions fromMA and the coordinate functions t �→ tij . Given a morphism (γ, ψ) :
[n′]A′,r ′ → [n]A,r as above, the corresponding map �n′

A′,r ′ → �n
A,r takes a point

(x′, t ′) to the point (x, t), where x = |ψ |(x′) and (a) if i �∈ J (ψ, r), then tij = 1 for
all 0 ≤ j ≤ ni , (b) if i ∈ J (ψ, r)\Im(f ), then tij = ri(x) for j = αi(0) and tij = 1
for j �= αi(0), and (c) if i ∈ Im(f ), then tij = t ′

f−1(i),α−1
i (j)

for j ∈ Im(αi) and tij = 1

for j �∈ Im(αi). In this way we get a geometric realization functor �R → Topsr.

2.3 Connections between the categories �R and R

First of all, there is a fully faithful functor R → �R : A �→ [0]A,1 and a functor
�R → R : [n]A,r �→ A. The latter makes �R a fibered category over the category
R in the sense of [SGA1, Exp. VI] and can be seen using the following general
construction.

Let R′ be another small category provided with a functor R′ → Topsr : A′ �→
(|A′|,MA′), and assume we are given a functor R′ → R : A′ �→ A and a morphism of

functors from R′ to Topsr: (|A′|,MA′)
hA→ (|A|,MA). Then one can define a functor

�R ×R R′ → �R′ : ([n]A,r , A′) �→ [n′]A′,r ′ ,
where n′ = nJ , r ′ = h∗A(rJ ) and J = {j ∈ ω(n) | rj (x) < 1 for some x ∈ Im(hA)}.
(The truncation rJ has the same meaning as nJ .) Notice that there is an isomorphism
of functors from �R ×R R′ to Topsr: �n′

A′,r ′
∼→ �n

A,r ×|A| |A′|.
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2.3.1 Examples. (i) Given an object A ∈ Ob(R), let {A} denote the category
consisting of one objectA (with only identity morphism) provided with the following
functor to Topsr: A �→ (|A|,MA). The above construction, applied to the canonical
functor {A} → R, gives an equivalence of categories �R ×R {A} ∼→ �{A}.

(ii) Given a morphism ψ : A′ → A in R, the above construction, applied to the

functor {A′} → R : A′ �→ A and the morphism (|A′|,MA′)
|ψ |→ (|A|,MA), gives the

inverse image functor ψ∗ : �R ×R {A} → �R ×R {A′} that makes �R a fibered
category over R.

(iii) Given an object A ∈ Ob(R) and a point x ∈ |A|, let {x} denote the category
consisting of one object x (with only identity morphism) provided with the functor
to Topsr: x �→ (x,Mx), where Mx = {f (x) | f ∈ MA}. The above construction,
applies to the functor {x} �→ R : x �→ A and the canonical morphism (x,Mx) →
(|A|,MA), gives a functor �R ×R {A} → �{x}.

Recall that one can associate with each small category L a partially ordered set
O(L) (see [GaZi, Ch. II, §5.1]). Namely, it is the partially ordered set associated with
the set Ob(L) provided with the following partial preorder structure: C ≤ D if there
is a morphismC → D. As a set,O(L) is the set of equivalence classes in Ob(L)with
respect to the following equivalence relation: C ∼ D if there are morphisms C → D

and D→ C. The partially ordered set O(L) can be considered as a category so that
the map Ob(L)→ O(L) is the underlying map of the evident functor L→ O(L).
A functor O(L) → L, whose composition with the latter is the identity functor on
O(L), will be said to be a section of L→ O(L).

The following simple lemma describes the partially ordered set O([n]A,r), as-
sociated with the category �R/[n]A,r , in terms of the partially ordered set O(A),
associated with the category R/A. First of all, we notice that, given [n]A,r and two

morphisms A′′ ϕ→ A′ ψ→ A, one has J (ψ � ϕ, r) ⊂ J (ψ, r) and, in particular, the
subset J (ψ, r) depends only on the equivalence class of ψ in Ob(R/A). We also say
that a non-empty subset C ⊂ [n] = [n0] × · · · × [np] is of the direct product type
if C = C0 × · · · × Cp, where Ci is the image of C under the canonical projection
[n] → [ni].

2.3.2 Lemma.

(i) There is a one-to-one correspondence between O([n]A,r) and the set of pairs
(ψ,C) consisting of an element ψ ∈ O(A) and a subset C ⊂ [nJ ] of the direct
product type, where J = J (ψ, r);

(ii) (ψ ′, C′) ≤ (ψ ′′, C′′) if and only if ψ ′ ≤ ψ ′′ and C′ is contained in the image
of C′′ under the canonical projection [nJ ′′ ] → [nJ ′ ], where J ′ = J (ψ ′, r) and
J ′′ = J (ψ ′′, r);

(iii) any section O(A) → R/A of the functor R/A → O(A) can be lifted to a
section O([n]A,r)→ �R/[n]A,r of the functor �R/[n]A,r → O([n]A,r).
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Proof. Given a morphism ψ : A′ → A in R, let J = J (ψ, r) = {0 ≤ j0 <

· · · < jq ≤ p}. For a non-empty subset C = C0 × · · · × Cq ⊂ [nJ ], let nC be the
tuple consisting of the numbers #Ci − 1 that are greater than zero, and let rC be the
corresponding subtuple of r . Then the canonical injective maps Ci → [nji ] define
a morphism µψ,C : [nC]A′,rC → [n]A,r in �R. It is easy to see that, when ψ runs
through a system of representatives of O(A) in Ob(R/A), the morphisms µψ,C run
through a system of representatives of O([n]A,r) in Ob(�/[n]A,r), i.e., (i) is true.
The statements (ii) and (iii) also easily follow from the construction. ��

Assume that R has a structure of a symmetric strict monoidal category, i.e., there
is a multiplication bifunctor R × R → R : (A′, A′′) �→ A′ A′′ which satisfies
certain conditions (see [Mac, Ch. VII]). Assume also that the canonical morphisms of
partially ordered setsO(A′)×O(A′′)→ O(A′ A′′) are isomorphisms, and that there
is an isomorphism of functors from R ×R to Topsr: (|A′|,MA′)× (|A′′|,MA′′)

∼→
(|A′ A′′|,MA′ A′′). Then this structure is naturally extended to the category �R and
the same properties also hold. Namely, the multiplication bifunctor �R × �R →
�R : ([n′]A′,r ′ , [n′′]A′′,r ′′) �→ [n]A,r = [n′]A′,r ′ [n′′]A′′,r ′′ is defined as follows:
A = A′ A′′ and (a) n = n′ and r = r ′, if [n′′] = [0], (b) n = n′′ and r = r ′′, if
[n′] = [0], and (c) n = (n′0, . . . , n′p′ , n′′0, . . . , n′′p′′) and r = (r ′0, . . . , r ′p′ , r ′′0 , . . . , r ′′p′′),
otherwise. The first property follows from Lemma 2.3.2, and the second one follows
from the definition (of (�n

A,r ,M
n
A,r)).

2.4 R-colored polysimplicial sets

The category of R-colored polysimplicial sets is the category ��REns. By §2.1,
there is a geometric realization functor ��REns → Topsr : D �→ (|D|,MD) which
commutes with direct limits and extends the functor [n]A,r �→ (�n

A,r ,M
n
A,r).

The functor representable by an object [n]A,r ∈ Ob(�R) is denoted by �[n]A,r
and, for D ∈ Ob(��REns), the image of [n]A,r under D is denoted by Dr

A,n. One

evidently has Hom(�[n]A,r ,D) ∼→ Dr
A,n and, therefore, there is a canonical bijection

between the set
∐
Dr
A,n of polysimplices of D and the set of objects of the category

�R/D. In particular, there is an equivalence relation on the set of polysimplices of
D, and the set of equivalence classes is provided with a partial ordering. It is denoted
byO(D). Notice thatO(�[n]A,r) coincides with the partially ordered setO([n]A,r)
considered in §2.3. The correspondenceD �→ O(D) is a functor from��REns to the
category of partially ordered sets Or , and this functor commutes with direct limits (cf.
[Ber7, 3.3]).

There is a fully faithful functor �R�Ens → ��REns : [n]C,r �→ �[n]C,r which
commutes with direct limits and extends the functor �R → ��REns : [n]A,r �→
�[n]A,r . Namely, �[n]C,r is the polysimplicial set D with the property that, for
[m]A,s ∈ Ob(�R), Ds

A,m is the set of pairs consisting of an element c ∈ CA and a
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morphism γ = (f, α) : [m] → [nI ] in � with I = I (c, r) = {i ∈ ω(n) | ri(x) < 1
for some x ∈ Im(σc)} such that sj = σ ∗c (rf (j)) for all j ∈ ω(m).

2.4.1 Lemma. There is a canonical isomorphism of functors from�R�Ens to Topsr:

(|�[n]C,r |,M�[n]C,r )
∼→ (�n

C,r ,M
n
C,r) .

Proof. If n = (n0, . . . , np) and r = (r0, . . . , rp), then

�n
C,r = {(x, t) ∈ |C| × [0, 1][n] | ti0 . . . tini = ri(x), 0 ≤ i ≤ p}

and Mn
C,r is the semiring generated by MC and the coordinate functions tij . On the

other hand, there are canonical isomorphisms lim−→RA
∼→ C and lim−→�[nI ]A,rI

∼→ D,

where both limits are taken over the category R/C (whose objects are morphisms
RA

c→ C) and I = I (c, r). The required isomorphism is defined by the canonical
maps �nI

A,rI
→ �n

C,r that take a point (x, t ′) to the point (σc(x), t) with tij = t ′ij and
tij = 1 for all 0 ≤ j ≤ ni , if i ∈ I and i �∈ I , respectively. ��

The canonical functor�R → R�Ens : [n]A,r �→ RA can be extended to a functor

��REns → R�Ens : D �→ D

which commutes with direct limits. (It is left adjoint to the functor R�Ens → ��REns

induced by the functor [n]A,r �→ A.) One can describe D as follows. Given
A ∈ Ob(R), let D̃A denote the set of the polysimplices of D over A, i.e., the union
∪Dr

A,n taken over all [n]A,r ∈ Ob(�R). Since �R is a fibered category over R,

the correspondence A �→ D̃A is an object of R�Ens. We provide the set D̃A with
the minimal equivalence relation with respect to which any two elements d, d ′ ∈ D̃A
with the following property are equivalent: d ∈ Dr

A,n, d ′ ∈ Dr ′
A,n′ and there exists a

morphism γ : [n′]A,r ′ → [n]A,r over the identity morphism ofAwith d ′ = D(γ )(d).
ThenDA is the quotient of D̃A with respect to the above equivalence relation (i.e.,DA
is the set of connected components of D̃A). The following properties of the functor
D �→ D easily follow from the construction.

2.4.2 Lemma.

(i) For every C ∈ Ob(R�Ens), there is a canonical isomorphism �[n]C,r ∼→ C;

(ii) the functor D �→ D makes ��REns a fibered category over R�Ens, namely,
given a morphismψ : C → D in R�Ens, the inverse imageψ∗D is as follows:
(ψ∗D)rA,n = Dr

A,n ×DA CA;

(iii) the structure of a fibered category ��REns over R�Ens extends that on �R

over R. ��
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Notice that the canonical surjective projections�n
A,r → |A| give rise to functorial

surjective projections |D| → |D|.

3 R-colored polysimplicial sets of length l

3.1 The category �R,l

Let R be a nontrivial submonoid of [0, 1] that contains 1. (In §3.5, it will be assumed
that 0 �∈ R.) We can consider R as a semiring of continuous functions on a one point
space. If R is a one point category and � is the functor that associates with the only
object of R the above space, then �R is the category �R introduced in [Ber7, §4].
We iterate this construction by setting�R,1 = �R and�R,l = ��R,l−1 for l ≥ 2. We
also denote by �R,l the corresponding functor �R,l → Topsr.

We represent objects of the category�R,l as pairs [n]r of the following form, and
we denote the image of [n]r under the functor �R,l by (�n

r ,M
n
r ). First of all, n is a

tuple (n(1), . . . ,n(l)) with [n(i)] = [n(i)0 ] × · · · × [n(i)pi ] ∈ Ob(�). Furthermore, r is a

tuple (r(1), . . . , r(l))with r(i) = (r(i)0 , . . . , r
(i)
pi ) of the following type: r(1)0 , . . . , r

(1)
p1 ∈

R and, for i ≥ 2, r(i)0 , . . . , r
(i)
pi ∈ Mn≤i−1

r≤i−1 , where n≤i = (n(1), . . . ,n(i)) and r≤i =
(r(1), . . . , r(i)) for 1 ≤ i ≤ l. Finally, the tuples r(i) satisfy the condition that r(i)0 = 1,

if [n(i)] = [0], and r(i)j �= 1 for all 0 ≤ j ≤ pi , otherwise. The object with [n(i)] = [0]
for all 1 ≤ i ≤ l will be denoted by [0]1,l . One has

�
n
r = {t = (t (1), . . . , t (l)) ∈ [0, 1][n(1)]×· · ·×[0, 1][n(l)] | t (i)j0 . . . t

(i)

jn
(i)
j

= r(i)j (t≤i−1)},

where t≤i−1 = (t (1), . . . , t (i−1)), and Mn
r is the semiring of continuous functions

generated by R and the coordinate functions t �→ t
(i)
jk . Notice that for any morphism

[n′]r ′ → [n]r the corresponding map �n′
r ′ → �

n
r is injective. By Lemma 2.3.2(iii),

the canonical functor �R,l/[n]r → O([n]r) has a section O([n]r)→ �R,l/[n]r .

We set |n| =∑l
i=1 |n(i)|, where |n(i)| =∑pi

j=0 n
(i)
j . Furthermore, let �̊n

r denote

the open subset of�n
r that consists of the points as above with the additional conditions

t
(i)
j0 < 1, . . . , t (i)

jn
(i)
j

< 1 for all 1 ≤ i ≤ l and 0 ≤ j ≤ pi with [n(i)] �= [0]. It is called

the interior of �n
r . The boundary �̇n

r of �n
r is the complement of �̊n

r . The proof of
the following lemma is trivial.

3.1.1 Lemma. If r ∈ Mn
r and r �= 1, then r(x) < 1 for all x ∈ �̊n

r . Furthermore, �̊n
r

is dense in�n
r , and it coincides with the set of points that have an open neighborhood

homeomorphic to an open ball (of dimension |n|). ��
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A subset of�n
r , which is the image of the interior �̊n′

r ′ with respect to the injective

map�n′
r ′ → �

n
r that corresponds to a morphism [n′]r ′ → [n]r , is called a cell of�n

r .

The closure of a cell will be called a cell closure. (It coincides with the image of �n′
r ′

under the above map.) Notice that a cell depends only on the equivalence class of the
morphism [n′]r ′ → [n]r in the partially ordered set O([n]r). Let O(�n

r ) denote the
set of cells of �n

r provided with the following partial ordering: A ≤ B if A ⊂ B.

3.1.2 Lemma. (i) A cell closure is a disjoint union of cells;

(ii) two distinct cells are disjoint (and, therefore,O(�n
r ) can be also viewed as the

set of all cell closures partially ordered by inclusion);

(iii) there is an isomorphism of partially ordered sets O([n]r) ∼→ O(�
n
r ).

Proof. Assume that the statements are true for l−1. By Lemma 3.1.1(ii), to prove (i),
it suffices to verify that�n

r is a disjoint union of cells. First of all, if [n(l)] = [0], then

�
n
r
∼→ �

n≤l−1

r≤l−1 , and the required fact for [n]r easily follows from that for [n≤l−1]r≤l−1 .

Assume therefore that [n(l)] �= [0], and let t ∈ �n
r . To show that the point t is

contained in a cell, we may assume, by the induction hypothesis, that t≤l−1 ∈ �̊n≤l−1

r≤l−1 .

For 0 ≤ i ≤ pl , letCi denote the subset of all j ∈ [n(l)i ]with t (l)ij < 1. (The subsetCi is

non-empty since r(l)i (t
≤l−1) < 1.) Furthermore, let J be the subset of all j ∈ ω(n(l))

with #Cj > 1, and let m be the tuple of the numbers #Cj −1 for j ∈ J , if J �= ∅, and
m = (0), if J = ∅. Then the sets Cj define a morphism [m] → [n(l)] in �. Let s be

the tuple of the functions r(l)j for j ∈ J , if J �= ∅, and s = (1), if J = ∅. Then there is

a well defined morphism [n′]r ′ → [n]r in�R,l , where [n′≤l−1]r ′≤l−1 = [n≤l−1]r≤l−1 ,

n′(l) = m and r ′(l) = s, and the point t is contained in the cell that corresponds to this

morphism. Notice that in this way we described all cells of �n
r over �̊n≤l−1

r≤l−1 , and all
of them are pair-wise disjoint, i.e., (i) and (ii) are true. The statement (iii) now easily
follows from the induction hypothesis and Lemma 2.3.2. ��

Notice that the symmetric strict monoidal category structure on the category �R
in the sense of [Mac, Ch. VII], defined in [Ber7, §3], extends naturally to the category
�R,l . Namely, the multiplication bifunctor�R,l×�R,l → �R,l : ([n′]r ′ , [n′′]r ′′) �→
[n]r = [n′]r ′ [n′′]r ′′ is defined as follows: (a) [n(i)] = [n′′(i)] and r(i) = r ′′(i),
if [n′(i)] = [0], (b) [n(i)] = [n′(i)] and r(i) = r ′(i), if [n′′(i)] = [0], and (c)
n(i) = (n′(i)0 , . . . , n

′(i)
p′i
, n′′(i)0 , . . . , n

′(i)
p′′i
) and r(i) = (r ′(i)0 , . . . , r

′(i)
p′i
, r ′′(i)0 , . . . , r

′(i)
p′′i
),

otherwise. Notice also that there is a canonical isomorphism of partially ordered

sets O([n′]r ′) × O([n′′]r ′′) ∼→ O([n]r) and of objects of Topsr: (�
n′
r ′ ,M

n′
r ′ ) ×

(�
n′′
r ′′ ,M

n′′
r ′′ )

∼→ (�
n
r ,M

n
r ).



Smooth p-adic analytic spaces are locally contractible. II 315

3.2 R-colored polysimplicial sets of length l

The category of R-colored polysimplicial sets of length l is the category ��R,lEns
of contravariant functors from �R,l to the category of sets Ens. If R′ is a bigger
submonoid of [0, 1], there are fully faithful functors �R,l → �R′,l and ��R,lEns →
��
R′,lEns. The standard r-colored n-polysimplex �[n]r is the functor representable

by [n]r . If D ∈ Ob(��R,lEns), the image of [n]r under D is denoted by Dr
n (the set

of r-colored n-polysimplices of D). One evidently has Hom(�[n]r ,D) ∼→ D
r
n and,

therefore, there is a canonical bijection between the set
∐
D

r
n of all polysimplices of

D and the set of objects of the category�R,l/D. In particular, there is an equivalence
relation on the set of polysimplices ofD, and the set of equivalence classes is provided
with a partial ordering. It is denoted by O(D). Notice that O(�[n]r) coincides with
the partially ordered set O([n]r). The correspondence D �→ O(D) is a functor from
��R,lEns to the category of partially ordered sets Or , and this functor commutes
with direct limits. A polysimplicial set is said to be finite if it has a finite number of
polysimplices. It is said to be locally finite if each polysimplex is contained in a finite
number of other polysimplices (i.e., the corresponding element of O(D) is smaller
than at most a finite number of other elements of O(D)).

The dimension of a polysimplex d ∈ Dr
n is |n|. Notice that it is equal to the

topological dimension of�n
r . Letm ≥ 0. Them-skeleton Skm(D) of a polysimplicial

set D is the polysimplicial subset of D which is formed by the polysimplices of
dimension at mostm. We also set Sk−1(C) = ∅. For example,�[n]r = Skm(�[n]r),
where m = |n|, and we set �̇[n]r = Skm−1(�[n]r) (the boundary of �[n]r ). For
d ∈ Dr

n, let Gd denote the stabilizer of d in the automorphism group Aut([n]r).

3.2.1 Lemma. Let Pm be a set of representatives of the equivalence classes of
polysimplices of D of dimension m. Then the following diagram is cocartesian:∐

d∈Pm Gd\�̇[nd ]rd ��

��

Skm−1(D)

��∐
d∈Pm Gd\�[nd ]rd �� Skm(D).

Proof. Let E be the cocartesian product, and let N and S denote the polysimplicial
sets at the north-west and the south-west of the diagram, respectively. Given [n]r , if

|n| < m, one evidently has N r
n
∼→ S

r
n and Skm−1(D)

r
n
∼→ Skm(D)rn and, therefore,

E
r
n
∼→ Skm(D)rn. On the other hand, if |n| = m, then N r

n = Skm−1(D)
r
n = ∅ and

S
r
n
∼→ Skm(D)rn and, therefore, E

∼→ Skm(D). ��
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The canonical functor �R,l → ��R,l−1Ens : [n]r �→ �[n≤l−1]r≤l−1 can be ex-
tended to a functor

��R,lEns → ��R,l−1Ens : D �→ D≤l−1

which commutes with direct limits. (It is the functor D �→ D from §2.4.) By
Lemma 2.4.2, the latter functor makes ��R,lEns a fibered category over ��R,l−1Ens
which is compatible with the fibered category structure of �R,l over �R,l−1.

The symmetric strict monoidal structure on the category �R,l is naturally ex-

tended to the category ��R,lEns, i.e., there is a bifunctor ��R,lEns × ��R,lEns →
��R,lEns : (D′,D′′) �→ D′ D′′ that commutes with direct limits and extends the
functor ([n′]r ′ , [n′′]r ′′) �→ [n′]r ′ [n′′]r ′′ . One easily sees that the canonical morphism
D′ D′′ → D′ ×D′′ is injective and that there is an isomorphism of partially ordered
sets O(D′)×O(D′′) ∼→ O(D′ D′′).

The functor �R,l → Topsr : [n]r �→ (�
n
r ,M

n
r ) can be extended to a geometric

realization functor��R,lEns → Topsr : D �→ (|D|,MD)which commutes with direct

limits. Notice that there are functorial projections (|D|,MD)→ (|D≤l−1|,MD≤l−1),
which are surjective on the underlying topological spaces, and that there are functorial
bijective continuous maps |D′ D′′| → |D′| × |D′′|.

3.3 Elementary functions

Given a semiringM of continuous non-negative real valued functions on a topological
space X, we say that a nonzero function f ∈ M is elementary if it possesses the
following property: if f = max(g, h) (= g+̇h) for some nonzero g, h ∈ M , then
either f = g or f = h. The subset of elementary functions in M will be denoted
by e(M).

3.3.1 Proposition.

(i) Given f, g ∈ e(Mn
r ), if f |U = g|U for a non-empty open subset U ⊂ �n

r , then
f = g;

(ii) given a nonzero f ∈ Mn
r , there exists a unique finite subset {fi}i∈I ⊂ e(Mn

r )

such that f = maxi∈I {fi}, but f �= maxi∈J {fi} for strictly smaller subsets
J ⊂ I .

3.3.2 Lemma. For every [n]r ∈ Ob(�R,l) different from [0]1,l , the object

(�
n
r ,M

n
r ) of Topsr is isomorphic to an object (�n′

r ′ ,M
n′
r ′ ) with the tuple n′ of the

form ((1), . . . , (1)) (of length |n|).
Proof. We may assume that [n(i)] �= [0] for all 1 ≤ i ≤ l, and we notice that

there is an evident isomorphism (�
n
r ,M

n
r )
∼→ (�

n′
r ′ ,M

n′
r ′ ), where n′ and r ′ are the
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tuples ((n(1)0 ), . . . , (n
(1)
p1 ), (n

(2)
0 ), . . . , (n

(l)
pl )) and ((r(1)0 ), . . . , (r

(1)
p1 ), (r

(2)
0 ), . . . , (r

(l)
pl ))

of length
∑l
i=1(pi + 1). Thus, we may assume that all pi’s are zero, i.e., n =

((n(1)), . . . , (n(l))) and r = ((r(1)), . . . , (r(l))). We now notice that the equation
t0 . . . tn = r is equivalent to the system of two equations t0 . . . tn−2·t ′n−1 = r and

tn−1 · tn = t ′n−1. Thus, if n(i) > 1 for some 1 ≤ i ≤ l, then (�n
r ,M

n
r )

∼→
(�

n′
r ′ ,M

n′
r ′ ), where n′ and r ′ are the tuples (. . . , (n(i−1)), (n(i)−1), (1), (n(i+1)), . . . )

and (. . . , (r(i−1)), (r(i)), (t ′
n(i)−1

), (r(i+1)), . . . ). Repeating this procedure, we con-
struct the required isomorphism. ��
Proof of Proposition 3.3.1. Lemmas 3.1.1 and 3.3.2 reduce the proposition to the
verification of the following fact.

Assume we are given an object (X,M) of Topsr , which possesses the properties
(i) and (ii). Given a function r ∈ M such that the open set V = {x ∈ X | r(x) < 1} is
dense in X, we set X′ = {(x, t0, t1) ∈ X× [0, 1]2 | t0 · t1 = r(x)}. LetM ′ denote the
monoid of continuous functions on X′ generated by M and the coordinate functions
t0 and t1, and let M

′
denote the semiring of continuous functions generated by M ′.

(Notice that e(M
′
) ⊂ M ′.) Then

(1) every nonzero function from M ′ has a unique representation in either the form
f tm0 or the form f tn1 with f ∈ M\{0}, m ≥ 0 and n ≥ 1;

(2) the elementary functions among them are precisely those with f ∈ e(M);
(3) the semiring M

′
possesses the properties (i) and (ii).

Notice that the statements (1)–(3) hold when X is a one point space and that the
canonical projection π : X′ → X is an open map. That any nonzero function F ∈ M ′
is of the form considered is trivial. The form of the restriction of F to the fiber π−1(x)

of a point x ∈ V is unique and, since V is dense in X, we see that the form of F is
unique, i.e., (1) is true. If F is of the form from (1), let us call the function f ∈ M
the base of F .

Assume the restrictions of two nonzero functions F,G ∈ M ′ to a non-empty
open subset U ′ ⊂ X′ coincide. Then for every point x from the non-empty open set
U = π(U ′)∩V the restrictions of F andG to π−1(x) coincide. It follows that F and
G have similar forms and for their bases f and g one has f |U = g|U . It follows that
f = g, i.e., (i) is true for the nonzero functions fromM ′ with an elementary base. Let
E denote the latter class of functions. It is clear that any nonzero function fromM

′
is

the maximum of a finite set of functions from E and, in particular, e(M
′
) ⊂ E.

Assume that for F ∈ E one has F = max{F1, . . . , Fn} with F1, . . . , Fn ∈ E and
that the family F1, . . . , Fn is minimal. Then there exists a non-empty set U ′ ⊂ X′
such thatF1(x

′) > Fi(x
′) for all x′ ∈ U ′ and 2 ≤ i ≤ n. It follows thatF |U ′ = F1|U ′ ,

and the validity of the property (i) for functions from E implies that F = F1, i.e.,
E = e(M ′) and (2) is true.
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Assume now that max{F1, . . . , Fm} = max{G1, . . . ,Gn} for Fi,Gj ∈ E and that
the families of functions on both sides are minimal. Given 1 ≤ i ≤ m, there exists
a non-empty open subset U ′ ⊂ M ′ such that Fi(x′) > Fk(x

′) for all x′ ∈ U ′ and
k �= i. Furthermore, we can find 1 ≤ j ≤ n and a non-empty open subset U ′′ ⊂ U ′
such that Gj(x′) > Gl(x

′) for all x′ ∈ U ′′ and l �= j . It follows that Fi |U ′′ = Gj |U ′′
and therefore Fi = Gj . Hence, {F1, . . . , Fm} ⊂ {G1, . . . ,Gn}. By symmetry, the
converse inclusion also holds, i.e., (3) is true. ��

3.3.3 Corollary. The set e(Mn
r ) consists of the functions which can be uniquely

represented in the form of a product λ
∏
(t
(i)
jk )

a
(i)
jk taken over all 1 ≤ i ≤ l with

[n(i)] �= [0], 0 ≤ j ≤ pi and 0 ≤ k ≤ n(i)j , where λ ∈ R\{0} and a(i)jk ∈ Z+ are such

that for every i and j there is k with a(i)jk = 0. ��

3.3.4 Corollary. The family of cell closures in �n
r coincides with the family of all

non-empty subsets of the form {x ∈ �n
r | f (x) = 1} with f ∈ e(Mn

r ). In particular,

any isomorphism (�
n
r ,M

n
r )
∼→ (�

n′
r ′ ,M

n′
r ′ ) in Topsr gives rise to an isomorphism of

partially ordered sets O([n]r) = O(�n
r )
∼→ O(�

n′
r ′ ) = O([n′]r ′).

Proof. Assume that the statement is true for l − 1. To prove the direct implication it

suffices to consider the cells of�n
r over the interior of�n≤l−1

r≤l−1 . Such a cell corresponds

to a subset C ⊂ [n(l)] = [n(l)0 ] × · · · × [n(l)pl ] of the form C0 × · · · × Cpl with

Ci ⊂ [n(l)i ], and its closure coincides with the set {x ∈ �n
r | f (x) = 1} for the

elementary function f = ∏pl
i=0

∏
j �∈Ci t

(l)
ij . To prove the converse implication, it

suffices to consider an elementary function f represented in the form of Corollary
3.3.3 with λ = 1 and a(i)jk = 0 for all 1 ≤ i ≤ l − 1. For 0 ≤ i ≤ pl , we set

Ci = {j ∈ [n(l)i ] | a(l)ij = 0}. Then the set {x ∈ �n
r | f (x) = 1} coincides with the

closure of the cell that corresponds to the subset C = C0 × · · · × Cpl ⊂ [n(l)]. ��

3.4 Hausdorffness of the geometric realization

3.4.1 Proposition. For every D ∈ Ob(��R,lEns), the topological space |D| is
Hausdorff.

3.4.2 Lemma. The morphism �̇[n]r → �[n]r induces a homeomorphism

|�̇[n]r | ∼→ �̇
n
r .
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Proof. Step 1. For i ≥ 0, we define as follows a subset Pi of the set of cells of �n
r :

P0 = {�̊n
r } and, for i ≥ 1, Pi is the set of maximal cells in the complement of the

union of all cells from
⋃i−1
j=0 Pj . Let P i denote the set of the closures of cells from

Pi . (Recall that the map Pi → P i : A �→ A is a bijection.) We claim that

(a) every cell from P2 is contained in exactly two cell closures from P 1;

(b) if a cell A is contained in B ∩ C for B,C ∈ P 1 with B �= C, then there
exist B1 = B,B2, . . . , Bk = C ∈ P 1 and D1, . . . , Dk−1 ∈ P 2 such that
A ⊂ D1∩· · ·∩Dk−1 andDi ⊂ Bi∩Bi+1 withBi �= Bi+1 for all 1 ≤ i ≤ k−1.

Indeed, assume the claim is true for l − 1. By Lemma 3.3.2 and Corollary 3.3.4,
we may assume that n(l) = (1). Let m = n≤l−1, s = r≤l−1, r = r(l)0 and S = �m

s .
One has �n

r = {(x, t0, t1) ∈ S×]0, 1]2 | t0 · t1 = r(x)}. Let π denote the canonical
projection �n

r → �
m
s , and let Qi and Qi denote the sets of cells and cell closures

in �m
s similar to Pi and P i . For X ∈ Qi , the preimage π−1(X) is a disjoint union

of three cells X′ ∈ Pi , X0 ∈ Pi+1 (defined by t0 = 1) and X1 ∈ Pi+1 (defined by
t1 = 1), if r|X �= 1, and is a cell X̃ ∈ Pi+1, if r|X = 1. For Y = X, we denote by Y ′,
Y 0, Y 1 and Ỹ the closures of X′, X0, X1 and X̃, respectively. For example, S′ = �n

r .
We now verify (a) and (b) case by case.

(a) Let A ∈ P2. If A = X̃ for X ∈ Q1 with r|X = 1, then A is contained only in
S0 and S1. If A = Xi for i = 0, 1 and X ∈ Q1 with r|X �= 1, then A is contained
only in X′ and Si . If A = X′ for X ∈ Q2 with r|X �= 1, then A is contained only in
Y ′ and Z′, where Y and Z are the cell closures from Q1 that contain X.

(b) Assume first that B = S0 and C = S1. Then A = X̃ for a cell X in S with
r|X = 1. Let Y be a cell closure fromQ1 that containsX. If r|Y = 1, then Ỹ ∈ P 2 and
A ⊂ Ỹ ⊂ S0∩S1. If r|Y �= 1, then Y 0, Y 1 ∈ P 2, Y ′ ∈ P 1, and one hasA ⊂ Y 0∩Y 1,
Y 0 ⊂ S0 ∩ Y ′ and Y 1 ⊂ Y ′ ∩ S1. Assume now that B = S0 and C = Y ′, where
Y ∈ Q1. Then Y 0 ∈ P 2, and one hasA ⊂ Y 0 ⊂ S0 ∩Y ′. Assume finally that B = Y ′
and C = Z′ with Y,Z ∈ Q1, and let X be the image of A in S. If r|X = 1 (and,
therefore, A = X̃), then Y 0, Z0 ∈ P 2, and one has A ⊂ Y 0 ∩ Z0, Y 0 ⊂ Y ′ ∩ S0 and
Z0 ⊂ S0∩Z′. If r|X �= 1, we apply induction and find Y1 = Y, Y2, . . . , Yk = Z ∈ Q1
and V1, . . . , Vk−1 ∈ Q2 such that X ⊂ V1 ∩ · · · ∩ Vk−1 and Vi ⊂ Yi ∩ Yi+1 with
Yi �= Yi+1 for all 1 ≤ i ≤ k− 1. Since r|Vi �= 1, then V ′i ∈ P 2 and Y ′i ∈ P 1, and one
has A ⊂ V ′1 ∩ · · · ∩ V ′k and V ′i ⊂ Y ′i ∩ Y ′i+1 for all 1 ≤ i ≤ k − 1.

Step 2. Let us fix a section O(�n
r ) = O([n]r) → �/[n]r : A �→ ([nA]rA →[n]r) of the canonical functor�R,l/[n]r (see Lemma 2.3.2(iii)). By Step 1, for every

cell B ∈ P2 there are exactly two cells B1, B2 ∈ P1 with B ≤ B1 and B ≤ B2. We
claim that there is a canonical isomorphism of polysimplicial sets

Coker
( ∐
B∈P2

�[nB ]rB
→→

∐
A∈P1

�[nA]rA
) ∼→ �̇[n]r ,
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where the upper and lower morphisms are induced by the canonical morphisms
[nB ]rB �→ [nB1

]rB1
and [nB ]rB �→ [nB2

]rB2
, respectively. Indeed, let C denote

the cokernel. From Step 1 it follows that the morphism C → �̇[n]r induces an iso-

morphism of partially ordered setsO(C)
∼→ O(�̇[n]r). The claim now follows from

the following simple observation. Given a morphism of polysimplicial sets C → D

which induces an isomorphism of partially ordered setsO(C)
∼→ O(D), assume that

the stabilizer of every polysimplex d ∈ Dn
r in Aut([n]r) is trivial. Then C

∼→ D.
The statement of the lemma now follows from the fact that the geometric realization

functor commutes with cokernels. ��

3.4.3 Corollary. In the situation of Lemma 3.2.1, the following diagram of topolog-
ical spaces is cocartesian:∐

d∈Pm Gd\�̇nd
rd

��

��

|Skm−1(D)|

��∐
d∈Pm Gd\�nd

rd
�� |Skm(D)|.

Proof. The statement follows from Lemmas 3.2.1 and 3.4.2 and the fact that the
geometric realization functor commutes with direct limits. ��
Proof of Proposition 3.4.1. By Corollary 3.4.3, the canonical map |Skm−1(D)| →
|Skm(D)| identifies the first space with a closed subspace of the second one. It follows
also that a subset U ⊂ |Skm(D)| is open in |Skm(D)| if and only if the intersection
U ∩ |Skm−1(D)| is open in |Skm−1(D)| and the preimages of U under all maps
�

nd
rd
→ |Skm(D)| that correspond to the polysimplices d ∈ Pm are open in �

nd
rd

.
Given a polysimplicial set C, let us say that two subsets U,V ⊂ |C| are strongly
disjoint if the closures of their preimages in �

nc
rc

are disjoint for every c ∈ C. We
claim that

(a) given strongly disjoint open subsets U,V ⊂ |Skm−1(D)|, there exist strongly
disjoint open subsets U′,V ′ ⊂ |Skm(D)| with U′ ∩ |Skm−1(D)| = U and
V ′ ∩ |Skm−1(D)| = V;

(b) given an open subset U ⊂ |Skm−1(D)|, a polysimplex d ∈ Pm, and a set X in
the image of the interior �̊

nd
rd

under the corresponding map �
nd
rd
→ |Skm(D)|

such that the preimage of X in �̊
nd
rd

is relatively compact, there exists an open
subset U′ ⊂ |Skm(D)| with U′ ∩ |Skm−1(D)| = U which is strongly disjoint
from X.

(a) For a polysimplex d ∈ Pm, let U(d) denote the preimage of U in Gd\�̇nd
rd

.

Since the closures of U(d) and V(d) are disjoint and Gd\�nd
rd

is a compact space,
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it contains open subsets U(d) and V(d) whose closures are disjoint and such that
U(d) ∩ (Gd\�̇nd

rd
) = U(d) and V(d) ∩ (Gd\�̇nd

rd
) = V(d). The required sets U′

and V ′ are constructed as the unions of the images of U(d) and V(d) in |Skm(D)|,
respectively, taken over all d ∈ Pm.

(b) For the given polysimplex d, we can find an open subset U(d) ⊂ Gd\�nd
rd

with

U(d) ∩ (Gd\�̇nd
rd
) = U(d) and such that its closure does not intersect with the closure

of the preimage of X in Gd\�̊nd
rd

. If e is a polysimplex from Pm different from d,

we take for U(e) an arbitrary open subset ofGd\�nd
rd

with U(e) ∩ (Gd\�̇nd
rd
) = U(e).

The required set U′ is the union of the images of U(d) and U(e) in |Skm(D)| taken
over e ∈ Pm different from d.

Step 2. |D| is a Hausdorff space. Let x and y be two distinct points of |D|. They
are contained in the images of �̊m

s and �̊n
r under the maps�m

s → |D| and�n
r → |D|

that corresponds to (unique) polysimplices d ∈ Pm and e ∈ Pn. Assume that m ≤ n.
First of all, to construct disjoint open neighborhoods U′ of x and V ′ of y in |D|,
it suffices to construct strongly disjoint open neighborhoods U of x and V of y in
|Skn(D)|. Indeed, if U and V are already constructed then, by Step 1(a), there exist
increasing sequences of subsets Un = U ⊂ Un+1 ⊂ · · · and Vn = V ⊂ Vn+1 ⊂ · · ·
such that Ui and Vi are open and strongly disjoint in |Ski (D)|, Ui+1∩|Ski (D)| = Ui

and Vi+1∩|Ski (D)| = Vi . Since |D| is a direct limit of the spaces |Ski (D)|, it follows
that the unions U′ and V ′ of all Ui and Vi , respectively, are open and disjoint in |D|.

Assume first that m = n. By Corollary 3.4.3, |Skn(D)|\|Skn−1(D)| is a disjoint
union of open subsets of |Skn(D)|, which are evidently Hausdorff and locally compact,
and therefore any two open neighborhoods of x and y with disjoint closures are also
open and strongly disjoint in |Skn(D)|. Assume now thatm < n. Let U be an arbitrary
open neighborhood of the point x in |Skn−1(D)|, and let V be an open neighborhood
of the point y in the image of �̊n

r in |Skn(D)| such that the preimage of V in �̊n
r is

relatively compact. By Step 1(b), there exists an open subset U′ ⊂ |Skn(D)| with
U′ ∩ |Skn−1(D)| = U which is strongly disjoint from V, and we are done. ��

A subset of |D|, which is the image of the interior �̊n
r under the map�n

r → |D| that
corresponds to a polysimplex d ∈ Dr

n, is called a cell of |D|. Corollary 3.4.3 implies
that such a cell is homeomorphic to Gd\|�̊nd

rd
| and that |Skm(D)|\|Skm−1(D)| is a

disjoint union of the cells that correspond to polysimplices fromPm. Proposition 3.4.1
implies that the closure of the above cell in |D| coincides with the image of �n

r in
|D|. Such a compact subset of |D| is called a cell closure. Let O(|D|) denote the set
of cells of |D| provided with the following partial ordering: A ≤ B if A ⊂ B.

3.4.4 Corollary. (i) A cell closure is a disjoint union of cells;

(ii) two distinct cells are disjoint (and, therefore,O(|D|) can be also viewed as the
set of all cell closures partially ordered by inclusion);

(iii) there is an isomorphism of partially ordered sets O(D)
∼→ O(|D|). ��
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3.4.5 Corollary.

(i) Given an injective morphism of polysimplicial setsD′ → D, the corresponding
map |D′| → |D| identifies |D′| with a closed subset of |D|;

(ii) for any polysimplicial set D, there is a one-to-one correspondence between
polysimplicial subsets of D and the closed subsets of |D|, which are unions of
cells. ��

A polysimplicial set D is said to be free if for every polysimplex d ∈ Dr
n the

corresponding morphism �[n]r → D is injective. Notice that every polysimplicial
set that admits a morphism to free polysimplicial set is also free.

3.4.6 Lemma. If D is a free polysimplicial set, the following properties of a mor-
phism D′ → D are equivalent:

(a) the morphism D′ → D is injective;

(b) the map |D′| → |D| identifies |D′| with a closed subset of |D|;
(c) the map of partially ordered sets O(D′)→ O(D) is injective.

Proof. The implications (a)�⇒(b) and (b)�⇒(c) follow from Corollaries 3.4.5(i)
and 3.4.4(iii) (and do not require the assumption on D). Assume (c) is true, and let
two polysimplices d1, d2 ∈ D′rn have the same image d in Dr

n. Then there is an
automorphism γ of [n]r withD′(γ )(d1) = d2 and, therefore,D(γ )(d) = d. SinceD
is free, γ is the identity automorphism and, therefore, d1 = d2. ��

Recall that a Kelley space is a Hausdorff topological spaceX possessing the prop-
erty that a subset of X is closed whenever its intersection with each compact subset
ofX is closed. For example, every locally compact space is Kelley. Proposition 3.4.1
implies that the geometric realization |D| of any polysimplicial setD is a Kelley space.
It is locally compact if and only if D is locally finite. Given polysimplicial sets D′
and D′′, there is a homeomorphism |D′ D′′| ∼→ |D′| × |D′′|, where the latter direct
product is taken in the category of Kelley spaces.

3.5 A piecewise RZ+-linear structure on the geometric realization

In this subsection we assume that the monoid R does not contain zero. In this case,
�

n
r is evidently anRZ+ -polyhedron in (R∗+)[n

(1)] × · · ·× (R∗+)[n(l)]. The semiringMn
r

is generated by R and the coordinate functions and, in particular, all functions from
M

n
r are piecewise RZ+ -linear. We remark that one can easily see, by induction on l,

that the inverse of any coordinate function on �n
r is piecewise R̃Z+ -linear.
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Given a function f ∈ Mn
r , let {fi}i∈I be the finite set of elementary function

from Proposition 3.3.1(ii) that are associated with f . For i ∈ I , we set Vi(f ) =
{x ∈ �n

r | fi(x) ≥ fj (x) for all j ∈ I }. (Notice that each Vi(f ) contains a point
x with fi(x) > fj (x) for all j �= i.) We set σ(f ) = {Vi(f )}i∈I and, for a subset
F = {f1, . . . , fm} ⊂ M

n
r , we denote by σ(F ) the family of all sets of the form

V1 ∩ · · · ∩ Vm with Vi ∈ σ(fi). Notice that the union of all V ∈ σ(F ) coincides with
�

n
r . Finally, we set F n

r = {r(i)j }1≤i≤l,0≤j≤pi and σn
r = σ(F n

r ).

3.5.1 Lemma. Let F be a finite subset of Mn
r that contains F n

r . Then

(i) every V ∈ σ(F ) is an RZ+ -polytope, and the restriction to V of each function
from the monoid generated by F and the coordinate functions is RZ+ -linear
on V ;

(ii) if U,V ∈ σ(F ), then U ∩ V is a face in U and in V ;

(iii) if � is a cell closure in �n
r and V ∈ σ(F ), then � ∩ V is a face of V .

Proof. (i) The set V is defined in [0, 1][n(1)] × · · · × [0, 1][n(l)] by the following
equalities and inequalities for all 1 ≤ i ≤ l, 0 ≤ j ≤ pi and f ∈ F : (1)
t
(i)
j0 (x) . . . t

(i)

jn
(i)
j

(x) = r
(i)
j (x), and (2) fk(x) ≥ fk′(x) for some k and all k′, where

{fk′ } is the finite set of elementary functions associated with f . Since r(i)j ∈ F and
is the maximum of the corresponding fk′ ’s, (2) implies that (1) is equivalent to the
equality t (i)j0 (x) . . . t

(i)

jn
(i)
j

(x) = fk(x), and the statement follows.

(ii) The polytopes U and V are defined by the same equalities (1) and similar
inequalities (2) with different k’s, and their intersection U ∩ V is defined by the
additional equalities of the corresponding elementary functions fk’s. It follows that
U ∩ V is a face in U and in V .

(iii) Since � is defined in �n
r by the equalities t (i)jk = 1 for some i, j and k (see

Corollary 3.3.4), it follows that � ∩ V is a face of V . ��
From Lemma 3.5.1 it follows that the family τ(F ) of all of the faces of the polytopes

from σ(F ) is an RZ+ -polytopal subdivision of �n
r . It follows also that every cell

closure � in �n
r is an RZ+ -polyhedron and τ(F )|� is an RZ+ -polytopal subdivision

of �. The subdivision τ(F n
r ) will be denoted by τn

r .

3.5.2 Corollary. Every morphism γ : [n′]r ′ → [n]r in �R,l gives rise to an

immersion of RZ+ -polyhedra�n′
r ′ → �

n
r , and the restriction of τn

r to the image of the

latter gives rise to an RZ+ -polytopal subdivision of �n′
r ′ , which is a refinement of τn′

r ′ .
If γ is an isomorphism, both subdivisions coincide. ��

Thus, the correspondence [n]r �→ �
n
r gives rise to a functor from �R,l to the

category of RZ+ -polyhedra in which morphisms are immersions.
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3.5.3 Proposition. One can provide the geometric realization |D| of every locally
finite R-colored polysimplicial set D of length l with a unique piecewise RZ+ -linear
structure so that

(a) if D = �[n]r , it is the canonical RZ+ -polyhedron structure on �n
r ;

(b) for any morphismD′ → D between locally finite R-colored polysimplicial sets
of length l, the induced map |D′| → |D| is a G-local immersion of piecewise
RZ+ -linear spaces.

3.5.4 Lemma. Assume we are given a piecewise RZ+ -linear space X and an
equivalence relation E on X which is a piecewise RZ+ -linear subspace of X × X
and satisfies the following two properties:

(1) both projections p1, p2 : E → X are proper G-local immersions of piecewise
RZ+ -linear spaces;

(2) for every point x ∈ X, there exist RZ+ -polyhedra X1, . . . , Xn in X with the
property that any two equivalent points ofXi are equal and such thatX1∪· · ·∪
Xn is a neighborhood of x in X.

Then the quotient spaceY = X/E can be provided with a unique piecewiseRZ+ -linear
structure such that the canonical map X→ Y is a G-local immersion.

Proof. First of all, the space Y is locally compact since both projections p1, p2 :
E → X are proper. Let σ be the family of RZ+ -polyhedrons U in X such that any
two equivalent points of U are equal. By (2), σ is a piecewise RZ+ -linear atlas on
X. Furthermore, let τ be the family of the compact subsets V of Y for which there
exists U ∈ σ with U

∼→ V . Since the fibers of both projections p1, p2 : E → X

are finite, it follows that for every point y ∈ Y there exist V1, . . . , Vn ∈ τ such
that V1 ∪ · · · ∪ Vn is a neighborhood of y in Y . Finally, let V ′, V ′′ ∈ τ , and let
U ′, U ′′ ∈ σ be such that U ′ ∼→ V ′ and U ′′ ∼→ V ′′. The set W = (U ′ × U ′′) ∩ E
is an RZ+ -polyhedron and, by the assumptions, the projections p1 : W → U ′ and
p2 : W → U ′′ are injective G-local immersions, i.e., they are immersions. It follows
that the RZ+ -polyhedron structures on V ′ and V ′′, provided by the homeomorphisms
with U ′ and U ′′, respectively, are compatible on the intersection V ′ ∩ V ′′. Thus, τ
is a piecewise RZ+ -linear atlas on Y , and the canonical map X → Y is a G-local
immersion. That the piecewise RZ+ -linear structure on Y with the latter property is
unique is already clear. ��

Proposition 3.5.3 is established using the construction of Lemma 3.5.4 and the
following two simple facts which are proved without the assumption 0 �∈ R.

Given a polysimplex d ∈ Dr
n, letEd denote the equivalence relation on�n

r induced
by the canonical map λd : �n

r → |D|. We consider Ed as a subset of �n
r × �n

r .
Furthermore, for a morphism γ : [n′]r ′ → [n]r in�R,l , let γ denote the induced map

λD(γ )(d) = λd ��(γ ) : �n′
r ′ → �

n
r → |D|.
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3.5.5 Lemma. Ed coincides with the union ∪(γ 1, γ 2)(�
n′
r ′ ) taken over all pairs of

morphisms γ1, γ2 : [n′]r ′ → [n]r with D(γ1)(d) = D(γ2)(d).

Proof. It is clear that the union is contained in Ed . On the other hand, assume that
the images of two points x1, x2 ∈ �n

r coincide in |D|. We have to verify that there
exist two morphisms γ1, γ2 : [n′]r ′ → [n]r with D(γ1)(d) = D(γ2)(d) and a point

x′ ∈ �n′
r ′ such that x1 = �(γ1)(x

′) and x2 = �(γ2)(x
′). First of all, let x1 and

x2 lie in the cells of �n
r associated with morphisms γ1 : [n′]r ′ → [n]r and γ ′2 :

[n′′]r ′′ → [n]r , respectively. Since the images of �̊n′
r ′ and �̊n′′

r ′′ in |D| coincide, from

Corollary 3.4.4(iii) it follows that there exists an isomorphismα : [n′]r ′ ∼→ [n′′]r ′′ with
D(γ1)(d) = D(γ ′2 �α)(d). Thus, replacing γ ′2 by γ ′2 �α, we may assume that [n′′]r ′′ =
[n′]r ′ . Furthermore, let x1 = �(γ1)(x

′) and x2 = �(γ ′2)(x′′) for some x′, x′′ ∈ �̊n′
r ′ .

Since the images of the points x′ and x′′ in |D| coincide, from Corollary 3.4.3 it follows
that there is an automorphismα of [n′]r ′ withD(α)(d ′) = d ′, where d ′ = D(γ1)(d) =
D(γ ′2)(d), such that x′′ is the image of x′ under the corresponding automorphism of

�
n′
r ′ . Hence, we get the required fact for the morphisms γ1 and γ2 = γ ′2 � α and the

point x′. ��
Assume that for every 1 ≤ i ≤ l we are given an ordering on the set [n(i)] =

[n(i)0 ] × · · · × [n(i)pi ]. Let us represent elements of [n(i)] as pairs (j, µ), where 0 ≤
j ≤ pi and 0 ≤ µ ≤ n(i)j , and consider the following subset of �n

r

X = {x = (x(i)jk ) ∈ �n
r | x(i)jµ ≤ x(i)kν for (j, µ) ≤ (k, ν) in [n(i)], 1 ≤ i ≤ l} .

Notice that the sets of this form cover �n
r , but some of them may be empty.

3.5.6 Lemma. If the images of two points x, y ∈ X in |D| coincide, then x = y.

Proof. (A) Given [n′] ∈ Ob(�), the set X has a non-empty intersection with at most
one cell which corresponds to an equivalence class of [n′]-polysimplices of �[n]r .
(An [n′]-polysimplex is an r ′-colored [n′]-polysimplex for some [n′]r ′ ∈ Ob(�R,l).)
Assume that the statement is true for l − 1. We set [m]s = [n≤l−1]r≤l−1 and [m′] =
[n′≤l−1]. The image ofX under the canonical projection�n

r → �
m
s is contained in a

set of the same type and, therefore, it has a non-empty intersection with at most one
cell which corresponds to an equivalence class of [m′]-polysimplices of�[m]s . If the
latter cell exists, we may assume that [m′] = [m]. By Lemma 2.3.2, the equivalences
classes of [n′]-polysimplices of�[n]r correspond bijectively to non-empty subsets of

[n(l)] = [n(l)0 ] × · · · × [n(l)pl ] of the form C = C0 × · · · × Cpi with |Cjk | = n′(l)k + 1
for 0 ≤ k ≤ p′l and |Cj | = 1 for j �∈ {j0, . . . , jp′l }. Given such a subset C, the

corresponding cell of �n
r consists of the points x over �̊m

s with x(l)jµ < 1 for µ ∈ Cj
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and x(l)jµ = 1 for µ �∈ Cj . After a permutation of the coordinate functions {t (l)jµ}µ, we

may assume that the ordering on the set [n(l)] satisfies the property (j, µ) < (j, ν)

for µ < ν. Hence, if the above cell has a non-empty intersection with X, then
Cj = {0, . . . , cj }, where cj = n′(l)k , if j = jk , and cj = 0, if j �∈ {j0, . . . , jp′l }.
Moreover, in this case one has (j, cj ) < (k, ck + 1) for all 0 ≤ j, k ≤ pl with

ck < n
(l)
k . These inequalities uniquely determine the sequence c0, c1, . . . , cpl among

those obtained from it by a permutation, and this implies the required fact.
(B) By (A), the points x and y are contained in one cell of �n

r and, therefore,
the claim follows from Corollary 3.4.3 and the following elementary fact. If, for a
non-decreasing sequence of numbers x1 ≤ · · · ≤ xn and a permutation σ ∈ Sn, one
has xσ(1) ≤ · · · ≤ xσ(n), then xσ(i) = xi for all 1 ≤ i ≤ n. ��

Proof of Proposition 3.5.3. We apply the construction of Lemma 3.5.4 to the disjoint
union X =∐

�
nd
rd

, taken over all polysimplices d of D, and the equivalence relation
E ⊂ X×X induced onX by the canonical surjective mapX→ |D|. Since the validity
of the properties (1) and (2) follows from Lemmas 3.5.5 and 3.5.6, respectively, we
are done. ��

3.5.7 Corollary. Let D be a locally finite R-colored polysimplicial set of length l.
Then

(i) all cells and cell closures are piecewise RZ+ -linear subspaces of |D|;

(ii) all functions from MD are piecewise RZ+ -linear. ��
Thus, ifD is a locally finite R-colored polysimplicial set of length l, its geometric

realization |D| is a piecewise RZ+ -linear space provided with a semiring MD of
piecewiseRZ+ -linear functions and a locally finite stratification by relatively compact
piecewise RZ+ -linear subspaces, cells, with the property that the closure of a cell,
a cell closure, is also a piecewise RZ+ -linear subspace and a (finite) union of cells.
Furthermore, given a morphism D′ → D between R-colored polysimplicial sets of
length l, the corresponding map |D′| → |D| is a G-local immersion of piecewise
RZ+ -linear spaces that takes functions from MD to functions from MD′ and induces
a surjective open map from every cell of |D′| to a cell of |D|.

3.5.8 Remarks. (i) It is very likely that the property (2) in Lemma 3.5.4 always
follows from (1).

(ii) It follows from the remark at the beginning of this subsection that, given a
piecewise RZ+ -linear subspace X of the geometric realization |D| of a locally finite
R-colored polysimplicial setD, every piecewise R̃Z-linear (resp. RQ-linear) function
on X is in fact piecewise R̃Z+ -linear (resp. RQ+ -linear).
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4 The skeleton of a nondegenerate pluri-stable formal
scheme

4.1 Poly-stable fibrations and pluri-stable morphisms

Let k be a non-Archimedean field whose valuation is not assumed to be nontrivial.
For a strictly k-analytic space X, we denote by O′(X) the multiplicative monoid of
all analytic functions f ∈ O(X) for which the Zariski closed set {x ∈ X | f (x) = 0}
is nowhere dense in X. If X is normal (i.e., all strictly affinoid subdomains of X
are normal), then O′(X) coincides with the set of all f ∈ O(X) whose restriction to
every connected component of X is not zero. For a formal scheme X locally finitely
presented over k�, we denote by O′(X) the multiplicative monoid of all f ∈ O(X)
whose image in O(Xη) is contained in O′(Xη).

For an affine formal scheme X = Spf(A) finitely presented over k�, an element
a ∈ A and an integer n ≥ 0, we set

X(n, a) = Spf(A{T0, . . . , Tn}/(T0 . . . Tn − a)) ,
and for m ≥ 0 we set X(m) = X(m, 1). (If n = 0, we assume that a = 1 and
set X(0, 1) = X.) Furthermore, given tuples n = (n0, . . . , np) ∈ Zp+1 and a =
(a0, . . . , ap) ∈ Ap+1 such that ni ≥ 1 and each ai is not invertible inA, orp = n0 = 0
and a0 = 1, we set

X(n, a) = X(n0, a0)×X · · · ×X X(np, ap) .

(If X = Spf(k�), the latter is the formal scheme which was denoted in [Ber7] by
T(n, a).) If, in addition, a non-negative integer m is given, we set X(n, a,m) =
X(n, a)×X X(m).

Recall ([Ber7, §1]) that a morphism ϕ : Y→ X of formal schemes locally finitely
presented over k� is said to be strictly poly-stable if, for every point y ∈ Y, there
exist an open affine neighborhood X′ = Spf(A) of ϕ(y) and an open neighborhood
Y′ ⊂ ϕ−1(X′) of y such that the induced morphism Y′ → X′ goes through an
étale morphism Y′ → X′(n, a,m) for some triple (n, a,m) as above. If the latter
morphisms can be found in such a way that ai ∈ O′(X′) ⊂ A for all 0 ≤ i ≤ p,
then ϕ will be said to be nondegenerate. Furthermore, ϕ is said to be (nondegenerate)
poly-stable if there exists a surjective étale morphism Y′ → Y for which the induced
morphism Y′ → X is (nondegenerate) strictly poly-stable.

A (nondegenerate, strictly) poly-stable fibration over k� of length l ≥ 0 is a
sequence of (nondegenerate, strictly) poly-stable morphisms

X = (Xl fl−1→ · · · f1→ X1
f0→ X0 = Spf(k�)) .

For the above X, we denote by X≤l−1 the poly-stable fibration (Xl−1
fl−2→ · · · f1→ X1)

of length l − 1. (We omit f0 and X0 = Spf(k�) if their presence is evident.) Recall
that in [Ber7] we denoted by k�-P stl the category of poly-stable fibrations over k�
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of length l, and we considered the category k�-P stét
l with the same family of objects

as k�-P stl but with étale morphisms between them. We denote by k�-P stnd,l and
k�-P stét

nd,l the full subcategories of the latter consisting of the objects for which all of
the morphisms fi , 0 ≤ i ≤ l − 1 are nondegenerate.

A morphism ϕ : Y → X of formal schemes locally finitely presented over k� is
said to be (nondegenerate, strictly) pluri-stable if it is a composition of (nondegen-
erate, strictly) poly-stable morphisms. For example, a formal scheme X over k� is
(nondegenerate, strictly) pluri-stable (i.e., the morphism X→ Spf(k�) is a such one)
if there exists a (nondegenerate, strictly) poly-stable fibration X over k� of some length
l with Xl = X. The category of pluri-stable formal schemes over k� will be denoted
by k�-P�st , and k�-P�stét and k�-P�stpl will denote the categories with the same
family of objects but with étale and pluri-stable morphisms between them, respec-
tively. The full subcategories of the latter consisting of the nondegenerate pluri-stable
formal schemes will be denoted by k�-P�stnd, k�-P�stét

nd and k�-P�stpl
nd.

Pluri-stable morphisms and formal schemes are examples of pluri-nodal mor-
phisms and formal schemes introduced in [Ber7, §1] (see Remark 4.1.5). Recall that
a morphism ϕ : Y→ X between formal schemes locally finitely presented over k� is
called strictly pluri-nodal if locally in the Zariski topology it is a composition of étale
morphisms and morphisms of the form Spf(A{u, v}/(uv−a))→ Spf(A), a ∈ A, and
it is called pluri-nodal if there exists a surjective étale morphism Y′ → Y such that the
induced morphism Y′ → X is strictly pluri-nodal. We also say that such a morphism
is nondegenerate if the above morphisms Spf(A{u, v}/(uv − a)) → Spf(A) can be
found in such a way that a ∈ O′(Spf(A)) ⊂ A. (Notice that this is consistent with
the notion of a nondegenerate pluri-stable morphism.) Recall that for any pluri-nodal
formal scheme X over k� the reduction map π : Xη → Xs is surjective (see [Ber7,
Corollary 1.7]).

4.1.1 Lemma. Every pluri-nodal morphism is flat.

Proof. Since étale morphisms are evidently flat, it suffices to consider morphisms
of the form Spf(B) → Spf(A) with B = A{u, v}/(uv − a), a ∈ A. Let α be an
element of the maximal ideal k�� which is not equal to zero if the valuation on k is
nontrivial. Each element of B has a unique representation in the form

∑∞
i=−∞ fiwi ,

where fi → 0 in the α-adic topology of A, and wi = u−i for i < 0 and wi = vi for
i ≥ 0. It follows that, if the valuation on k is trivial, B is a free A-module. If the
valuation on k is nontrivial, it follows that, for every n ≥ 1, B/(αnB) is a free module
over A/(αnA) and, by [BoLü1, Lemma 1.6], B is flat over A. ��

4.1.2 Corollary. Given a pluri-nodal morphism ϕ : Y → X, one has ϕη(Yη) =
π−1(ϕs(Ys)).

Proof. First of all, increasing the field k, we may assume that its valuation is nontrivial.
It suffices to show that, given a faithfully flat morphism Y = Spf(B)→ X = Spf(A),
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the induces map Y = Yη → X = Xη is surjective. For this we notice that the set
X0 = {x ∈ X | [H(x) : k] <∞} coincides with the set of prime ideals ℘ ⊂ A with
dim(A/℘) = 1 and for which the canonical homomorphism k� → A/℘ is injective.
It follows that X0 is contained in the image of Y . Since X0 is dense in X and both
spaces X and Y are compact, the map Y → X is surjective. ��

4.1.3 Lemma. A pluri-nodal formal scheme X over k� is nondegenerate if and only
if its generic fiber Xη is a normal strictly k-analytic space.

Proof. The direct implication follows straightforwardly from [Ber7, Lemma 1.5]. To
prove the direct implication (and the corollary that follows), it suffices to verify the
following fact. Let ϕ : Z = Spf(C) → X = Spf(A) be a morphism of pluri-nodal
formal schemes that goes through an étale morphism ψ : Z → Y = Spf(B) with
B = A{u, v}/(uv), and assume that Zη is normal. Then

(a) ϕs(Zs) is an open subscheme of Xs;

(b) the strictly k-analytic space π−1(ϕs(Zs)) is normal;

(c) ψ(Z) ⊂ U∪V, where U = Spf(B{u})
∼→ Spf(A{u, 1

u
}) and V = Spf(B{v})

∼→
Spf(A{v, 1

v
}).

Indeed, (a) is true since the morphism of schemes ϕs : Zs → Xs is flat and of finite
type. Furthermore, (b) is true since Zη is normal, C is flat over A and π−1(ϕs(Zs)) =
ϕη(Zη), by Corollary 4.1.2. Finally, since the reduction mapπ : Zη → Zs is surjective,
to prove (c) it suffices to show that for every point y ∈ ψη(Zη) either |u(y)| = 1 or
|v(y)| = 1. Assume this is not true, i.e., there exists a point y ∈ ψη(Zη) with
|u(y)| < 1 and |v(y)| < 1 (since uv = 0 then in fact either u(y) = 0 or v(y) = 0).
Then for the point y = π(y) ∈ Ys one has u(y) = v(y) = 0. Consider the closed
immersion χ : X→ Y defined by the surjection B → A that takes u and v to zero.
Since the reduction map π : Xη → Xs is surjective, it follows that there exists a point
y′ ∈ π−1(y) with u(y′) = v(y′) = 0. Since π−1(y) ⊂ π−1(ψs(Zs)) = ψη(Zη), the
latter contradicts [Ber7, Lemma 1.5]. ��

4.1.4 Corollary. Any pluri-nodal morphism from a nondegenerate pluri-nodal to a
pluri-nodal formal scheme over k� is always nondegenerate. ��

The closed fiber Xs of a pluri-stable formal scheme X over k� is provided with a
stratification, i.e., a partition of Xs by locally closed irreducible normal subschemes
with the property that the closure of a stratum is a union of strata (see [Ber7, §2]). The
set of the generic points of the strata is denoted by str(Xs). It is a partially ordered
set with respect to the following ordering: x ≤ y if y is contained in the closure of
x. A pluri-stable (and, in particular, an étale) morphism ϕ : Y → X induces a map
of partially ordered sets str(Ys)→ str(Xs) and, in fact, str(Ys) = ∪str(Ys,x), where
the union is taken over all x ∈ str(Xs). If k′ is a bigger non-Archimedean field, then
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the morphism X′ = X⊗̂Spf(k�)Spf(k′�) → X induces a surjective map of partially
ordered sets str(X′s)→ str(Xs). If all of the strata of Xs are geometrically irreducible,
the latter map is an isomorphism. If the valuation on k is trivial then, by [Ber7, 1.5],
the closed fiber Xs of a nondegenerate pluri-nodal formal scheme X is normal and,
therefore, str(Xs) coincides with the set gen(Xs) of generic points of the irreducible
components of Xs .

As in [Ber7], we introduce categories P stnd,l and P�stnd whose objects are pairs
(k,X) and (k,X), where k is a non-Archimedean field and X is from k�-P stnd,l and
X is from k�-P�stnd, and morphisms (K,Y) → (k,X) and (K,Y) → (k,X) are
pairs consisting of an isometric embedding k ↪→ K and morphisms Y → X⊗̂k�K�
in K�-P stnd,l and Y → X⊗̂k�K� in K�-P�stnd, respectively. Similarly, P stét

nd,l ,

P�stét
nd and P�st

pl
nd denote the categories with the same families of objects but with

the above morphisms for which the morphisms Y → X⊗̂k�K� and Y → X⊗̂k�K�
are étale and pluri-stable, respectively.

Notice that P stnd,l and P�stét
nd are full subcategories of the categories P stl and

P stét
l from [Ber7], respectively, and all of these categories are fibered ones over

the category dual to the category of non-Archimedean fields. Notice also that the
correspondence X �→ X≤l−1 gives rise to a functor P stl → P stl−1. For brevity, the
pairs (k,X) and (k,X) will be denoted by X and X, respectively.

4.1.5 Remarks. Assume that the valuation on k is nontrivial, and let a ∈ k��\{0},
A = k�{u, v}/(uv − a) and B = A{x, y}/(xy − (u + v)). The localization B{u} is
canonically isomorphic to k�{u, x, 1

u
, 1
x
}. Let X1 and X2 be two copies of Spf(B),

X12 and X21 two copies of Spf(B{u}) considered as open subschemes of X1 and X2,
respectively, and X the separated formal scheme constructed by gluing X1 and X2

along the isomorphism X12
∼→ X21 that takes u to 1

x
and x to 1

u
. We believe that the

strictly pluri-nodal formal scheme X is not pluri-stable.

4.2 The skeleton of a poly-stable fibration

Recall that in [Ber7] we constructed for every poly-stable fibration X over k� of length
l a closed subset S(X) ⊂ Xl,η, the skeleton of X, and a proper strong deformation
retraction� : Xl,η×[0, l] → Xl,η of Xl,η to S(X). The retraction map Xl,η → S(X) :
x �→ xτ = �(x, l) is denoted by τ . In this subsection we briefly recall a part of the
construction and some basic facts from [Ber7]. (The construction of the retraction
map τ will be recalled in §4.4.)

First of all, if X = T(n, a,m) with T = Spf(k�), then Xη = M(B), where
B = C/b, C = A{T00, . . . , Tpnp }, A = k{T1, . . . , Tm,

1
T1
, . . . , 1

Tm
}, and b is the

ideal of C generated by the elements Ti0 . . . Tini − ai , 0 ≤ i ≤ p. If we provide
A and C with the canonical norms and B with the quotient norm, then the set D,
consisting of the elements

∑
µ aµT

µ such that aµ = 0 for all µ = {µij }0≤i≤p,0≤j≤ni
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with min0≤j≤ni {µij } ≥ 1 for some 0 ≤ i ≤ p, is a Banach A-submodule of C, and

the canonical surjection C → B induces an isometric isomorphism D
∼→ B. The

skeleton S(X) is the image of the set S = {t ∈ [0, 1][n] | ti0 . . . tini = |ai |, 0 ≤ i ≤ p}
under the following injective mapping S → Xη. It takes a point t ∈ S to the bounded
multiplicative seminorm on B which is induced by the function D → R+ : f =∑
µ aµT

µ �→ maxµ{||aµ||tµ}.
If X is a formal scheme over k� that admits an étale morphism to some Y =

T(n, a,m), then the skeleton S(X) is the preimage of S(Y) under the induced map
Xη → Yη. One show that this subset of Xη is well defined. If the closed fiber Xs has a
unique maximal stratum, then the map S(X)→ S(Y) is injective, and if, in addition,
this maximal stratum goes to the unique maximal stratum of Ys , then S(X)

∼→ S(Y).
If X is an arbitrary strictly poly-stable formal scheme over k�, one defines the skeleton
S(X) as the union

⋃
i∈I S(Xi ), where {Xi}i∈I is a covering of X by open subschemes

that admit an étale morphism to a formal scheme of the form T(n, a,m). If X is an
arbitrary poly-stable formal scheme over k�, one takes a surjective étale morphism
X′ → X from a strictly poly-stable formal scheme X′ and defines the skeleton S(X)
as the image of S(X′) under the induced map X′η → Xη.

Furthermore, one defines the skeleton S(Y/X) of a poly-stable morphism ϕ :
Y→ X as follows. Given a point x ∈ Xη, Yx = Y×X Spf(H(x)�) is a poly-stable

formal scheme over H(x)�, and there are canonical isomorphisms Yx,η
∼→ Yη,x

and Yx,s
∼→ Ys,x ⊗k̃(x) H̃(x), where x is the image of x under the reduction map

π : Xη → Xs . The skeleton of ϕ is the closed set

S(Y/X) =
⋃
x∈Xη

S(Yx) .

One also constructs a strong deformation retraction�ϕ : Yη × [0, 1] → Yη of Yη to
S(Y/X).

Finally, let X = (Xl fl−1→ · · · f1→ X1) be a poly-stable fibration over k� of length
l ≥ 0. If l = 0, then S(X) = X0,η = M(k). If l = 1, then S(X) = S(X1) and, if
l ≥ 2, then the skeleton S(X) is the closed set

S(X) = S(Xl/Xl−1) ∩ f−1
l−1(S(X

≤l−1)) .

The correspondence X �→ S(X) is a subfunctor of the following functor from P stét
l

to the category of paracompact locally compact spaces: X �→ Xl,η. This functor
is denoted by Sl . Notice that there is a canonical morphism of functors S(X) →
S(X≤l−1). One constructs the strong deformation retraction� : Xl,η × [0, l] → Xl,η
of Xl,η to S(X) inductively as a composition of the strong deformation retraction�fl−1

of Xl,η to S(Xl/Xl−1) with a strong deformation retraction of S(Xl/Xl−1) to S(X),
which is a certain lifting of the strong deformation retraction� : Xl−1,η×[0, l−1] →
Xl−1,η. One has (xt )t ′ = xmax(t,t ′) for all points x ∈ Xl,η and all t, t ′ ∈ [0, l], where
xt = �(x, t).
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Recall that the image of every point from S(X) under the reduction map π :
Xl,η → Xl,s is contained in str(Xl,s ). The preimage of a point from str(Xl,s ) in S(X)
is a locally closed subset called a cell of S(X). The cells form a partially ordered set
O(S(X)) with respect to the following ordering: A ≤ B if A ⊂ B. The reduction
map induces an isomorphism of partially ordered sets O(S(X))

∼→ str(Xl,s ).
For example, if the valuation on k is trivial and X is nondegenerate, then str(Xl,s )

coincides with the set gen(Xl,s ) of generic points of the irreducible components of
Xl,s . By [Ber7, Corollary 1.7], for any point x ∈ gen(Xl,s ), there exists a unique point
x ∈ Xl,η with π(x) = x. It follows that S(X) is a discrete set which is the preimage
of gen(Xl,s ) in Xl,η. In particular, if Xl is connected, Xl,η is contractible.

Given a formal scheme X locally finitely presented over k�, one provides its generic
fiber Xη with a partial ordering as follows (see [Ber7, §5]). If X = Spf(A) is affine,
then x ≤ y if |f (x)| ≤ |f (y)| for all f ∈ A. If X is arbitrary, the partial orderings
on the generic fibers of open affine subschemes of X are compatible, and they define
a partial ordering on Xη. Given a poly-stable fibration X over k� of length l, one has
x ≤ xt for all x ∈ Xl,η and all t ∈ [0, t] and, in particular, x ≤ xτ , where xτ = τ(x).

One of the key ingredients of the above constructions is the following fact, which
will be also used here. Recall (see [Ber7, §7) that a strictly poly-stable morphism
ϕ : Y → X is said to be geometrically elementary if, for every point x ∈ Xs , the
partially ordered set str(Ys,x) has a unique maximal element and all of the strata of
Ys,x are geometrically irreducible. Notice that if ϕ′ : Y′ → X is another strictly
poly-stable morphism, which is also geometrically elementary, and we are given an
étale morphism Y′ → Y over X, then the induced map S(Y′/X) → S(Y/X) is
injective. The fact is as follows (see [Ber7, Corollary 7.4]). Given a strictly poly-
stable morphism ϕ : Y→ X, for every point y ∈ Ys there exists an étale morphism
X′ → X and an open subscheme Y′ ⊂ Y ×X X′ such that the image of Y′s in Ys

contains the point y and the induced morphism Y′ → X′ is geometrically elementary.

4.3 The dependence of S(X) on Xl

Given a formal scheme X locally finitely presented over k�, we introduce as follows a
partial ordering � on the generic fiber Xη, which is stronger than the partial ordering
≤ considered in [Ber7]: x � y if, for every étale morphism X′ → X and every point
x′ ∈ X′η over x, there exists a point y′ ∈ X′η over y such that |f (x′)| ≤ |f (y′)| for
all f ∈ O(X′η). Notice that, given a morphism ϕ : Y → X, for any pair of points
x, y ∈ Yη with x � y one has ϕη(x) � ϕη(y).

4.3.1 Theorem. Let X = (Xl
fl−1→ · · · f1→ X1) be a poly-stable fibration over k�.

Then

(i) for all points x ∈ Xl,η and all t ∈ [0, l], one has x � xt ;
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(ii) if X is nondegenerate, the skeleton S(X) coincides with the set of the points of
Xl,η which are maximal with respect to the partial ordering �.

Proof. (i) Given an étale morphism ϕ : X′ → Xl and a point x′ ∈ X′η over x, let

X′ be the poly-stable fibration (X′ fl−1�ϕ−−−→ Xl−1
fl−2→ · · · f1→ X1). By [Ber7, Theorem

8.1(viii)], one has ϕη(x′t ) = xt . Since x′ ≤ x′t , it follows that x � xt .
(ii) By (i), the skeleton S(X) contains the set of maximal points and, therefore, it

remains to show that for any pair of distinct points x, y ∈ S(X) none of the inequalities
x � y or y � x is true. Since this property is local in the étale topology, we
may assume that all formal schemes Xi are affine, i.e., Xi = Spf(Ai), and every
morphism fi : Xi+1 → Xi goes through an étale Xi+1 → Xi (ni , ai , mi) and is
geometrically elementary. It suffices to show that there exist two functions f, g ∈ Al
with |f (x)| < |f (y)| and |g(x)| > |g(y)|. This is trivially true for l = 0, and assume
that l ≥ 1 and that this is true for l − 1. We may assume that the images of x and y in
S(X≤l−1) coincide. Let z be this image. If nl = (n0, . . . , np) and al = (a0, . . . , ap),
then for every 0 ≤ i ≤ p one has |(Ti0 . . . Tini )(x)| = |(Ti0 . . . Tini )(y)| = |ai(z)|.
Notice that |ai(z)| �= 0 because X is nondegenerate. Since the morphisms Xl → Xl−1
and Y = Xl−1(nl , al , ml)→ Xl−1 are geometrically elementary, it follows that the
canonical map S(Xl/Xl−1) → S(Y/Xl−1) is injective and, therefore, there exist
0 ≤ i ≤ p and 0 ≤ j ≤ ni with |Tij (x)| �= |Tij (y)|. Assume that |Tij (x)| < |Tij (y)|.
Then for g = Ti0 . . . Ti,j−1Ti,j+1 . . . Tini one has |g(x)| > |g(y)|. ��

Thus, the skeleton S(X) is well defined for any nondegenerate pluri-stable formal
scheme X.

4.3.2 Corollary. Letϕ : Y→ X be a pluri-stable morphism between nondegenerate
pluri-stable formal schemes over k�. Then

(i) ϕη(S(Y)) ⊂ S(X);
(ii) if ϕ is étale, then S(Y) = ϕ−1

η (S(X)).

Proof. (i) By Corollary 4.1.4, it suffices to consider the case when the morphism ϕ is
nondegenerate poly-stable. Assume that X = Xl−1 for a nondegenerate poly-stable

fibration (Xl−1
fl−2→ · · · f1→ X1) of length l − 1, and we set X = (Y

ϕ→ Xl−1
fl−2→

· · · f1→ X1). Then the morphism ϕ takes S(X) to S(X≤l−1). Since S(Y) = S(X) and
S(X) = S(X≤l−1), the required fact follows.

(ii) By (i), one has S(Y) ⊂ ϕ−1
η (S(X)). Let x ∈ S(X) and y ∈ ϕ−1

η (x). By
Theorem 4.3.1(i), one has y � yt and, therefore, yt ∈ ϕ−1

η (x) for all t ∈ [0, l]. Since
ϕ−1
η (x) is a discrete topological space, it follows that y = yl ∈ S(Y). ��

Corollary 4.3.2 implies that the correspondence X �→ S(X) is a subfunctor of the
functor X �→ Xη on the category P�st

pl
nd.
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4.3.3 Remarks. (i) For any nondegenerate pluri-nodal formal scheme X, there exists
a surjective étale morphism ϕ : Y → X from a nondegenerate strictly pluri-stable
formal scheme Y. From Corollary 4.3.2 it follows that the image of S(Y) in Xη
does not depend on the choice of ϕ and coincides with the set of maximal points with
respect to the partial ordering � on Xη. It can be called the skeleton S(X) of X, and
both statements of Corollary 4.3.2 hold for any pluri-nodal morphism ϕ.

(ii) In our work in progress, we give a similar description of the skeleton S(X) of
an arbitrary poly-stable fibration X of length l as the set of maximal points with respect
to a partial ordering on Xl,η which is stronger than the above one (but coincides with
it if X is nondegenerate).

4.4 The retraction map τ : Xl,η → S(Xl)

Let X = (Xl
fl−1→ · · · f1→ X1) be a poly-stable fibration over k� of length l. In this

subsection we recall the construction of the retraction map τ = τX : Xl,η → S(X),
and we introduce a class of nondegenerate poly-stable fibrations X for which the
retraction map τ depends only on Xl .

Assume that l ≥ 1 and that the retraction map is already constructed for poly-
stable fibrations of length l − 1. Consider first the case when Xl−1 is affine and
Xl = Xl−1(n, a,m) with n = (n0, . . . , np) and a = (a0, . . . , ap). The continuous
mapping

Xl,η → Xl−1,η × [0, 1][n] : y �→ (fl−1(y); |Ti0(y)|, . . . , |Ti,ni (y)|)0≤i≤p
induces a homeomorphism between S(Xl/Xl−1) and the closed set

S = {(x; t) ∈ Xl−1,η × [0, 1][n] | t0i . . . tini = |ai(x)|, 0 ≤ i ≤ p} ,

and it gives rise to a retraction map ρ : Xl,η → S. If l = 1, then S(X) = S and τ = ρ.
Assume therefore that l ≥ 2. In this case the retraction map τ is a composition of the
above map ρ with a retraction map γ : S → S(X) constructed as follows (see [Ber7,
p. 62]).

First of all, one defines for each n ≥ 0 a strong deformation retraction ψn :
[0, 1][n] × [0, 1] → [0, 1][n] to the point (1, . . . , 1). The map ψn is required to
possess the property that ψn(σ(t), s) = σ(ψn(t, s)) for all permutations σ of degree
n + 1, and so it suffices to define ψn(t, s) only for the points t ∈ [0, 1][n] with
t0 ≤ t1 ≤ · · · ≤ tn. First, if s ≤ t0 . . . tn, then ψn(t, s) = t . Furthermore, if
t i+1
i ti+1 . . . tn ≤ s < ti+2

i+1 ti+2 . . . tn for some 0 ≤ i ≤ n− 1, then

ψn(t, s) =
((

s

ti+1 . . . tn

) 1
i+1

, . . . ,

(
s

ti+1 . . . tn

) 1
i+1

, ti+1, . . . ,tn

)
.
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Finally, if s ≥ tn+1
n , then ψn(t, s) =

(
s

1
n+1 , . . . ,s

1
n+1

)
. The retraction map γ : S →

S(X) is as follows

γ (x, t1, . . . , tp) =
(
xτ ;ψn0(t0, |a0(xτ )|), . . . , ψnp(tp, |ap(xτ )|)

)
.

If X is such that Xl−1 is affine, the morphism fl−1 : Xl → Xl−1 is geometrically
elementary and goes through an étale morphism ϕ : Xl → Y = Xl−1(n, a,m), then

the morphism X → Y = (Y → Xl−1
fl−2→ · · · f1→ X1) gives rise to embeddings

S(Xl/Xl−1) ↪→ S(Y/Xl−1) and S(X) ↪→ S(Y), and the above retraction maps
ρ : Yη → S(Y/Xl−1) and γ : S(Y/Xl−1) → S(Y) give rise to retractions maps
ρ : Xl,η → S(Xl/Xl−1) and γ : S(Xl/Xl−1)→ S(X). The latter do not depend on
the choice of ϕ, and one has τ = γ � ρ.

If X is arbitrary, one can find surjective étale morphisms X′ → X and X′′ →
X′ ×X X′ such that the morphisms f ′l−1 : X′l → X′l−1 and f ′′l−1 : X′′l → X′′l−1 are
disjoint unions of morphisms satisfying the assumptions of the previous paragraph.
Since the retraction maps τ ′ : X′l,η → S(X′) and τ ′′ : X′′l,η → S(X′′) are compatible,
they give rise to a retraction map τ : Xl,η → S(X).

We say that a strictly poly-stable morphism ϕ : Y→ X is strongly nondegenerate
if, for every point y ∈ Y, there exist an open affine neighborhood X′ = Spf(A) ofϕ(y)
and an open neighborhood Y′ ⊂ ϕ−1(X′) of y such that the induced morphism Y′ →
X′ goes through an étale morphism Y′ → X′(n, a,m), where all ai are invertible in
A = A⊗k� k (i.e., ai(x) �= 0 for all x ∈ X′η). A poly-stable morphism ϕ : Y→ X is
said to be strongly nondegenerate if there exists a surjective étale morphism Y′ → Y
for which the induced morphism Y′ → X is strongly nondegenerate strictly poly-
stable. For example, a poly-stable formal scheme X over k� is strongly nondegenerate
if and only if it is nondegenerate.

One can easily see that a poly-stable morphism ϕ : Y→ X is strongly nondegen-
erate if and only if the induced morphism of strictly k-analytic spaces ϕη : Yη → Xη
is smooth in the sense of rigid geometry (or rig-smooth). (A morphism of strictly
k-analytic spaces ϕ : Y → X is said to be rig-smooth if every point y ∈ Y has a
neighborhood of the form V1∪· · ·∪Vn, where each Vi is a strictly affinoid subdomain
of Y such that the induced morphism Vi → X goes through a quasi-étale morphism
(see [Ber5, §3]) to an affine space Am

X over X. A morphism between good strictly
k-analytic spaces is smooth in the sense of [Ber2] if and only if it is rig-smooth and
has no boundary.)

A pluri-stable formal scheme X over k� is said to be strongly nondegenerate if
the canonical morphism X→ Spf(k�) is a sequence of strongly nondegenerate poly-
stable morphisms. Similarly, a poly-stable fibration X of length l is said to be strongly
nondegenerate if all the morphisms fi : Xi+1 → Xi are strongly nondegenerate.

4.4.1 Theorem. Let X be a strongly nondegenerate poly-stable fibration of formal
schemes. Then, for every point x ∈ Xl,η, xτ is a unique point of S(X) = S(Xl ) which
is greater than or equal to x (with respect to the partial ordering � on Xl,η).
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Proof. As in the proof of Theorem 4.3.1(ii), the property considered is local in the
étale topology and, therefore, we may assume that all formal schemes Xi are affine,
and every morphism fi : Xi+1 → Xi goes through an étale Xi+1 → Xi (ni , ai , mi)
and is geometrically elementary. For every 0 ≤ i ≤ p, one has Ti0 . . . Tini = ai .
Since ai are invertible on Xl−1,η, it follows that all of the coordinate functions Tij
are invertible on Xl,η. Since x ≤ xτ , the latter implies that |Tij (x)| = |Tij (xτ )|.
But, by the proof of Theorem 4.3.1(ii), we know that for any pair of distinct points
y, z ∈ S(X) there exist functions f, g ∈ Al which are representable in the form of
products of coordinate functions and such that |f (y)| < |g(z)| and |f (y)| > |g(z)|.
The required fact follows. ��

From Theorem 4.4.1 it follows that, for any strongly nondegenerate poly-stable
formal scheme X, there is a well defined retraction map τ : Xη → S(X).

4.4.2 Corollary. Let X be a strongly nondegenerate pluri-stable formal scheme.
Given a poly-stable fibration X′ of length l and a morphism of formal schemes
ϕ : X′l → X, the following diagram is commutative:

S(X′)
τ�ϕη �� S(X)

X′l,η

τ ′
��

ϕη
�� Xη.

τ

��

where τ ′ is the retraction map associated with X′.

Proof. For every point x′ ∈ Xl,η, one has x′ � x′τ and, therefore, ϕη(x′) � ϕη(x′τ ).
Theorem 4.4.1 implies that ϕη(x′)τ = ϕη(x′τ )τ . ��

5 A colored polysimplicial set associated with a
nondegenerate poly-stable fibration

5.1 Formulation of the result

In this section we construct for every non-Archimedean field k and every l ≥ 0 a
functor k�-P stét

nd,l → �
�,lf
Rk,l

Ens, whereRk = |k∗|∩[0, 1]. This family of functors for
different k’s forms a functor between fibered categories over the category dual to that
of non-Archimedean fields. The first one is the category P stét

nd,l , and the second one is

the category �̃�,lcl Ens introduced as follows. Its objects are pairs (k,D) consisting of

a non-Archimedean field k and a locally finite polysimplicial setD ∈ Ob(��,lf
Rk,l

Ens),

and morphisms (k′,D′) → (k,D) are pairs consisting of an isometric embedding
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k ↪→ k′ and a morphism D′ → D in ��,lf
Rk
′
,l
Ens. For brevity, a pair (k,D) is denoted

by D.

5.1.1 Theorem-Construction. One can construct for every l ≥ 0:

(a) a functor of fibered categories Dl : P stét
nd,l → �̃

�,lc
l Ens (it takes X to D(X)),

(b) an isomorphism of functors θl : |D(X)| ∼→ S(X), and

(c) a morphism of functors D(X)≤l−1 → D(X≤l−1) compatible with θl and θl−1,

which possess the following properties:

(1) if X is strictly poly-stable, the polysimplicial set D(X) is free;

(2) given a surjective étale morphism X′ → X, there is an isomorphism of polysim-

plicial sets Coker(D(X′ ×X X′) →→ D(X′)) ∼→ D(X);

(3) the homeomorphism θl : |D(X)| ∼→ S(X) induces an isomorphism of partially

ordered sets O(|D(X)|) ∼→ O(S(X));

(4) for every g ∈ O′(Xl ), one has θ∗l (|g|) ∈ MD(X), where |g| is the function
x �→ |g(x)|;

(5) if X is strictly poly-stable, then each point of Xl has an open affine neighborhood

X′ = Spf(A) such that, for X′ = (X′ fl−1→ Xl−2
fl−2→ · · · f1→ X1), D(X′) is a

standard polysimplex �[n]r and the map A\{0} → M
n
r : g �→ θ∗l (|g|) is

surjective.

The construction is done by induction in §§5.2–5.5. If l = 0, then X = (X0 =
Spf(k�)), S(X) = X0,η =M(k) and D(X) = �[0]1. Assume that l ≥ 1 and that the
above objects are already constructed for l − 1. For a polysimplex d ∈ D(X)

r
n, we

shall denote by σd the map �n
r
σd→ |D(X)| θl→ S(X).

5.1.2 Remark. In our work in progress, we extend the above construction to the
whole class of poly-stable fibrations. Namely, we construct a functor X �→ D(X)
from the category of all poly-stable fibrations of length l over k� to the category of
|k�|-colored polysimplicial sets of length l, an isomorphism of functors θl : |D(X)| ∼→
S(X), and a morphism of functors D(X)≤l−1 → D(X≤l−1). They possess the same
properties (1)–(5) with the only difference that, in (4), θ∗l (|g|) ∈ MD(X) for all g ∈
O(Xl ) and, in (5), the map A→ M

n
r : g �→ θ∗l (|g|) is surjective. The combinatorial

part of the proof of Theorem 5.1.1 in §§5.2–5.4 works also in the general case. The
assumption on nondegenerateness of X is used here only for the verification of the
property (4) in §5.5 since, in the general case, its verification is more involved.
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5.2 Construction of D(X) for strictly poly-stable X

Before starting the construction, we recall some facts from [Ber7, §3]. Let X be a
strictly poly-stable scheme over a field K . For a point x ∈ str(X), the set irr(X, x)
of the irreducible components of X passing through x is provided with a metric
as follows: the distance between two components X,X′ ∈ irr(X, x) is the codi-
mension of the intersection X ∩ X′ at the point x. Given an étale morphism ϕ :
Y → X and a point y ∈ str(Y), for any point x ∈ str(X) with ϕ(y) ≤ x the
canonical map irr(Y, y) → irr(X, x) is isometric. For example, if T = T0 ×
· · · × Tp × S, where Ti = Spec(K[Ti0, . . . , Tini ]/(Ti0 . . . Tini )) with ni ≥ 1 and

S = Spec(K[S1, . . . , Sm, S
−1
1 , . . . , S−1

m ]), then there is an isometric bijection [n] ∼→
irr(T , t) that takes j = (j0, . . . , jp) ∈ [n] to the irreducible component defined by
the equations T0j0 = · · · = Tpjp = 0, where t is the maximal point in str(T ). Thus,
any étale morphism ϕ : X′ → T from an open neighborhood X′ of the point x to the
above scheme T , that takes x to the above point t , gives rise to an isometric bijection
µϕ : [n] ∼→ irr(X, x). The latter property of ϕ is equivalent to the fact that all of the
coordinate functions Tij vanish at the point x.

Let X = (Xl
fl−1→ · · · f1→ X1) be a nondegenerate strictly poly-stable fibration

over k�. We set X = Xl−1, Y = Xl and ϕ = fl−1. By induction, there is a free
locally finite polysimplicial set C = D(X≤l−1) and a continuous map |C| → Xη that

identifies |C| with S(X≤l−1). Since O(C)
∼→ O(|C|) and O(S(X≤l−1))

∼→ str(Xs),
the latter map induces an isomorphism of partially ordered sets O(C)

∼→ str(Xs) :
(�[n]r c→ C) �→ c. We construct as follows an Rk-colored polysimplicial set D of
length l.

Given [n]r ∈ Ob(�Rk,l), let Dr
n be the set of all triples d = (y, c, µ) consisting

of a point y ∈ str(Ys), a polysimplex c ∈ Cr≤l−1

n≤l−1 with c = x, where x = ϕs(y) ∈
str(Xs), and an isometric bijection µ : [n(l)] ∼→ irr(Ys,x, y) such that there exists
an open affine neighborhood X′ ⊂ X of x and an open neighborhood Y′ ⊂ ϕ−1(X′)
of y for which the induced morphism Y′ → X′ goes through an étale morphism
ψ : Y′ → X′(n(l), a,m) such that all of the coordinate functions Tij of X′(n(l), a,m)
vanish at y, µψ = µ and σ ∗c (|a|) = r(l). From [Ber7, Proposition 4.3] it follows that
the object [n]r is uniquely defined by the triple d = (y, c, µ).

Furthermore, let γ : [n′]r ′ → [n]r be a morphism in �Rk,l . It gives rise to a

morphism γ≤l−1 : [n′≤l−1]r ′≤l−1 → [n≤l−1]r≤l−1 , and we set c′ = C(γ≤l−1)(c) ∈
C

r ′≤l−1

n′≤l−1 and x′ = c′ ∈ str(Xs). One has x′ ≤ x and, by [Ber7, Proposition 2.9],

the set of points y′ ∈ str(Ys) with ϕs(y′) = x′ and y′ ≤ y is non-empty and has
a unique maximal point. Let y′′ be this point. By [Ber7, Lemma 6.1], there exists
a unique pair (J, µ′′) consisting of a subset J ⊂ ω(n(l)) and an isometric bijection
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µ′′ : [n(l)J ]
∼→ irr(Ys,x′ , y

′′) for which the following diagram is commutative

[n(l)]

��

∼
µ

�� irr(Ys,x, y)

��
[n(l)J ]

∼
µ′′

�� irr(Ys,x′ , y
′′).

(5.1)

(Here the left vertical arrow is the canonical projection, and the right one is from [Ber7,
Proposition2.9].) By the proof of loc. cit., one has J = {j ∈ ω(n(l)) | aj (x′) = 0

in k̃(x′)}, i.e., J = {j ∈ ω(n(l)) | |aj (x)| < 1 for some (and therefore all) x ∈
π−1(x′)}. It follows that J is precisely the set of all j ∈ ω(n(l)) with rj (x) < 1 for
some x ∈ Im(�(γ≤l−1)) and, therefore, the morphism γ gives rise to a morphism
γ (l) : [n′(l)] → [n(l)J ] in� such that r ′j = rf (j) ��(γ≤l−1) for all j ∈ ω(n′(l)), where

f is the mapω(n′(l))→ J defined by γ≤l−1 (see §2.1). By [Ber7, Lemma 3.13], there
exists a unique pair (y′, µ′) consisting of a point y′ ∈ str(Ys,x′) with y′ ≤ y′′ and

an isometric bijection µ′ : [n′(l)] ∼→ irr(Ys,x′ , y
′) for which the following diagram is

commutative

[n(l)J ]
∼
µ′′

�� irr(Ys,x′ , y
′′)

[n′(l)]
γ (l)

��

∼
µ′

�� irr(Ys,x′ , y
′).

��
(5.2)

Let now Y′′ be the open subscheme of Y′ where all of the coordinate functions of
X′(n(l), a,m), which do not vanish at the point y′, are invertible. We also set a′j =
af (j) for j ∈ ω(n′(l)). Then the morphism Y′′ → X′ goes through an étale morphism

ψ ′ : Z′′ → X′(n′(l), a′,m′) (for some m′ ≥ 0). Thus, the triple d ′ = (y′, c′, µ′) is an

element of Dr ′
n′ , and we get an Rk-colored polysimplicial set D of length l.

We claim that the following is true:

(i) the polysimplicial set D is free and locally finite;

(ii) the correspondence d = (y, c, µ) �→ y defines an isomorphism of partially
ordered sets O(D)

∼→ str(Ys) over the isomorphism O(C)
∼→ str(Xs);

(iii) the morphism D≤l−1 → C : d = (y, c, µ) �→ c (see § 2.4) is surjective (resp.
injective) if and only if the map str(Ys)→ str(Xs) is surjective (resp. for every
x ∈ str(Xs), Ys,x is connected).

(i) That D is locally finite is trivial. To show that it is free, we have to verify
that, given d = (y, c, µ) ∈ Dr

n and two morphisms γ1, γ2 : [n′]r ′ → [n]r with
D(γ1)(d) = D(γ2)(d), then γ1 = γ2. Let d ′ = (y′, c′, µ′) = D(γ1)(d). Since
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c′ = C(γ≤l−1
1 )(c) = C(γ≤l−1

2 )(c) and C is free, it follows that γ≤l−1
1 = γ≤l−1

2 . The

equality γ (l)1 = γ
(l)
2 now follows from the fact that both morphisms appear as left

vertical arrows in the corresponding diagrams (5.2) with the same sets and three other
arrows.

(ii) Given a point y ∈ str(Ys), let c ∈ Cs
m be a polysimplex with c = x =

ϕs(y). One can find an open affine neighborhood X′ of x and an open neighborhood
Y′ ⊂ ϕ−1(X′) of y for which the induced morphism Y′ → X′ goes through an
étale morphism ψ : Y′ → X′(n, a,m) such that all of the coordinate functions
Tij on X′(n, a,m) vanish at y. Then the étale morphism gives rise to an isometric

bijection µ : [n] ∼→ irr(Ys,x, y). Let a = (a0, . . . , ap). By the property (4),
ri = σ ∗c (|ai |) ∈ Mm

s for all 0 ≤ i ≤ p. Thus, if n = (m,n) and r = (s, r), where
r = (r0, . . . , rp), then the triple d = (y, c, µ) gives rise to an element ofDr

n, i.e., the
canonical map O(D)→ str(Ys) : d = (y, c, µ) �→ y is surjective.

Assume now that there are two polysimplices d = (y, c, µ) ∈ Dr
n and d ′ =

(y′, c′, µ′) ∈ Dr ′
n′ with y′ ≤ y. Then for x = ϕs(y) and x′ = ϕs(y′) one has x′ ≤ x.

Since c = x, c′ = x′ andO(C)
∼→ str(Xs), there is a morphism α : [n′≤l−1]r ′≤l−1 →

[n≤l−1]r≤l−1 with c′ = C(α)(c). Let y′′ ∈ str(Ys,x′) be the unique maximal point
with the property y′′ ≤ y. As above, there exists a unique pair (J, µ′′) consisting of a
subset J ⊂ ω(n(l)) and an isometric bijection µ′′ : [n(l)J ]

∼→ irr(Ys,x′ , y
′′) for which

the diagram (5.1) is commutative, and we know that J = {j ∈ ω(n(l)) | |aj (x)| < 1
for some x ∈ Im(�(α))}. Let β denote the isometric map

[n′(l)]
µ′
∼→ irr(Ys,x′ , y

′)→ irr(Ys,x′ , y
′′)

µ′′−1

∼→ [n(l)J ] .

It induces an injective map f : ω(n′(l))→ J . From [Ber7, Proposition 4.3] it follows
that r ′(l)j = �(α)∗(r(l)f (j)) for all j ∈ ω(n′(l)) and, therefore, the pair (α, β) induces
a morphism γ : [n′]r ′ → [n]r for which d ′ = D(γ )(d). It follows that the map
O(D)→ str(Ys) is an isomorphism of partially ordered sets.

(iii) The direct implications follows straightforwardly from the description of
D≤l−1 in terms of D. Assume first that the map str(Ys) → str(Xs) is surjective.
We have to show that for every c ∈ C

s
m there exists d = (y, c, µ) ∈ D

r
n with

[n≤l−1]r≤l−1 = [m]s . By (ii), there exists d ′ = (y, c′, µ′) ∈ Dr ′
n′ with c′ = c.

Since O(C)
∼→ str(Xs), there exists an isomorphism γ : [m]s ∼→ [n′≤l−1]r ′≤l−1 with

c = C(γ )(c′). If [n]r is the inverse image of [n′]r ′ under γ (in the sense of Example

2.3.1(ii)) and µ is the composition of the isometric bijection [n(l)] ∼→ [n′(l)] with µ′,
then the triple d = (y, c, µ) is an element ofDr

n. Assume now that, for every x ∈ Xs ,
Ys,x is connected. We have to show that any two polysimplices d = (y, c, µ) ∈ Dr

n

and d ′ = (y′, c, µ′) ∈ Dr ′
n′ (over the same c) are equivalent. By the assumption, it
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suffices to consider the case when y′ ≤ y, but in this case the required fact is obtained
from the construction in the proof of (ii) (with the identity morphism α).

We set D(X) = D. It is easy to see that the correspondence X �→ D(X) is functorial
on the full subcategory of P stét

nd,l that consists of strictly poly-stable fibrations.

5.3 Construction of D(X) for arbitrary X

5.3.1 Lemma. Assume we are given a surjective étale morphisms X′ → X between
nondegenerate strictly poly-stable fibrations of length l. Then there is an isomorphism
of polysimplicial sets Coker(D(X′ ×X X′) →→ D(X′)) ∼→ D(X).

Proof. We set X′′ = X′ ×X X′, X = Xl−1, C = D(X≤l−1), Y = Xl , D = D(X) and
so on. By the induction hypothesis, there is an isomorphism of polysimplicial sets
Coker(C′′ →→ C′) ∼→ C.

The morphism of polysimplicial sets D′ → D is surjective. Indeed, let d =
(y, c, µ) ∈ Dr

n. By [Ber7, Corollary 2.8], there exists a point y′ ∈ str(Y′s) over the
point y ∈ Ys . Let x and x′ be the images of y and y′ in Xs and X′s , respectively.
One has c = x. To prove the claim, it suffices to show that there exists a polysimplex

c′ ∈ C′r≤l−1

n≤l−1 over c with c′ = x′ (since the triple d ′ = (y′, c′, µ′) will then represent

an element of D′rn over d, where µ′ is the composition of µ with the inverse of the

canonical isometric bijection irr(Y′s,x′ , y′)
∼→ irr(Ys,x, y)). Since O(C)

∼→ str(Xs)

and O(C′) ∼→ str(X′s), the necessary fact is a consequence of the following simple
observation. Given a morphism E′ → E in ��R,lEns, the canonical map E′rn →
E

r
n ×O(E) O(E′) is surjective for every [n]r ∈ Ob(�R,l). To see the latter, let us

consider a pair of polysimplices e ∈ Er
n and e′ ∈ E′r ′

n′ such that the class of d,

the image of e′ in Er ′
n′ , coincides with that of e in O(E). It follows that there is an

isomorphism γ : [n]r ∼→ [n′]r ′ with e = E(γ )(d). Then the image of the polysimplex
E′(γ )(e′) in Er

n is e and its class in O(E′) coincides with that of e′.
The morphism Coker(D′′ →→ D′)→ D is an isomorphism. Assume there are two

polysimplices d1 = (y1, c1, µ1) and d2 = (y2, c2, µ2) in D′rn whose images in Dr
n

coincide. Then c1 = x1 and c2 = x2 are the images of the points y1 and y2 in X′s ,
respectively. By [Ber7, Corollary 2.8], we can find a point y′′ ∈ str(Y′′s ) over the pair
of points (y1, y2). Let x′′ be the image of y′′ in X′′s . It suffices to show that there exists
a polysimplex c′′ ∈ C′′rn over the pair of polysimplices (c1, c2) with c′′ = x′′. Since

O(C′) ∼→ str(X′s) and O(C′′) ∼→ str(X′′s ), this follows from the above observation
applied to the morphism C′′ → C′ ×C C′. ��

We fix for each nondegenerated poly-stable fibrations X of length l a surjective
étale morphism X′ → X so that, if X is strictly poly-stable, then X′ = X′′ = X,
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and define D(X) as the cokernel Coker(D(X′ ×X X′) →→ D(X′)). We get a functor

Dl : P stét
nd,l → �̃

�,lf
l Ens that possesses the properties (1) and (2). We also get

a morphism of functors D(X)≤l−1 → D(X≤l−1) and functorial isomorphisms of
partially ordered sets O(D(X))

∼→ str(Xl,s ).

5.4 Construction of an isomorphism of functors θl : |Dl| ∼→ Sl

5.4.1 Lemma. Given an open immersion Y ↪→ X, the induced morphism D(Y)→
D(X) is injective (and, therefore, it identifies D(Y) with the polysimplicial subset of

D(X) which corresponds in O(D(X)) = str(Xl,s ) to the subset str(Yl,s )).

Proof. If X is strictly poly-stable, the statement follows for l − 1 (resp. l) from the
induction hypothesis and Lemma 3.4.6 (resp. the explicit construction of D(X)). In
the general case, assume that two polysimplices d1 and d2 of D(Y) go to the same
polysimplex of D(X). Let X′ → X be a surjective étale morphism with strictly
poly-stable X′, and let Y′ be the preimage of Y in X′. We can find polysimplices
d ′1 = (y′1, c′1, µ′1) and d ′2 = (y′2, c′2, µ′2) in D(Y′) over d1 and d2, respectively. The
assumption implies that there exist polysimplices d ′′i = (x′′i , c′′i , µ′′i ) of D(X′ ×X X′),
1 ≤ i ≤ n, withp1(d

′′
1 ) = d ′1, p2(d

′′
i ) = p1(d

′′
i+1) for 1 ≤ i ≤ n−1 andp2(d

′′
n ) = d ′2.

It follows that p1(x
′′
1) = y′1 and, therefore, p2(x

′′
1) ∈ Y′l,s , i.e., x′′1 ∈ str(Y′l,s ×Yl,s

Y′l,s ). For the same reason, the same is true for all points x′′i and, therefore, all of the
polysimplices d ′′i come from D(Y′ ×Y Y′), i.e., d1 = d2. ��

Notice that it suffices to construct an isomorphism of functors |Dl | ∼→ Sl on a full
subcategory of P stét

nd,l with the property that any object of the whole category is the
image of an object of the subcategory under a surjective étale morphism. It suffices
therefore to construct functorial homeomorphisms |D(X)| ∼→ S(X) for X which are
strictly poly-stable and such that Xl−1 is affine, and the morphism fl−1 : Xl → Xl−1 is
geometrically elementary and goes through an étale morphism Xl → Xl−1(n, a,m).
(Notice that in this case the formal scheme Xl is quasi-compact.) We set X = Xl−1 =
Spf(A), Y = Xl , ϕ = fl−1, C = D(X≤l−1) and D = D(X). The first example of a
geometrically elementary morphism is a morphism of the form X(n, a,m)→ X.

5.4.2 Lemma. If Y = X(n, a,m), then D
∼→ �[n]C,|a| (see §2.4).

Proof. Given a polysimplex d = (y, c, µ) ∈ Ds
m, the set I = {i ∈ ω(n) | |ai(x)| < 1

for some x ∈ Im(σ c)} coincides with the set I (c, |a|) defined in §2.3. If y′ is the
maximal point in Ys,x , where x = ϕs(y) = c, there is a canonical isometric bijection

[nI ] ∼→ irr(Ys,x) and, therefore, the isometric bijection µ : [m(l)] ∼→ irr(Ys,x, y)

defines a morphism γ = (f, α) : [m(l)] → [nI ] in� such that sj = σ ∗c (|af (j)|) for all
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j ∈ ω(m(l)). The pair, consisting of c ∈ Cs≤l−1

m≤l−1 and the morphism γ , represents an s-

colored m-polysimplex of�[n]C,|a|, and the correspondence d = (y, c, µ) �→ (c, γ )

gives rise to the required isomorphism. ��
Assume that Y = X(n, a,m), where n = (n1, . . . , np) and a = (a0, . . . , ap).

Recall (see Step 1 from [Ber7, §5]) that the continuous mapping

Yη → Xη × [0, 1][n] : y �→ (ϕ(y); |T00(y)|, . . . , |Tpp(y)|)
induces a homeomorphism between S(Y/X) and the closed set

S = {(x; t) ∈ Xη × [0, 1][n] | ti0 . . . tini = |ai(x)|, 1 ≤ i ≤ p} .
Since S(X) = S(Y/X) ∩ ϕ−1(S(X≤l−1)), the isomorphism of Lemma 2.4.1 defines
a homeomorphism |D| ∼→ S(X) which possesses the property (3). Indeed, it suffices
to verify that, given a function g ∈ O′(Y) and a polysimplex d ∈ Ds

m, one has
σ ∗d(|g|) ∈ Mm

s . This easily follows from [Ber7, Lemma 5.6].
Consider now a geometrically elementary morphism ϕ : Y→ X that goes through

an étale morphism Y → Z = X(n, a,m). We set Z = (Z → Xl−1
fl−2→ · · · f1→ X1)

and E = D(Z). By the claim (iii) from §5.2, the morphisms of polysimplicial sets
D≤l−1 → C and E≤l−1 → C are injective and bijective, respectively, and, by the
above construction, there is a homeomorphism |E| ∼→ S(Z) that possesses the property
(3). Since for every point x ∈ str(Xs) the induced map of partially ordered sets
str(Ys,x) → str(Zs,x) is injective, from Lemma 3.4.6 it follows that the morphism
of polysimplicial sets D → E is injective. On the other hand, let x be a point of
|C| = S(X≤l−1) and x its image in Xs . Notice that x ∈ str(Xs) (see [Ber7, Theorem
8.1(v)]). Since Ys,x is geometrically irreducible, the maps str(Yx,s)→ str(Zx,s) and
D(Yx)→ D(Zx) are injective and, by [Ber7, Theorem 5.4], the map S(Yx)→ S(Zx)
is injective, and its image is the union of the cells of S(Zx) that are the preimages of the
points coming from str(Yx,s). It follows that the map S(X)→ S(Z) is injective, and
its image is the union of the cells of S(Z) that are the preimages of the points coming

from str(Ys). Since O(D)
∼→ str(Ys), we get a homeomorphism |D| ∼→ S(X). The

restriction of the latter to the fibers at the point x gives rise to a homeomorphism
D(Yx)

∼→ S(Yx) which coincides with that of [Ber7, Theorem 5.4]. It follows that

the homeomorphism |D| ∼→ S(X) is well defined and, in fact, functorial.
Thus, an isomorphism of functors θl : |Dl | ∼→ Sl that possesses the property

(3) is constructed. It follows from the construction that the morphism D(X)≤l−1 →
D(X≤l−1) is compatible with θl and θl−1.
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5.5 Verification of the properties (4) and (5)

In this subsection we use the assumption that the poly-stable fibrations considered are
nondegenerate. If the valuation on k is trivial, both properties are evidently true, and
so we assume that the valuation on k is nontrivial.

It is clear that it suffices to verify the property (4) only for strictly poly-stable X.
Let y0 ∈ Xl,s , y the generic point of the stratum of Xl,s that contains the point y0,
and x the image of y in Xl−1,s . First of all, we can shrink X so that Xl−1 = Spf(A)
is affine, the point x is a unique maximal one in the partially ordered set str(Xl−1,s),
D(X≤l−1) = �[m]s , and the map A\{0} → M

m
s : f �→ θ∗l−1(|f |) is surjective.

Furthermore, we can shrink Xl so that Xl = Spf(B) is affine, the point y is a unique
maximal one in str(Xl,s ), and the canonical morphism Xl → Xl−1 goes through an
étale morphism ϕ : Xl → Z = Xl−1(n, a,m) such that the image z of y in Zs is a
unique maximal point in str(Zs). It follows that D(X)

∼→ �[n]r , where n = (m,n)
and r = (s, |a|), and that S(X)

∼→ S(Z), where Z = (Z → Xl−1
fl−1→ · · · f1→ X1).

Since the retraction maps Yη → S(X) and Zη → S(Z) commute with ϕ, it follows
that S(X) = ϕ−1(S(Z)). From [Ber7, Lemma 5.6] it follows that θ∗l (|h|) ∈ Mn

r for
all h ∈ C\{0}, where Z = Spf(C), and that the map C\{0} → M

n
r : h �→ θ∗l (|h|)

is surjective. Thus, to prove the claim, it suffices to show that θ∗l (|g|) ∈ Mn
r for all

g ∈ B\{0}. For this we need, first of all, the following criterion for a real valued
continuous function on �n

r to be contained in Mn
r .

Let M̃n
r denote the set of all continuous functions α : �n

r → R∗+ with the property
that, for every relatively compact open subset U ⊂ �̊n

r , there exists a function f ∈ Mn
r

with α|U = f |U. One evidently has Mn
r ⊂ M̃n

r .

5.5.1 Lemma. Assume that for α ∈ M̃n
r there exists β ∈ M̃n

r with α ·β ∈ Mn
r . Then

α ∈ Mn
r .

Proof. Given a function f ∈ Mn
r , let {fi}i∈I be the finite set of elementary functions

from Proposition 3.3.1(ii) that are associated with f . For i ∈ I , Ui(f ) = {x ∈ �n
r |

fi(x) > fj (x) for all j ∈ I , j �= i} is a nonempty open subset of �n
r , and the

union
⋃
i∈I Ui(f ) is dense in�n

r . Furthermore, we setA(f ) = {Ui(f )}i∈I and, for a
subset F = {f1, . . . , fm} ⊂ Mn

r , we denote byA(F) the family of all sets of the form
U1∩· · ·∩Um withUi ∈ A(fi). (Notice that the union of allU ∈ A(F) is dense in�n

r .)

Finally, for f ∈ Mn
r we set B(f ) = A({f } ∪ F n

r ), where F n
r = {r(i)j }1≤i≤l,0≤j≤pi .

Each setU ∈ B(f ) is contained in an Rk
Z+ -subpolytope of�n

r and is convex in it, and
the restriction f |U is a linear function on U (see Lemma 3.5.1(i)).

Let α and β be from the formulation, and set h = α · β ∈ Mn
r . We claim for

every U ∈ B(h) there exists a unique f (U) ∈ e(Mn
r ) with α|U = f (U)|U . Indeed, the

uniqueness of f (U) follows from Proposition 3.3.1(i). Let U be a relatively compact
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convex open subset ofU ∩�̊n
r , and let f and g be functions fromM

n
r with α|U = f |U

and β|U = g|U. Then h|U = f |U · g|U. The function on the left hand side is linear.
On the other hand, both functions f |U and g|U are maxima of a finite number of linear
functions. It follows that they are in fact linear. This easily implies that U is a subset
of some set from A(f ), and if f (U) is the corresponding elementary component of f
then α|U = f (U)|U. From Proposition 3.3.1(i) it follows that f (U) does not depend on
the choice of the set U and the function f and, by the continuity of α, α|U = f (U)|U .

Thus, α = maxU∈B(h){f (U)} since this equality is true for the restrictions of both
sides to every relatively compact open subset of �̊n

r . It follows that α ∈ Mn
r . ��

Let g ∈ B\{0}. By [Ber7, Theorem 8.1(vi)], the local ring of every point from
S(X) is a field. It follows that ε = min{|g(y)| | y ∈ S(X)} > 0.

A. The function θ∗l (|g|) is contained in M̃n
r . First of all, we recall that the interior

�̊
n
r is the preimage of S(X) ∩ π−1(y) under θl , and that the morphism Xl → Xl−1

goes through an étale morphism ϕ : Xl → Z = Xl−1(n, a,m).
1. We may assume that m = 0. Indeed, consider first the case l = 1. If t

is the maximal point of X0(m)η (it corresponds to the supremum norm of the alge-

bra k{T1, . . . , Tm, T
−1
1 , . . . , T −1

m }), then D(X′1)
∼→ D(X1), where X′1 = (X1)t =

X1 ×X0(m)
Spf(H(t)�), and S(X′1)

∼→ S(X1). Since |H(t)| = |k|, the situation is

reduced to X′1 (for which m = 0). In the case l ≥ 2, one has D(X′) ∼→ D(X) and

S(X′) ∼→ S(X), where X′ = (Xl
f ′l−1→ Xl−1(m)

f ′l−2→ Xl−2
fl−3→ · · · f1→ X1), f ′l−1 is the

composition of ϕ with the canonical projection Xl−1(n, a,m)→ Xl−1(m), and f ′l−2
is the composition of the canonical projection Xl−1(m)→ Xl−1 with fl−2.

2. We may assume that [n] �= [0]. Indeed, if [n] = [0], then the morphism fl−1
is étale. If l = 1, the whole statement of this subsection is trivial. If l ≥ 2, there is

an isomorphism D(X)
∼→ �[0]

D(X′),1 (see §2.4), where X′ = (Xl fl−2�fl−1−−−→ Xl−2
fl−3→

· · · f1→ X1) is of length l − 1.
3. We may assume that the étale morphism from the maximal stratum Y of Xl,s

to the maximal stratum Z of Zs , induced by ϕ, is an open immersion. Indeed, let
n = (n0, . . . , np) and a = (a0, . . . , ap). The reductions of the functions a0, . . . , ap
in Ã vanish at the maximal stratum X of Xl−1,s . (Notice that X is closed in Xl−1,s .)
The maximal stratumZ of Zs , which is defined in the preimage ofX by vanishing of all
coordinate functions Tij for 0 ≤ i ≤ p and 0 ≤ j ≤ ni , maps isomorphically ontoX,
and the maximal stratum Y of Xl,s is the preimage ofZ in Xl,s . The induced morphism
Y → X is étale, and we can find an étale morphism X′l−1 = Spf(A′) → Xl−1 such
that X′l−1,s contains a closed subset X′ provided with an open immersion X′ ↪→ Y

compatible with the étale morphisms Y → X and X′ → X. Shrinking Xl , we
may assume that X′ ∼→ Y . Let X′l be the connected component Xl ×Xl−1

X′l−1 that
contains the image of Y under the evident morphism to the closed fiber of the latter.
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Then the required property is true for X′ = (X′l → X′l−1 → Xl−2 → . . .X1) and

D(X′) ∼→ D(X).
4. Shrinking Xl , we may assume that ϕ identifies Y with a closed subset Z′ of

Z′s , where Z′ is an open subset of Z of the form Spf(C′) with C′ = C{c}, and we may
also assume that the image of Xl is contained in Z′. By [Ber7, Lemma 4.4], there is
an isomorphism of analytic spaces π−1(Y )

∼→ π−1(Z′) and of completions Ĉ′ ∼→ B̂

with respect to the ideals JC′ and JB, respectively, where J = (α, h1, . . . , hm) ⊂ C,
h1, . . . , hm are elements of C, whose reductions in C̃ generate the ideal of Z, and α
is a fixed non-zero element of k��. Any relatively compact subset of �̊n

r is contained
in θ−1

l (Vδ) for some δ > 0, where Vδ = {y ∈ S(X) | |hi(y)| < 1 − δ, 1 ≤ i ≤ m}.
Let n be a sufficiently large integer with (1− δ)j |α|n−j < ε for all 0 ≤ j ≤ n. Then
|h(y)| < ε for all y ∈ Vδ and all h ∈ J nB. Finally, we can find an element h ∈ C
and an integer ν ≥ 0 such that g − h

cν
∈ J nB. Since |c(y)| = 1 for all y ∈ Xl,η, it

follows that |g(y)| = |h(y)| for all y ∈ Vδ .
B. The function θ∗l (|g|) is contained in Mn

r . We can shrink Xl so that B = B ′{f }
with B ′ = C[T ]/(P ) and f ∈ B ′, where P(T ) is a monic polynomial in C[T ] such
that the image of its derivative in B is invertible. Furthermore, we can find g′ ∈ B ′
and m ≥ 0 such that |(g − g′

fm
)(y)| < ε for all y ∈ Xl,η. Since |f (y)| = 1 for all

y ∈ Xl,η, it follows that |g(y)| = |g′(y)| for all y ∈ S(X). Thus, we may assume that
g ∈ B ′. Since the strictly k-affinoid algebra C = C ⊗k� k is normal, the coefficients
of the minimal polynomial T n + h1T

n−1 + · · · + hn of g over its fraction field are in
fact elements of C. From [BGR, Proposition 3.8.1/7(a)] it follows that hi ∈ C�, and
since C� = C, by [Ber7, Proposition 1.4], it follows that hi ∈ C for all 1 ≤ i ≤ n.
One has hn �= 0 and hn = −g(gn−1 + h1g

n−2 + · · · + hn−1), and the required fact
follows from Lemma 5.5.1 ��

6 p-Adic analytic and piecewise linear spaces

6.1 A piecewise linear structure on the skeleton of a pluri-stable
formal scheme

Let X = (Xl fl−1→ · · · f1→ X1) be a nondegenerate poly-stable fibration over k� of length
l. By Theorem 5.1.1, there is a canonical homeomorphism between the geometric
realization of the Rk-colored polysimplicial set D(X) of length l and the skeleton
S(X). This homeomorphism provides S(X)with a piecewiseRk

Z+ -linear structure and

a semiring MX of piecewise Rk
Z+ -linear functions on S(X). Recall that the skeleton

S(X), as a subset of Xl,η, depends only on Xl (see §4.3). Let X′ = (X′l′
f ′
l′−1→ · · · f

′
1→ X′1)

be another nondegenerate poly-stable fibration of length l′ over k′�.



Smooth p-adic analytic spaces are locally contractible. II 347

6.1.1 Theorem. For any morphism ϕ : X′l′ → Xl in P�stét
nd, the induced map

S(X′)→ S(X) is a G-local immersion of piecewise Rk
′

Z+ -linear spaces, and it takes
functions from MX to functions from MX′ .

Proof. Since the statement is true for the morphism Xl⊗̂k�k′� → Xl , we can replace
X by X⊗̂k�k′� so that we may assume that k′ = k and ϕ is an étale k�-morphism.

Furthermore, if Y = (Xl′ fl−1�ϕ→ Xl−1
fl−2→ · · · f1→ X1), then S(Y) = S(X′l′) = S(X′)

and, by Theorem 5.1.1, applied to the canonical morphism Y → X, we can replace
X by Y so that we may assume that ϕ is an isomorphism. Finally, given a surjective
étale morphism ψ : Y → Xl , we denote by ψ ′ the surjective étale morphism Y′ =
X′l′ ×Xl

Y → X′l′ , and we set Y = (Y
fl−1�ψ→ Xl−1

fl−2→ · · · f1→ X1) and Y′ =
(Y′

fl′−1�ψ ′→ X′l′−1

f ′
l′−2→ · · · f

′
1→ X′1). Since the canonical maps S(Y) → S(X) and

S(Y′) → S(X′) are surjective G-local immersions of piecewise Rk
′

Z+ -linear spaces,

we may always replace X by Y and X′ by Y′. This reduces the situation to the case
when X is strictly poly-stable, Xl = Spf(A) is affine, D(X) is a standard polysimplex
�[n]r , and the map A\{0} → M

n
r : g �→ θ∗l (|g|) is surjective. It follows that the

homeomorphism S(X′)→ S(X) takes functions from MX = Mn
r to functions from

MX′ . Since S(X) is isomorphic to the Rk
Z+ -polyhedron �n

r , the map S(X′)→ S(X)

is piecewiseRk
Z+ -linear. Applying the latter to the inverse morphism ϕ−1 : Xl → X′l′ ,

we deduce that the map S(X′)→ S(X) is in fact a piecewiseRk
Z+ -linear isomorphism.

��
Thus, for any nondegenerate pluri-stable formal scheme X over k�, the skeleton

S(X) is provided with a well defined piecewise Rk
Z+ -linear structure and a semiring

MX of piecewise Rk
Z+ -linear functions.

6.1.2 Corollary. Let ϕ : X′ → X be a pluri-stable morphism between nondegen-
erate pluri-stable formal schemes over k�. Then the induced map S(X′) → S(X) is
piecewise Rk

Z+ -linear and it takes functions from MX to functions from MX′ .

Proof. The statement is deduced from Theorem 6.1.1 in the same way as Corol-
lary 4.3.2(i) is deduced from Theorem 4.3.1. ��

6.1.3 Corollary. Let ϕ : X′ → X be a morphism between nondegenerate pluri-
stable formal schemes, and assume that X is strongly nondegenerate. Then the induced
map τ � ϕη : S(X′)→ S(X) is piecewise Rk

Z+ -linear and it takes functions from MX
functions from MX′ .

Proof. Let X be a strongly nondegenerate poly-stable fibration of length l with Xl =
X. As in the proof of Theorem 6.1.1, the situation is reduced to the case when all
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formal schemes Xi = Spf(Ai) are affine and every morphism fi : Xi+1 → Xi goes
through an étale Xi+1 → Xi (ni , ai , mi) and is geometrically elementary. In this
case, |f (x)| = |f (xτ )| for all coordinate function f fromAl and all points x ∈ Xη. It
follows that for every point x′ ∈ S(X′) one has |f (τ(ϕη(x′)))| = |ϕ∗η(f )(x′)|. Since
the restriction of the function |ϕ∗η(f )| to S(X′) is contained inMX′ , it follows that the
map τ � ϕη takes functions from MX to functions from MX′ and, in particular, it is

piecewise Rk
Z+ -linear. ��

Given a nondegenerate pluri-stable formal scheme X over k�, let M̃X denote the
semiring of real valued functions f on S(X) with the following property: for every
quasi-compact open subscheme Y ⊂ X, there exists α ∈ |k∗| such that (αf )|S(Y) ∈
MY. Notice that M̃X consists of piecewise |k∗|Z+ -linear functions. Let M̃∗

X
denote

the subset of the functions f invertible in M̃X (i.e., such that there exists g ∈ M̃X
with fg = 1). It is a group by multiplication that contains |k∗|.

6.1.4 Corollary.

(i) If f ∈ O′(Xη), the restriction of |f | to S(X) is contained in M̃X;

(ii) if f ∈ O(Xη)
∗, the restriction of |f | to S(X) is contained in M̃∗

X
, and it gives

rise to an embedding O(Xη)
∗/O(X)∗ ↪→ M̃∗

X
.

Proof. (i) If f ∈ O′(Xη), one can find for every quasi-compact open subscheme
Y ⊂ X an element α ∈ k∗ with (αf )|Yη

∈ O′(Y). It follows that |αf ||S(Y) ∈ MY,

i.e., |f ||S(X) ∈ M̃X.
(ii) If f ∈ O(Xη)

∗, there exists g ∈ O(Xη)
∗ with fg = 1, and the inclusion

|f ||S(X) ∈ M̃∗X follows from (i). Furthermore, since x ≤ xτ for all points x ∈ Xη,
it follows that |f (x)| = |f (xτ )| for all f ∈ O(Xη)

∗ and, therefore, the kernel of the
homomorphism O(Xη)→ M̃∗

X
: f �→ |f ||S(X) coincides with the set of the functions

f ∈ O(Xη)with |f (x)| = 1 for all x ∈ Xη. But from [Ber4, Proposition 1.4] it follows
that the latter set coincides with O(X)∗. ��

6.1.5 Corollary. If X is quasi-compact and connected, O(Xη)
∗/(k∗O(X)∗) is a

finitely generated torsion free group.

Proof. By Corollary 6.1.4, the group considered is embedded in M̃∗
X
/|k∗|. If {Yj }j∈J

is a finite étale covering of X with connected Yj ’s, then M̃∗
X
/|k∗| is embedded in the

direct product of M̃∗
Yj

/|k∗|. We may therefore assume that X = Xl for a strictly

pluri-stable fibration X over k� of length l with affine Xi’s and for which D(X) is a
standard polysimplex �[n]r . In this case one can easily show that M̃∗

X
is generated

by M̃∗
Xl−1

and the coordinate functions t (l)jν with r(l)j ∈ M̃∗Xl−1
. Since M̃∗

X0
= |k∗|, the

required statement easily follows. ��
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6.1.6 Remark. To represent the above results in a functorial form, let us intro-
duce as follows a fibered category P̃L

sr
over the category dual to the category of

non-Archimedean fields. Its objects are triples (k,X,MX) consisting of a non-
Archimedean field k, a piecewiseRk

Z+ -linear spaceX, and a semiringMX of piecewise

Rk
Z+ -linear functions on X. Morphisms (k′, X′,MX′) → (k,X,MX) are pairs con-

sisting of an isometric embedding k ↪→ k′ and a piecewise Rk
′

Z+ -linear map X′ → X

that takes functions from MX to functions from MX′ . Let also P̃L
sr
G be the category

with the same family of objects but with those of the above morphisms for which
the map X′ → X is a G-local immersion of piecewise Rk

′
Z+ -linear spaces. Then the

correspondence X �→ (S(X),MX) gives rise to functors between fibered categories

P�stét
nd → P̃L

sr
G, P�st

pl
nd → P̃L

sr
and P�stsnd → P̃L

sr
.

6.2 The image of an analytic space in the skeleton

Recall that a strictly k-analytic space X is said to be quasi-algebraic if every point of
X has a neighborhood of the form V1 ∪ · · · ∪ Vn, where each Vi is a strictly affinoid
subdomain of X isomorphic to an affinoid domain in the analytification of a scheme
of finite type over k. Recall also that a morphism of k-analytic spaces is said to be
compact if it induces a proper map between the underlying topological spaces.

6.2.1 Theorem. Let X be a strongly nondegenerate pluri-stable formal scheme
over k�, τ the retraction map Xη → S(X), and Y a quasi-algebraic strictly k-analytic
space. Then for any compact morphism ϕ : Y → Xη the image τ(ϕ(Y )) is a piecewise
Rk

Z+ -linear closed subspace of S(X) of dimension at most dim(Y ).

Proof. It suffices to consider the case when the formal scheme X is affine and Y is
a strictly affinoid domain in Zan, where Z is an integral affine scheme of finite type
over k. Replacing k by the separable closure of k in O(Z), we may assume that Z
is geometrically irreducible. By [Ber7, Lemma 9.4], there is an open embedding of
Z in Yη, where Y is an integral scheme proper finitely presented and flat over k�,
and an open subscheme W of Ys such that Y = π−1(W) = (Ŷ/W )η, where π is
the reduction map Ŷη = Yan

η → Ys . Since Z is geometrically irreducible, then so
is Yη. By de Jong’s results [deJ] (in the form of [Ber7, Lemma 9.2]), there exist a

finite normal extension k′ of k and a poly-stable fibration Y′ = (Y′l
f ′l−1→ · · · f

′
1→ Y′1)

over k′�, where all morphisms f ′i are projective of dimension one and have smooth
geometrically irreducible generic fibers, and a dominant morphism Y′l → Y that
induces a proper generically finite morphism Y′l,η → Yη. Notice that, since the
morphisms f ′i have smooth geometrically irreducible generic fibers, the poly-stable

fibration Ŷ
′

is nondegenerate.
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Let W ′ be the preimage of W in Y′l,s , Y′ the formal completion of Y′l along
W ′, and Y ′ = Y′η. The morphism ϕ gives rise to a surjective generically finite
morphism of strictly k-analytic spaces Y ′ → Y . We claim that the induced morphism
Y ′ → Xη comes from a unique morphism of formal schemes ϕ′ : Y′ → X. Indeed,
let X = Spf(A), and let Y′′ = Spf(B) be an open affine subscheme of Y′. The
morphism of strictly k-affinoid spaces Y′′η → Xη is defined by a homomorphism of
strictly k-affinoid algebras A = A ⊗k� k → B = B ⊗k′� k′. By [Ber7, Proposition
1.4], one has A

∼→ A� and B
∼→ B�. It follows that the homomorphism A → B

defines a unique homomorphism A → B which, in its turn, defines a morphism of
affine formal schemes Y′′ → X that induces the morphism Y′′η → Xη we started
from.

Thus, we haveϕ(Y ) = ϕ′η(Y′η). By Corollary 4.4.2, the image ofϕ′η(Y′η) under the
retraction map τ : Xη → S(X) coincides with the image of the skeleton S(Y′) under
the map Sϕ′ : S(Y′) → S(X). But, by Corollary 6.1.3, the latter map is piecewise
Rk
′

Z+ -linear. Hence, the image of S(Y′) under Sϕ′ is a piecewise Rk
Z+ -linear closed

subspace of S(X) of dimension at most dim(Y ′) = dim(Y ). ��

6.2.2 Corollary. Let Y be a compact quasi-algebraic strictly k-analytic space, and
f1, . . . , fn invertible analytic functions on Y . Then the image of Y under the map

Y �→ (R∗+)n : y �→ (|f1(y)|, . . . , |fn(y)|)
is a |k∗|Z+ -polyhedron in (R∗+)n of dimension at most dim(Y ).

Proof. Since Y is compact, we can multiply all of the functions by an element of
k∗ so that the image is contained in the set S = {t ∈ (R∗+)n | |a| ≤ |ti | ≤ 1 for
all 1 ≤ i ≤ n} with a ∈ k∗. Let X be the direct product of n copies of the affine
formal scheme Spf(k�{u, v}/(uv − a)). It is a strongly nondegenerate poly-stable
formal scheme. The projection of Xη to the coordinate v of each of the affine formal
schemes identifies Xη with the poly-annulus {x ∈ An | |a| ≤ |Ti(x)| ≤ 1 for all
1 ≤ i ≤ n}, and the functions f1, . . . , fn give rise to a morphism of strictly k-analytic
spaces ϕ : Y → Xη. Furthermore, the continuous map (A1\{0})n → (R∗+)n : x �→
(|T1(x)|, . . . , |Tn(x)|) identifies the skeleton S(X) with the set S, and gives rise to
the retraction map τ : Xη → S(X) = S. Thus, the map from the statement of the
corollary coincides the composition τ � ϕ : Y → S(X) = S and, by Theorem 6.2.1,
its image is a Rk

Z+ -polyhedron in S. ��

The following is a consequence of Corollary 6.1.5 and the proof of Theorem 6.2.1.
For an analytic space Y , we set O(Y )1 = {f ∈ O(Y ) | |f (y)| = 1 for all y ∈ Y }.

6.2.3 Corollary. If a quasi-algebraic strictly k-analytic space Y is compact and
connected, then the group O(Y )∗/(k∗O(Y )1) is finitely generated.
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Proof. As in the proof of Theorem 6.2.1, one can apply de Jong’s results to show
that there is a finite surjective family of morphisms Yi → Y , where each Yi is the
generic fiber Xiη of a connected pluri-stable formal scheme Xi over k�i , where ki is a
finite extension of k. Then the group considered is embedded in the direct product
of the groups O(Yi)

∗/(k∗O(Yi)1). Since the groups k∗i /(k∗k1
i ) are finite, the required

statement follows from Corollary 6.1.5. ��

6.3 Continuity of the embedding S(X) ↪→ Xη in the Grothendieck
topology

Let X be a nondegenerate pluri-stable formal scheme over k�. The piecewise Rk
Z+ -

linear structure on the skeleton S(X) provides it with a Grothendieck topology formed
by piecewise Rk

Z+ -linear subspaces. Recall (see [Ber2, §1.3]) that Xη is also provided
with a Grothendieck topology formed by strictly analytic subdomains.

6.3.1 Theorem. For any strictly analytic subdomain V ⊂ Xη, the intersection
V ∩ S(X) is a piecewise Rk

Z+ -linear subspace of S(X) and, for any f ∈ O′(V ), the
restriction of the function |f | to V ∩ S(X) is piecewise |k∗|Z+ -linear. In particular,
the canonical embedding S(X) ↪→ Xη is continuous with respect to the Grothendieck
topologies of S(X) and Xη.

Proof. It suffices to consider the case when X = Spf(A) is affine and connected. By
Gerritzen–Grauert Theorem ([BGR, 7.3.5/2]), a basis of the Grothendieck topology on
a strictly k-affinoid space is formed by rational strictly affinoid domains, and so we may
assume that V is such a domain. This means that there are functions f1, . . . , fn, g ∈
A = A⊗k� kwithout common zeros on Xη such thatV = {x ∈ Xl,η | |fi(x)| ≤ |g(x)|
for all 1 ≤ i ≤ n}. Multiplying all of the above functions by an element of k∗, we may
assume that f1, . . . , fn, g ∈ A. Since any function on S(X) of the form x �→ |f (x)|
with f ∈ A\{0} is piecewise RZ+ -linear, it follows that V ∩ S(X) is a piecewise
Rk

Z+ -linear subspace of S(X).
Furthermore, let f ∈ O′(V ). Then ε = min{|f (x)| | x ∈ V ∩ S(X)} > 0, and

one can find an element h ∈ A and an integer n ≥ 0 such that
∣∣(f − h

gn
)(x)

∣∣ < ε

for all x ∈ V and, therefore, the restrictions of the functions |f | and |h||g|n to V ∩ S(X)
coincide. The latter function is evidently piecewise |k∗|Z-linear. That it is in fact
|k∗|Z+ -linear follows from Remark 3.5.8(ii). ��
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6.4 Continuity of the retraction map τ : Xη → S(X) in the
Grothendieck topology

Let X be a nondegenerate pluri-stable formal scheme over k�. We choose a nondegen-

erate poly-stable fibration X = (Xl fl−1→ · · · f1→ X1) over k� of length l with Xl = X
and denote by τ = τX the corresponding retraction map Xη → S(X).

6.4.1 Theorem. For any piecewise Rk
Z+ -linear subspace E ⊂ S(X), τ−1(E) is a

strictly analytic subdomain of Xη. In particular, the retraction map τ is continuous
with respect to the Grothendieck topologies of S(X) and Xη.

Assume that the above X possesses the following properties:

(1) for every 1 ≤ i ≤ l, Xi = Spf(Ai) is affine;

(2) D(X) is a standard polysimplex �[n]r , and D(X≤i ) are the standard polysim-
plices �[n≤i]r≤i for all 1 ≤ i ≤ l;

(3) the maps Ai\{0} → M
n≤i
r≤i : f �→ θ∗i (|f |), are surjective for all 1 ≤ i ≤ l;

(4) for every 1 ≤ i ≤ l, the morphism fi−1 : Xi → Xi−1 goes through an étale
morphism Xi → Xi−1(n

(i), a(i), mi).

In what follows we identify S(X≤i ) = S(Xi ) with �n≤i
r≤i . Furthermore, we intro-

duce as follows a positive integer ν(n). If l = 1, then ν(n) = 1. If l ≥ 2, then
ν(n) = ν(n≤l−1) · µ(n(l)) where, for n = (n0, . . . , np), µ(n) is the least common
multiple of the integers 1, 2, . . . ,max0≤i≤p{ni} + 1.

6.4.2 Lemma. In the above situation, for every element α ∈ Mn
r there exist the

following data:

(a) a finite covering of S(X) = �n
r by Rk

Z+ -polyhedra {Ei}i∈I ;

(b) for every i ∈ I , a finite covering of the preimage τ−1(Ei) by strictly analytic
domains {Vij }j∈Ji with τ(Vij ) = Vij ∩ S(X);

(c) for every i ∈ I and j ∈ Ji , functions fij , gij ∈ Al such that for all x ∈ Vij one
has |fij (xτ )| = |fij (x)|, |gij (xτ )| = |gij (x)| and

α(xτ ) =
∣∣∣∣fij (x)gij (x)

∣∣∣∣ 1
ν(n)

.

Proof. First of all, we notice that if an element α ∈ Mn
r possesses the properties of

the lemma then, for any function f ∈ Al , the sets {x ∈ Xη | |f (x)| ≤ α(xτ )} and
{x ∈ Xη | |f (x)| ≥ α(xτ )} are strictly analytic subdomains of Xη.
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We prove the lemma by induction on l. Since it is evidently true for l = 0,
we assume that l ≥ 1 and that the statement is true for X≤l−1. The morphism
fl−1 : X → Xl−1 goes through an étale morphism X → X′ = Xl−1(n, a,m) with
n = n(l), a = a(l) and m = ml . Since D(X)

∼→ D(X′) and the map B\{0} →
M

n
r : g �→ θ∗l (|g|) is surjective, where X′ = (X′ → Xl−1

fl−2→ · · · f1→ X1) and
X′ = Spf(B), we may assume that X = X′. Of course, we assume that [n] �= [0].

Step 1. We may assume that the elementα is a coordinate function on�n
r . Indeed, it

suffices to show that if the lemma is true for two elementsα, α′ ∈ Mn
r , then it is also true

for their product α ·α′ and their maximum max{α, α′}. Let us take the data provided by
the assumption for the functions α and α′, and mark the data for α′ with the prime sign.
Then the data for the product α ·α′ consist of the Rk

Z+ -polyhedra Ei ∩E′i′ , the strictly
analytic domains Vij ∩Vi′j ′ , and the functions fij ·f ′i′j ′ and gij ·g′i′j ′ . The data for the

maximum max{α, α′} consist of the sameRk
Z+ -polyhedraEi∩E′i′ , the strictly analytic

subdomains of Vij ∩ Vi′j ′ , defined in it by the inequalities
∣∣∣fij (x)gij (x)

∣∣∣ ≥ ∣∣∣∣f ′i′j ′ (x)g′
i′j ′ (x)

∣∣∣∣ and∣∣∣fij (x)gij (x)

∣∣∣ ≤ ∣∣∣∣f ′i′j ′ (x)g′
i′j ′ (x)

∣∣∣∣, respectively, and the functions fij ·g′i′j ′ , f ′i′j ′ ·gij and {gij ·g′i′j ′ }.

Step 2. By Step 1, we may assume that the elementα ∈ Mn
r is one of the coordinate

functions t0j = θ∗l (|T0j |). We denote n0, a0 and T0j by n, a and Tj , respectively. For
a point y ∈ Xη, we denote by x its image in Xl−1,η, and we denote by yτ and xτ the
images of y and x in S(X) = S(X) and S(X≤l−1), respectively. First of all, we define
the following covering of S(X) by Rk

Z+ -polyhedra which correspond to permutations
σ ∈ Sn+1:

Eσ = {y ∈ S(X) | |Tσ(0)(y)| ≤ |Tσ(1)(y)| ≤ · · · ≤ |Tσ(n)(y)|} .
It suffices to consider the restrictions of the coordinate functions to E, which cor-
respond to the trivial permutation. From the description of τ , recalled in §4.4, it
follows that τ−1(E) = ⋃n

i=0 Vi , where Vi consists of all points y ∈ Xη that satisfy
the following three inequalities:

|a(xτ )| ≤ |(T i+2
i+1 Ti+2 . . . Tn)(y)|} ,

max
0≤j≤i{|(T

i+1
j Ti+1 . . . Tn)(y)|} ≤ |a(xτ )| ,

max
0≤j≤i{|Tj (y)|} ≤ |Ti+1(y)| ≤ · · · ≤ |Tn(y)| .

Applying the induction hypothesis to the function θ∗l−1(|a|), the first two inequalities
define a finite union of rational strictly affinoid subdomains of Xη, and the functions
Ti+1, . . . , Tn are invertible on each of them. It follows that the third inequality also
defines a rational strictly affinoid subdomain in each of them and, therefore, Vi is a
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finite union of rational strictly affinoid domains. Furthermore, the description of τ
implies that for y ∈ Vi one has

|Tj (yτ )| =
∣∣∣∣ a(xτ )

(Ti+1 . . . Tn)(y)

∣∣∣∣ 1
i+1

for 0 ≤ j ≤ i, and |Tj (yτ )| = |Tj (y)| for i + 1 ≤ j ≤ n. It follows that

τ(Vi)=Vi∩S(X)={y ∈ S(X) | |T0(y)|= · · · = |Ti(y)| ≤ |Ti+1(y)| ≤ · · · ≤ |Tn(y)|}.
Applying again the induction hypothesis to the function θ∗l−1(|a|), we get the required
fact. ��

Proof of Theorem 6.4.1. First of all, since the retraction map τ is proper, the statement
is local in the Zariski topology. Furthermore, by Raynaud’s theorem (see [BoLü2,
Corollary 5.11), given a flat morphism of strictly k-affinoid spaces ϕ : Y → X, for
any strictly affinoid domain V ⊂ Y the image ϕ(V ) is a finite union of strictly affinoid
subdomains ofX, i.e., is a compact strictly analytic subdomain ofX. It follows that the
statement of the theorem is local in the étale topology and, in particular, we may assume
that X is strictly poly-stable. Of course, we may assume that all Xi = Spf(Ai) are
affine. After that we can shrink X so that it satisfies the assumptions of Lemma 6.4.2.
It suffices to show that, given two elements α, α′ ∈ Mn

r , the preimage τ−1(D) of
D = {x ∈ S(X) | α(x) ≤ α′(x)} is a strictly analytic subdomain of Xη. Let us take
the data provided by Lemma 6.4.2 for the functions α and α′, and mark the data for α′
with the prime sign. It suffices to show that, for every quadruple i ∈ I , j ∈ Ji , i′ ∈ I ′
and j ′ ∈ J ′

i′ , the intersection τ−1(D)∩Vij ∩V ′i′j ′ is a strictly analytic subdomains of
Vij ∩ V ′i′j ′ . We have

τ−1(D) ∩ Vij ∩ V ′i′j ′ =
{
x ∈ Vij ∩ V ′i′j ′ |

∣∣∣∣fij (x)gij (x)

∣∣∣∣ ≤
∣∣∣∣∣f
′
i′j ′(x)

g′
i′j ′(x)

∣∣∣∣∣
}

Since all of the functions in the inequality are invertible onVij∩V ′i′j ′ , the set considered
is a strictly analytic subdomain of Vij ∩ V ′i′j ′ . ��

6.4.3 Corollary. The following properties of a subset E ⊂ S(X) are equivalent:

(a) E is a piecewise Rk
Z+ -linear subspace of S(X);

(b) τ−1(E) is a strictly analytic subdomain of Xη. ��
The following result is a consequence of Lemma 6.4.2. Let X and X′ be nondegen-

erate pluri-stable formal schemes over k� and k′�, respectively, and let ϕ : X′ → X be
a morphism in P�stnd. We fix a nondegenerate poly-stable fibration of length l over
k� with Xl = X which gives rise to a retraction map τ : Xη → S(X).
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6.4.4 Theorem. The map τ � ϕη : S(X′)→ S(X) is piecewise
(√|k′∗| )

Q+ -linear.

If l = 1, this map is in fact |k′∗|Z+ -linear.

Proof. Replacing X by X⊗̂k�k′�, we may assume that k′ = k and that ϕ is a k-
morphism. Furthermore, since the statement is local in the étale topology of X and
X′, we may assume that X satisfies the assumptions of Lemma 6.4.2 and that X′ is
strictly pluri-stable and small enough so that S(X′) is anRk

Z+ -polyhedron. To prove the

statement, it suffices to show that if l ≥ 2 (resp. l = 1) then, for every α ∈ MX = Mn
r ,

ϕ∗η(τ ∗(α)) is a piecewise (
√|k∗|)Q+ -linear (resp. |k∗|Z+ -linear) function on S(X′).

By Lemma 6.4.2, there exists a finite covering of Xη by strictly analytic domains
{Vij }i∈I,j∈Ji and, for each i ∈ I and j ∈ Ji , functions fij , gij ∈ Al such that for all
x ∈ Vij one has |fij (xτ )| = |fij (x)|, |gij (xτ )| = |gij (x)| and

α(xτ ) =
∣∣∣∣fij (x)gij (x)

∣∣∣∣ 1
ν(n)

.

By Theorem 6.3.1, each E′ij = S(X′) ∩ ϕ−1
η (Vij ) is a piecewise Rk

Z+ -linear subspace

of the Rk
Z+ -polyhedron S(X′) and, by the above formula, the restriction of ϕ∗η(τ ∗(α))

to E′ij coincides with the restriction of the piecewise (
√|k∗|)Q-linear function

x′ �→
∣∣∣∣ (ϕ∗fij )(x′)(ϕ∗gij )(x′)

∣∣∣∣ 1
ν(n)

.

The latter function is piecewise (
√|k∗|)Q+ -linear, by Remark 3.5.8(ii). If l = 1, then

ν(n) = 1 and, therefore, it is even piecewise |k∗|Z+ -linear. Since S(X′) is a union of
all E′ij , the required fact follows. ��

7 Strong local contractibility of smooth analytic spaces

7.1 Formulation of the result

Let k be a non-Archimedean field with a non-trivial valuation. Recall (see [Ber7, §9])
that a k-analytic space is said to be locally embeddable to a smooth space if each point
x ∈ X has an open neighborhood isomorphic to a strictly analytic domain in a smooth
k-analytic space. This class includes the class of spaces smooth in the sense of [Ber2],
their strictly analytic subdomains, and is contained in the class of spaces smooth in
the sense of rigid geometry (i.e., rig-smooth spaces). Notice also that any rig-smooth
affinoid space is locally embeddable in a smooth space.

Recall also that a strong deformation retraction of a topological spaceX to a subset
S ⊂ X is a continuous mapping � : X × [0, 1] → X such that �(x, 0) = x and
�(x, 1) ∈ S for all x ∈ X, and �(x, t) = x for all x ∈ S and t ∈ [0, 1]. We say that
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a subspace Y ⊂ X is preserved under � if �(Y × [0, 1]) ⊂ Y . If S is a point, � is
said to be a contraction of X to the point.

7.1.1 Theorem. LetX be a k-analytic space locally embeddable in a smooth space.
Each point x ∈ X has a fundamental system of open neighborhoods V which possess
the following properties:

(a) there is a contraction � of V to a point x0 ∈ V ;

(b) there is an increasing sequence of compact strictly analytic domains X1 ⊂
X2 ⊂ · · · which are preserved under � and such that V =⋃∞

n=1Xn;

(c) given a non-Archimedean fieldK over k,V ⊗̂K has a finite number of connected
components, and � lifts to a contraction of each of the connected components
to a point over x0;

(d) there is a finite separable extension L of k such that, if K from (c) contains L,
then the map V ⊗̂K → V ⊗̂L induces a bijection between the sets of connected
components.

Recall that [Ber7, Theorem 9.1] states that each point x ∈ X has a fundamental
system of contractible open neighborhoodsV . In §7.2, we recall the main construction
from the proof of loc. cit.. After that, instead of using [Ber7, Theorem 8.2], we use
results from §1 and §6. But before doing this, we establish a simple fact which will be
used in the last step of the proof and is true without the assumption that the valuation
on k is nontrivial.

Let k′ be a finite extension of k. Then every strictly k′-affinoid algebra A is
evidently a strictly k-affinoid algebra, and so the strictly k′-affinoid spaceX =M(A)
can be considered as a strictly k-affinoid space, i.e., there is a canonical functor from
the category of strictly k′-affinoid spaces to that of strictly k-affinoid ones. From
the following proposition it follows that the latter can be extended to a functor st-
k′-An → st-k-An from the category of strictly k′-analytic spaces to that of strictly
k-analytic ones, and it takes strictly k′-analytic domains to strictly k-analytic ones.
Notice that the above functor is left adjoint to the ground field extension functor
st-k-An→ st-k′-An : X �→ X ⊗̂ k′.

7.1.2 Proposition. LetX be a strictly k′-affinoid space. Then any strictly k′-affinoid
subdomain V ⊂ X is a strictly k-affinoid subdomain of X, considered as a strictly
k-affinoid space.

7.1.3 Lemma. Assume that the valuation on k is trivial, and let ϕ : Y =M(B)→
X = M(A) be a morphism of strictly k-affinoid spaces. Then the following are
equivalent:

(a) ϕ identifies Y with a strictly affinoid subdomain of X;
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(b) the induced morphism of affine schemes Y = Spec(B)→ X = Spec(A) is an
open immersion.

Proof. (a)�⇒(b) For any point y ∈ Y with [H(y) : k] <∞, one has OX,x
∼→ OY,y ,

where x is the image of y inX. But the images x of x in X corresponds to a maximal
ideal of A, and OX,x coincides with the completion ÔX,x of OX,x by the maximal
ideal (see [Ber1, Theorem 3.5.1]), and the same is true for the image y of y in Y. It
follows that the morphism of schemes induces an isomorphism ÔX,x

∼→ ÔY,y and,
therefore, it is an étale morphism. On the other hand, since for any bigger field K
(also provided with the trivial valuation) the map Y(K) = Y (K)→ X(K) = X(K)
is injective, the morphism of schemes is radicial. It remains to use the fact that any
étale and radicial morphism between affine schemes of finite type over a field is an
open immersion.

(b)�⇒(a) If Y is identified with a principal open subset {x ∈ X | f (x) �= 0}, then
Y is identified with the rational subdomain {x ∈ X | |f (x)| = 1}. In the general case,
Y is a finite union of principal open subsets, and so Y = ⋃n

i=1 Yi , where each Yi is
identified with a rational subdomain of X of the above forms. From [Ber2, Remark
1.2.1] it follows that ϕ identifies Y with a strictly affinoid subdomain of X. ��

7.1.4 Corollary. If the valuation on k is trivial, then any strictly k-analytic space is
Hausdorff.

Proof. By [Ber2, Lemma 1.1.1(ii)], it suffices to show that any strictly analytic sub-
domain Y of a strictly k-analytic space X = M(A) is compact. From Lemma 7.1.3
it follows that Y corresponds to an open subscheme of X = Spec(A). Since the
ring A is Noetherian, any open subscheme of X is quasicompact and, therefore, Y is
compact. ��

Proof of Proposition 7.1.2. If the valuation on k is trivial, the statement follows from
Lemma 7.1.3. Thus, assume that the valuation on k is nontrivial, and let X =M(A)
and V = M(AV ). The statement is trivial if V is a rational domain since it is
defined by the inequalities |fi(x)| ≤ |g(x)|, where f1, . . . , fn, g are elements of A
that generate the unit ideal. Assume V is arbitrary. By Gerritzen–Grauert Theorem
([BGR, 6.3.5/2]), it is a finite union

⋃n
i=1 Vi of rational strictly affinoid subdomains

of X. By Tate’s Acyclicity Theorem, there an isomorphism of commutative Banach
k-algebras AV

∼→ Ker(
∏
i AVi

→→∏
i,j AVi∩Vj ). Since AV is strictly k-affinoid and

the canonical map V → M(AV ) is a bijection, V is a strictly k-affinoid subdomain
of X (see [Ber2, Remark 1.2.1]). ��

7.2 Proof: Step 1

We follow the proof of [Ber7, Theorem 9.1]. It is done by induction on the dimension
of X at x. First of all, we may assume that X is a strictly analytic domain in Xan,
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where X = Spec(A) is a smooth irreducible affine scheme over k. Let x be the image
of the point x in X. There are the following two cases:

(α) x is not the generic point of X;

(β) x is the generic point of X.

Case (α). As in loc. cit., Steps 1 and 2 of Case (a), one reduces the situation to the
case when the field k(x) is separable over k and, after that, one shows that there is a
sufficiently small open neighborhood of x isomorphic to Y ×D(0; r)with x = (y, 0),
where Y is a strictly analytic domain in the analytification of a smooth scheme over k
and D(0; r) is the open disc with center at zero and of radius r > 0. Thus, we may
assume that X = Y × D(0; r), and it suffices to show that the point x = (y, 0) has
an open neighborhood with the properties (a)–(d). In loc. cit., Step 3, one constructs
a continuous mapping X × [0, 1] → X : (x′, t) �→ x′t , which is a retraction of X to a
closed subset homeomorphic toY×[0, r[ and such that |T (x′t )| = |T (x′)| for allx′ ∈ X
and t ∈ [0, 1]. Thus, if V is an open neighborhood of the point y and Y1 ⊂ Y2 ⊂ · · ·
is an increasing sequence of compact strictly analytic domains in V possessing the
properties (a)–(d), then the open neighborhood V × D(0, r) of the point x and the
sequence of compact strictly analytic domains Y1 × E(0; r1) ⊂ Y2 × E(0, r2) ⊂ · · ·
possess the same properties, where r1 < r2 < · · · is an increasing sequence of numbers
from
√|k∗| with ri → r as i →∞, and E(0; r) is the closed disc of radius r .

Case (β). As in loc. cit., Case (b), we may assume that X is compact and X is
geometrically irreducible, and it suffices to show that, given a rational strictly affinoid
neighborhood W of x in Xan, there exists an open neighborhood of x in X which
possesses the properties (a)–(d) and is contained in W ∩X. By loc. cit., Lemma 9.4,
there is an open embedding of X in Yη, where Y is an integral scheme proper finitely
presented and flat over k�, open subschemes Z and W of Ys , and a closed subscheme
V of Ys such that

(1) X = π−1(Z), W = π−1(W) and π(x) ∈ V;

(2) V ⊂ W ;

(3) V and Ys\Z are unions of irreducible components of Ys .

By J. de Jong results [deJ] (in the form of [Ber7, Lemma 9.2]), there exist a finite
normal extension k′ of k, a poly-stable fibration Y′ of length l over k′� such that
all morphisms f ′i : Y′i+1 → Y′i are projective of dimension one and have smooth
geometrically irreducible generic fibers, an action of a finite group G on Y′ over k�,
and a dominantG-equivariant morphismϕ : Y′l → Y that induces a proper generically
finite morphism Y′l,η → Yη and such that the field R(Y′l,η)G is purely inseparable

over R(Y). Notice that the poly-stable fibration Ŷ
′

over k′� is nondegenerate.
Let Z′, W ′ and V ′ be the preimages of Z, W and V in Y′l,s , respectively. Then

V ′ and Y′l,s\Z′ are unions of irreducible components of Y′l,s and V ′ ⊂ W ′. For
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X′ = π−1(Z′) and W ′ = π−1(W ′), one has X′ = ϕ−1
η (X) and W ′ = ϕ−1

η (W).
Moreover, π−1(V ′) ∩ X′ is an open subset of X′ contained in W ′ ∩ X′. By the
construction, we can find a nonempty open affine subscheme U ⊂ X such that the
morphism U′ := ϕ−1

η (U) → U is finite and the finite morphism G\U′ → U is
radicial. By the assumption (β), the point x is contained in Uan. It follows that
the set U := π−1(V) ∩ X ∩ Uan is an open neighborhood of x in X contained in
W ∩ X. The set U ′ := π−1(V ′) ∩ X′ ∩U′an is open in X′ and dense Zariski open
in π−1(V ′) ∩ X′ = π−1(V ′ ∩ Z′), and the radicial morphism G\U′ → U induces
a homeomorphism G\U ′ ∼→ U . Since V ′ and Y′l,s\Z′ are unions of irreducible
components of Y′l,s , it follows that V ′ ∩Z′ is a strata subset of Y′l,s .

By [Ber7, Theorems 8.1], there is a G-equivariant strong deformation retraction
�′ : Y′an

l,η × [0, 1] → Y′an
l,η : (y′, t) �→ y′t to the skeleton S′ = S(Ŷ′) of the formal

completion of Y′ along the closed fiber. (Notice that Y′an
l,η = Ŷ′l,η.) Furthermore,

�′ induces a G-equivariant strong deformation retraction of the set π−1(V ′ ∩ Z′) to
its intersection S̃′ with the skeleton S′ of Y′. This intersection S̃′ is contained in the

Zariski open subset U ′ of π−1(V ′ ∩ Z′), and U ′ is preserved under �′. Thus, �′
induces a strong deformation retraction� : Uan × [0, 1] → Uan to the closed subset
S = G\S′, as well as a strong deformation retraction of U to S̃ = G\S̃′.

7.3 Proof: Step 2

We can shrink U so that the finite morphisms U′ → G\U′ and G\U′ → U are
flat. In this case, the induced morphisms between the analytifications are also flat (see
[Ber2, Proposition 3.2.10), and M. Raynaud’s theorem (see [BoLü2, Corollary 5.11])
implies that the image of any strictly analytic subdomain of U′an and G\U′an is
a strictly analytic domain in G\U′an and Uan, respectively. In particular, we can
replace Y by the quotientG\Y′l,η, and so we may assume that there are isomorphisms

of schemesG\U′ ∼→ U and of analytic spacesG\U ′ ∼→ U , and we may assume that
k′G = k and, in particular, that k′ is a Galois extension of k.

We now claim that there exists a sequence of compact strictly analytic domains
Y1 ⊂ Y2 ⊂ · · · in Yan which are preserved under � and such that Uan = ⋃∞

n=1 Yn.
Indeed, Y′an

l,η is the generic fiber of the formal completion Ŷ′l of Y′l along its closed
fiber. The latter formal scheme is a finite union ofG-invariant open affine subschemes
Yi . If we can find an exhausting sequence of G-invariant compact strictly analytic
domains Y ′1

i ⊂ Y ′2i ⊂ · · · in Yi
η ∩U′an which are preserved under �′ and for which

the quotients Y in = G\Y ′ni exist, then the sequence of the compact analytic domains
Yn = ⋃

i Y
i
n possesses the required properties. It suffices therefore to consider an

open affine formal subscheme Y′ of Ŷ′l .
Let Y′ = Spf(A′). The generic fiber Y′η is the strictly k-affinoid space M(A′),

where A′ = A′ ⊗k′� k′. The complement of U′an in Y′η is defined by a finite number
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of equations fi(x′) = 0, 1 ≤ i ≤ m, with fi ∈ A′G. We take a decreasing sequence
of positive numbers r1 > r2 > · · · in Rk with limn→∞ rn = 0, and consider the
G-invariant strictly affinoid domains Y in = {x ∈ Y′η | |fi(y′)| ≥ ri}. Since |f (y′t )| ≥
|f ′(y′)| for all elements f ′ ∈ A′ and all t ∈ [0, 1] (see [Ber7, Theorem 8.1(iii)]),
Y in are preserved under �′. It follows that the compact strictly analytic domains
Y ′n =

⋃m
i=1 Y

i
n are preserved under�′ andG-invariant, and the quotientsG\Y ′n exist.

One also has Y ′1 ⊂ Y ′2 ⊂ · · · and
⋃∞
n=1 Y

′
n = Y′η ∩U′an.

7.4 Proof: Step 3

Consider the Rk
′
-colored polysimplicial sets D′ = D(Ŷ

′
) and D̃′ = D(Z′), where Z′

is the poly-stable fibration (Z′ → Ŷ′l−1 → · · · → Y′1) over k′� and Z′ is the formal
completion of Ŷ′l along the open subset Z′ of Y′l,s . By §4.3, there are canonical

homeomorphisms |D′| ∼→ S′ = S(Ŷ′) and |D̃′| ∼→ S(Z′). Setting D = G\D′ and

D̃ = G\D̃′, we can identify S with |D| and S̃ with an open subset of |D̃|. (Notice
that |D̃| is a closed subset of |D|.)

Let x0 be the image of the point x under the retraction map τ : Uan → S induced by
�. By Proposition 1.4.1, one can find a compact Rk

′
Z+ -piecewise linear neighborhood

E of the point x0 in |D̃|, which is isomorphic to an (
√|k∗|)Q-polyhedron in an affine

space (R∗+)d . For 0 < r < 1, let B(x0, r) denote the open box {y ∈ (R∗+)d |
r < | ti (y)

ti (x0)
| < r−1, 1 ≤ i ≤ d}. One can find 0 < r0 < 1 such that, for every

r0 ≤ r < 1, the open set Ẽ(r) = E ∩ B(x0, r) is contained in S̃ and possesses the
property that, for each point y ∈ Ẽ(r), the interval {xt0 · y1−t }t∈[0,1], connecting the
points x0 and y, is contained in Ẽ(r). Let us fix such r , and let � be the contraction
Ẽ(r)× [0, 1] → Ẽ(r) : (y, t) �→ xt0 · y1−t of Ẽ(r) to the point x0. Furthermore, let
1 ≥ r1 > r2 > · · · > r be a sequence of numbers from

√|k∗| with limn→∞ rn = r .
Then the Rk

′
Z+ -polyhedrons En = {y ∈ Ẽ(r) | rn ≤ | ti (y)ti (x0)

| ≤ r−1
n , 1 ≤ i ≤ d}

are preserved under � and Ẽ(r) = ⋃∞
n=1 En. Since Ẽ(r) ⊂ S̃, the set V (r) =

τ−1(Ẽ(r)) ∩Uan is an open neighborhood of the point x in U .
We claim that, for every r0 ≤ r < 1, V (r) possesses the properties (a) and (b), and

that one can find r0 ≤ r ′0 ≤ 1 such that, for every r ′0 ≤ r < 1, V (r) also possesses
the properties (c) and (d).

(a) The composition of the strong deformation retraction of τ−1(Ẽ(r)) to Ẽ(r),
induced by �, and of the contraction � of Ẽ(r) to x0, gives rise to a contraction of
V (r) to the point x0.

(b) We claim that Zn = τ−1(En) is a strictly analytic subdomain of Uan. Indeed,
let E′n be the preimage of En in S′. By Theorem 6.4.1, Z′n = τ ′−1

(E′n) is a strictly
k′-analytic subdomain of U′an, where τ ′ is the retraction map U′an → S′ induced
by �′. Proposition 7.1.2 implies that Z′n is a strictly k-analytic subdomain of U′an

considered as a strictly k-analytic space. Since Zn is the image of Z′n under the flat
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morphism U′an → Uan, the claim follows from M. Raynaud’s theorem. Thus, the
intersection Xn = Yn ∩ Zn, where Yn is constructed in §7.2, is a compact strictly
analytic subdomain of V (r), and it is evidently preserved under the contraction from
(a). One also has V (r) =⋃∞

n=1Xn since Uan =⋃∞
n=1 Yn and Ẽ(r) =⋃∞

n=1 En.
To establish the properties (c) and (d), we need the following additional fact.
Given a G-local immersion of compact piecewise Rk

′
-linear spaces g : T → S,

one can find r0 ≤ r ′0 < 1 such that, for every r ′0 ≤ r < 1, the contraction � of the
set Ẽ(r) to x0 lifts to a contraction of each of the connected component of g−1(Ẽ(r))

to a point above x0. Indeed, let y1, . . . , yn be the preimages of the point x0 in T .
We can find pairwise disjoint neighborhoods D1, . . . , Dn of the points y1, . . . , yn,
respectively, with the following property: for every 1 ≤ i ≤ n, Di = ⋃mi

j=1Dij ,

where each Dij is a compact piecewise Rk
′
-linear subspace of T that contains the

point yi and such that g induces an isomorphism of Dij with an Rk
′
-polyhedron Eij

in E. One can find r0 ≤ r ′0 < 1 such that, for every 1 ≤ i ≤ n, 1 ≤ j ≤ mi and every
point y ∈ Eij ∩ Ẽ(r ′0), the interval, connecting the points x0 and y, is contained in
Eij ∩ Ẽ(r ′0). This construction guarantees the required property of Ẽ(r) and� for all
r ′0 ≤ r < 1.

(c) and (d). For a non-Archimedean field K over k, V (r)⊗̂K is a strictly analytic
domain in Yan

η ⊗̂K . The latter is a quotient of Ŷ′l,η⊗̂K under the action of the groupG.
Since k′ is a finite Galois extension of k, the tensor product k′ ⊗k K is isomorphic to a
direct product ofm copies of a finite Galois extensionK ′ ofK withm·[K ′ : K] = [k′ :
k]. This isomorphism gives rise to an action ofG on the direct product and, therefore,
to an action of G on the corresponding disjoint union YK

i of m copies of each of the
formal schemes Ŷ′i⊗̂k′�K ′�, 1 ≤ i ≤ l. Thus, we have a nondegenerate poly-stable
fibration YK = (YK

l → · · · → YK
1 ) over K ′� provided with an action of the group

G over K�, and an isomorphism of strictly K-analytic spaces G\YK
l,η

∼→ Yan
η ⊗̂K .

Let D′K be the RK
′
-colored polysimplicial set associated with YK , and S′K the

skeleton of YK . There is aG-equivariant homeomorphism |D′K |
∼→ S′K . It gives rise

to a homeomorphism |DK | ∼→ SK = G\S′K , where DK = G\D′K . Furthermore, the
G-equivariant strong deformation retraction �′K of YK

l,η to S′K gives rise to a strong
deformation retraction �K of Yan

η ⊗̂K to SK compatible with the strong deformation
retraction � of Yan

η to S. If gK denotes the canonical G-local immersion of compact

piecewise RK
′
-linear spaces SK → S, then �K induces a strong deformation retrac-

tion of V ⊗̂K to g−1
K (Ẽ(r)). It follows that the number of connected components of

V ⊗̂K is finite.
Furthermore, we can find finite unramified extensions L1, . . . , Ln of k′ such that

for any K , as above, there is an embedding of some Li into K ′ which induces an
isomorphism of partially ordered sets str(Y′l,s ⊗k̃′ K̃ ′)

∼→ str(Y′l,s ⊗k̃′ L̃i) and, there-

fore, it induces isomorphisms of RK
′
-colored polysimplicial sets D′

K ′
∼→ D′Li and
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DK ′
∼→ DLi . The composition of the morphism inverse to the latter with the canonical

surjectionDK ′ → DK gives rise to a surjective morphism ofRK
′
-colored polysimpli-

cial setsDLi → DK . Since the polysimplicial setsDLi are finite, it follows that there
are only finite many possible polysimplicial sets DK and all of them are Rk

′
-colored

(because |L∗i | = |k′∗|). Let D1, . . . , Dµ be these Rk
′
-colored polysimplicial sets.

We apply the above additional fact to the G-local immersion of compact piecewise
Rk
′
-linear spaces

∐µ
i=1 |Di | → S. It follows that there is a number r0 ≤ r ′0 < 1 such

that for any K and any r ′0 ≤ r < 1 the contraction � of Ẽ(r) to the point x0 lifts
to a contraction of each of the connected component of g−1

K (Ẽ(r)) to a point above
x0. The composition of �K with such a lifting gives rise to a contraction of each
connected component of V ⊗̂K to a point above x0, i.e., (c) is true.

Finally, let L be a finite unramified extension of k′ such that all of the strata of the
scheme Y′l,s ⊗k̃′ L̃ are geometrically irreducible over L̃. Then for any K as above

with L ⊂ K there are isomorphisms of RK -colored polysimplicial sets D′K
∼→ D′L

and DK
∼→ DL. (Notice that in this case K ′ = K since k′ ⊂ K .) It follows

that the canonical map SK → SL is a homeomorphism and, therefore, it induces a
homeomorphism g−1

K (Ẽ(r))
∼→ g−1

L (Ẽ(r)). This implies (d). ��

8 Cohomology with coefficients in the sheaf of constant
functions

8.1 The sheaf of constant functions

Let k be a non-Archimedean field with a non-trivial valuation. Recall that in every
strictly k-analytic space X the subset X0 = {x ∈ X | [H(X) : k] <∞} is dense.

For a reduced strictly k-analytic spaceX, we denote by c(X) the set of all analytic
functions f ∈ O(X) such that the image of each connected component ofX under the
morphism f : X→ A1 is a point. (Since such a point should lie in (A1)0, a function
f ∈ O(X) is contained in c(X) if and only if the restriction of f to each connected
component of X is algebraic over k.) The correspondence U �→ c(U) is a sheaf of
k-algebras in the étale topology of X (as well as in the G-topology of X), denoted by
cX. Of course, if k is algebraically closed, it is the constant sheaf kX associated with
k.

8.1.1 Lemma. Assume that X is connected. Then

(i) c(X) is a field finite over k;

(ii) assume that the algebra of any connected strictly affinoid subdomain of X has
no zero divisors (e.x., X is normal ); if the restriction of a function f ∈ O(X)
to a non-empty open subset U is in c(U), then f ∈ c(X).
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Proof. (i) Let f be a nonzero element of c(X). Then the image of X under the
morphism f : X→ A1 is a nonzero point from (A1)0 and, therefore, P(f ) = 0 for a
monic polynomial P(T ) = T n + a1T

n−1 + · · · + an ∈ k[T ] with an �= 0. It follows
that f is invertible in c(X), i.e., c(X) is a field. It is embedded in the field H(x) of
every point x ∈ X. Since there is a point x with [H(x) : k] <∞, c(X) is finite over k.

(ii) We may assume that X =M(A) is strictly k-affinoid, and we can find a non-
zero polynomial P(T ) over k with P(f |U) = 0, i.e., for the element g = P(f ) ∈ A
one has g|U = 0. It follows that the image of g in the local ring OX,x of any point
x ∈ U is zero. This local ring is faithfully flat over the local ring OX,x of the affine
scheme X = Spec(A) at the image x of x in X (see [Ber2, 2.1.4]). It follows that
the image of g in the localization of A with respect to the prime ideal of the point x

is zero and, therefore, g is a zero divisor in A. The assumption implies that g = 0. ��
A strictly k-analytic space X is said to be geometrically reduced (resp. geometri-

cally normal) if the strictly k̂a-analytic space X = X⊗̂k̂a is reduced (resp. normal).
For example, the generic fiber of Xη of a nondegenerate pluri-stable formal scheme
X over k� is geometrically normal.

8.1.2 Lemma. Let X be a geometrically reduced strictly k-analytic space. Then

(i) the set of points x ∈ X0 such that X is smooth at x and the field H(x) is
separable over k is dense in X;

(ii) if x is a point fromX0 with the properties (i), then there is an open neighborhood
of x isomorphic to an open polydisc in an affine space over H(x).

Proof. (i) We can replace X by an open neighborhood of any point from X0 in the
interior ofX so that it may be assumed to be closed. Since the field k̂a is algebraically
closed and the regular locus of X is non-empty, from [Ber5, Theorem 5.2] it follows
that the smooth locus of X is dense in X. Replacing X by the smooth locus, we
may assume that X is smooth. We then can shrink it and assume that there is an étale
morphism ϕ : X→ An. For each point x ∈ X, H(x) is a finite separable extension of
H(ϕ(x)). We may therefore assume that X = An. In this case the statement follows
from the well known fact that the set of all elements of an algebraic closure ka of k,
which are separable over k, is dense in ka (see [BGR, 3.4.1/6]).

(ii) As in (i), we can shrink X and assume that there is an étale morphism X →
An : x �→ y. It induces an étale morphism X′ = X⊗̂H(x) → An

H(x). The point x
has an H(x)-rational preimage x′ in X′ and, therefore, the étale morphism X′ → X

is a local isomorphism at the point x′. Thus, shrinking X, we get an étale morphism
X→ An

H(x) : x �→ y′ with H(y′) ∼→ H(x). It follows that the latter morphism is a
local isomorphism at the point x. ��

8.1.3 Corollary. Let X be a geometrically reduced strictly k-analytic space. Then

(i) if X is connected, c(X) is a finite separable extension of k;
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(ii) the stalk cX,x of cX at a point x ∈ X coincides with the algebraic separable
closure of k in H(x);

(iii) the pullback of the étale sheaf cX to X is the constant sheaf ks
X

associated with
the separable closure ks of k in ka.

Proof. (i) trivially follows from Lemma 8.1.2, and it implies that the image of cX,x
in H(x) is contained in the algebraic separable closure. Let k′ be a finite separable
subextension of k in H(x), and consider the canonical étale morphismX′ = X⊗̂k′ →
X. The canonical character H(x) ⊗ k′ → H(x) defines a point x′ over x with
H(x)

∼→ H(x′). From [Ber2, Proposition 3.4.2] it follows that the above étale
morphism is a local isomorphism at the point x′ and, therefore, k′ is contained in the
image of cX,x in H(x). The statement (iii) is already trivial. ��

8.1.4 Lemma. The following properties of a geometrically reduced strictly k-
analytic space X are equivalent:

(a) c(X) = k;

(b) X⊗̂k′ is connected for every finite extension k′ of k;

(c) X is connected.

Proof. (a)�⇒(b) Assume that there is k′ such thatX⊗̂k′ is not connected. If k′′ is the
maximal subextension of k′ separable over k, then the canonical mapX⊗̂k′ → X⊗̂k′′
is a homeomorphism and, therefore, we may assume that k′ = k′′. We may also
assume that k′ is a Galois extension of k. Let X′ be a connected component of X⊗̂k′.
The morphism X′ → X is a finite étale Galois covering of X of degree less than
[k′ : k]. If G is the Galois group of this covering, then c(X) = c(X′)G ⊃ k′G. The
latter field is bigger than k, and this contradicts the assumption (a).

(b)�⇒(c)Assume thatX is a disjoint union of non-empty open subsets U1 and U2.
Since for every compact analytic subdomainY ⊂ X the canonical mapY → lim←− Y ⊗̂k

′

is a homeomorphism, where the inverse limit is taken over finite separable extensions
k′ of k in ka, it follows that the images of U1 and U2 in every X⊗̂k′ are open and
closed and, therefore, the maps Ui → X⊗̂k′ are surjective. But we can find k′ such
that X⊗̂k′ has a k′-rational point. Since the preimage of the latter in X is a one point
subset, we get a contradiction.

(c)�⇒(a) From (c) it follows thatX is connected and, in particular, c(X) is a finite
separable extension of k. One has X⊗̂k̂a ∼→ X⊗̂c(X)(c(X)⊗k k̂a). The latter tensor
product is a direct product of [c(X) : k] copies of k̂a, and so the connectedness of
X⊗̂k̂a implies that c(X) = k. ��

8.1.5 Corollary. Let Y be a strictly analytic domain in a geometrically reduced
strictly k-analytic spaceX. Then the sheaf cY is canonically isomorphic to the pullback
of the sheaf cX on Y .
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Proof. It suffices to show that, given a compact strictly analytic domain Y inX, there
exists a compact neighborhood U of Y with c(U)

∼→ c(Y ). For this we may assume
that Y and X are connected. Furthermore, we may shrink X so that c(X)

∼→ c(U)
for any connected compact neighborhood U of Y in X. Finally, we may assume
that c(X) = k (see Remark 8.1.7). We claim that in this case c(Y ) = k. Indeed, if
this is not true, we can find a finite separable extension k′ of k such that Y ⊗̂k′ is not
connected. Let {Yi}1≤i≤n be the connected components of Y ⊗̂k′, and let {Ui}1≤i≤n be
their pairwise disjoint compact neighborhoods. Then there exists a connected compact
neighborhood U of Y whose preimage in X⊗̂k′ is contained in

∐n
i=1 Ui . It follows

that U⊗̂k′ is not connected. Since c(U) = k, this contradicts Lemma 8.1.4. ��

8.1.6 Lemma. Assume that the characteristic of k is zero, and let X be a reduced
strictly k-analytic space that satisfies the assumption of Lemma 8.1.1 (ii). Then cX =
Ker(OX

d→ 	1
X).

Proof. We may assume that X is connected. Let f be a function from O(X) with
df = 0. Any strictly affinoid subdomain V ⊂ X is regular at a dense open subset
V ⊂ V and, therefore, V is smooth at each point from V ∩ X0 (see [Ber5, 5.2]). By
Lemma 8.1.2, there exists a non-empty open subset W ⊂ V isomorphic to an open
polydisc in an affine space over k′, a finite extension of k. It follows that f |W ∈ c(W),
and Lemma 8.1.1 (ii) implies that f ∈ c(X). ��

8.1.7 Remark. Let X = M(A) be a strictly k-affinoid space, and V a strictly
k-affinoid subdomain of X. Assume that A contains a finite extension k′ of k. Then
X and V can be considered as strictly k′-affinoid spaces, and it is easy to see (in
comparison to Proposition 7.1.2) that V is a strictly k′-affinoid subdomain of X.

8.2 Local cohomological triviality of the sheaf cX

8.2.1 Theorem. Assume that the characteristic of k is zero, and letX be a k-analytic
space locally embeddable in a smooth space. Then each point ofX has a fundamental
system of open neighborhoods V with Hn(V, cX) = 0 for all n ≥ 1.

Since the characteristic of k is zero, the stalks of cX are uniquely divisible abelian
groups, and since the Galois cohomology of such a group is trivial, [Ber2, Proposition
4.2.4] implies that, for any reduced strictly k-analytic space X, the étale cohomology
groups Hn(X, cX) of X coincide with the cohomology groups Hn(|X|, cX) of the
underlying topological space |X|.

Proof. By Theorem 7.1.1, each point ofX has a fundamental system of open neighbor-
hoods V with the properties (a)–(d). We claim that, for such V , one hasHn(V, cX) =
0, n ≥ 1.
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Let X1 ⊂ X2 ⊂ · · · be the increasing sequence of compact strictly analytic
subdomains of V from the property (b). By Corollary 8.1.5, the pullback of the étale
sheaf cX to Xm coincides with cXm . From [Ber2, Lemma 6.3.12] it follows that to
prove the claim it suffices to show that Hn(Xm, cXm) = 0 for all n ≥ 1.

By Corollary 8.1.3(ii), the pullback of the étale sheaf cXm to Xm is the constant
sheaf ks

Xm
. Since Xm is compact, there is a Hochschield–Serre spectral sequence

E
p,q
2 = Hp(G,Hq(Xm, k

s)) �⇒ Hp+q(Xm, cXm) ,

where G is the Galois group of ks over k. The étale cohomology groups Hq(Xm, k
s)

coincide with Hq(|Xm|, ks). Since all of the connected components of Xm are con-
tractible, it follows that Hq(Xm, k

s) = 0 and, therefore, Ep,q2 = 0 for all q ≥ 1.
Furthermore, since Hp(G, ks) = 0 for all p ≥ 1, the spectral sequence implies that
Hn(Xm, cXm) = 0 for all n ≥ 1. ��

8.3 Cohomology of certain analytic spaces

In this subsection, k is assumed to be of characteristic zero. Let X be a nondegenerate
pluri-stable formal scheme over k�, and let Y be a quasi-compact locally closed strata
subset of the closed fiber Xs (i.e., Y is a locally closed subset which is a finite union of
strata of Xs). The set S(X/Y) = S(X) ∩ π−1(Y) is a piecewise Rk

Z+ -linear subspace
of S(X). It is a union of strata and contained in each dense Zariski open subset of
π−1(Y). We also set X = X⊗̂k� (̂ka)�. It is a nondegenerate pluri-stable formal
scheme over (̂ka)� with the closed fiber Xs = Xs ⊗k̃ k̃a, Y = Y⊗k̃ k̃a is a subscheme
of the latter, and so a piecewise Rk

a

Z+ -linear subspace S(X/Y) of S(X) is defined. Let
G be the Galois group of ks over k.

8.3.1 Theorem. Let X = π−1(Y)\Z, where Z is a nowhere dense Zariski closed
subset of Xη. Then the canonical maps S(X/Y) ↪→ X→ X induce isomorphisms of
finitely dimensional vector spaces over k

Hn(X, cX)
∼→ Hn(X, ks)G

∼→ Hn(S(X/Y), k
s)G, n ≥ 0 .

Since the characteristic of k is zero, the first two groups can be considered in the
étale as well as in the usual topology. The third group Hn(S(X/Y), k

s) is of course
considered in the usual topology, it coincides with the singular cohomology group
and is evidently finitely dimensional over ks. From [Ber7, Theorem 8.1] it follows
that S(X/Y) is a strong deformation retraction of X, and this implies the second

isomorphism. Furthermore, if Y is open in Xs and X coincides with π−1(Y), then X
is compact and, therefore, the first isomorphism follows from the Hochschield–Serre
spectral sequence. The non-triviality of the first isomorphism is in the fact that such
a spectral sequence does not hold if X is not compact.
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Proof. By [Ber7, Theorem 8.1], there is a proper strong deformation retraction � of
Xη to the skeleton S(X), and it lifts to a strong deformation retraction� of X to S(X).
Let τ and τ denote the corresponding retraction maps Xη → S(X) and Xη → S(X).
We set S = S(X/Y) and S = S(XY). From loc. cit. it follows that π−1(Y) = τ−1(S),

π−1(Y) = τ−1(S), and that X and X contain S and S and are preserved under� and
�, respectively.

8.3.2 Lemma. There is an increasing sequence X1 ⊂ X2 ⊂ · · · of compact strictly
analytic subdomains of π−1(Y) with the following properties:

(a) X =⋃∞
n=1Xn;

(b) all Xn are preserved under �;

(c) all τ(Xn) are compact piecewise Rk
Z+ -linear subspaces of S.

Proof. First of all, shrinking X we may assume that it is quasi-compact and Y is closed
in Xs . We claim that it suffices to consider the case when X is affine. Indeed, assume
the lemma is true in this case, and let {Xi}i∈I be a finite covering of X by open affine
subschemes. By the assumption, we can find, for every i ∈ I , an increasing sequence
Xi1 ⊂ Xi2 ⊂ · · · of compact strictly analytic domains of π−1(Yi ) with the properties
(a)–(c) for X ∩ π−1(Yi ), where Yi = Y ∩ Xi,s . Then the properties (a)–(b) hold for
the compact strictly analytic domains Xn =⋃

i∈I Xin. Thus, let X = Spf(A).
Let f1, . . . , fm be nonzero elements of A with Z = {x ∈ Xη | fi(x) = 0 for all

1 ≤ i ≤ m}. Let ε be a positive integer which is smaller than all of the minima of the
functions x �→ |fi(x)| on the skeletonS(X), and let ε ≥ r1 > r2 > · · · be a decreasing
sequence of numbers from |k∗| tending to zero. By [Ber7, Theorem 8.1(iii)], for every
1 ≤ i ≤ m and n ≥ 1, the strictly affinoid domain Y in = {x ∈ Xη | |fi(x)| ≥ rn}
is preserved under �. Then the same is true for the compact strictly analytic domain
Yn = ⋃m

i=1 Y
i
n. Thus, we have an increasing sequence Y1 ⊂ Y2 ⊂ · · · of compact

strictly analytic domains in Xη which contain S(X), are preserved under � and such
that π−1(Y)\Z =⋃∞

n=1 Yn.
Let E1 ⊂ E2 ⊂ · · · be an increasing sequence of compact piecewise Rk

Z+ -linear

subspaces of S with S = ⋃∞
n=1 En. By Theorem 6.4.1, each τ−1(En) is a compact

strictly analytic domain in π−1(Y). Then Xn = τ−1(En) ∩ Yn is a compact strictly
analytic domain in X = π−1(Y)\Z, it is preserved under � and its image under τ is
En, i.e., the sequence X1 ⊂ X2 ⊂ · · · possesses the properties (a)–(c). ��

Lemma 8.3.2 implies that the compact strictly analytic domains Xn of X are pre-
served under � and τ(Xn) are piecewise Rk

a

Z+ -linear subspaces of S. In particular,

Hq(Xn, k
s) are of finite dimension over ks . SinceX =⋃∞

n=1Xn, there is an isomor-
phism of finitely dimensional vector spaces over ks

Hq(X, ks)
∼→ lim←−

n

Hq(Xn, k
s), q ≥ 0 .
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Let h
q

n denote the dimension over ks of the image of Hq(Xm, k
s) in Hq(Xn, k

s) for
sufficiently large m. One has h

q

1 ≤ hq2 ≤ . . . and h
q

n = hq for sufficiently large n,
whereh

q
is the dimension ofHq(X, ks) over ks. Recall that, by the Hochschield–Serre

spectral sequence, one has Hq(Xn, cXn)
∼→ Hq(Xn, k

s)G.
Let K be a finite unramified Galois extension of k such that all of the strata of the

closed fiber of X⊗̂k�K� are geometrically irreducible. Then the action of G on the
skeleton S(X) goes through an action of its finite quotient Gal(K/k). It follows that
Hq(Xn, k

s)Gal(ks/K) = Hq(Xn,K), and we get

Hq(Xn, cXn)
∼→ Hq(Xn, k

s)G = Hq(Xn,K)
Gal(K/k) .

The latter space has finite dimension over k and, in particular, there is an isomorphism

Hq(X, cX)
∼→ lim←−

n

Hq(Xn, cXn), q ≥ 0 .

It follows also that the image ofHq(Xm, cXm) inHq(Xn, cXn) for sufficiently largem is
of dimension at most [K : k]·hqn over k. Hence, the dimension ofHq(X, cX)over k is at

most [K : k] ·hq , and there is a canonical isomorphismHq(X, cX)
∼→ Hq(X, ks)G. ��

8.3.3 Corollary. Let X be a nondegenerate strictly pluri-stable formal scheme over
k�, Y an irreducible component of Xs , and X = π−1(Y)\Z, where Z is a Zariski
closed subset of Xη. Then Hn(X, cX) = 0 for all n ≥ 1.

Proof. By Theorem 8.3.1, we may assume that k is algebraically closed, and it suffices
to show that S(X/Y) is contractible. (Of course, at this point the assumption on the
characteristic of k is already not important.) To prove the contractibility, it is more
convenient to use [Ber7, Theorem 8.2] instead of Theorem 5.1.1 of this paper.

Let X be a strictly poly-stable fibration over k� with Xl = X. Recall that [Ber7,
Theorem 8.2] identifies the skeleton S(X) = S(X) with the geometric realization |C|
of a polysimplicial set C = C(X) associated with X. The polysimplicial set C here
is an object of the category ��Ens, where � is a category with the same family of
objects as � but with larger sets of morphisms, and the geometric realization functor
extends the functor that takes [n] ∈ Ob(�) with n = (n0, . . . , np) to

�n = {(uij )0≤i≤p,0≤j≤ni ∈ [0, 1][n] | ui0 + · · · + uini = 1, 0 ≤ i ≤ p} .
Since X is strictly poly-stable, the polysimplicial set C is interiorly free, i.e., the
stabilizer of any nondegenerate n-polysimplex of C in Aut([n]) is trivial. It follows
that the corresponding map �n→ |C| is injective on the interior �̊n of �n. Let y be
the vertex of |C| that corresponds to the generic point of Y. Then S(X/Y) is identified
with the union S of all cells of |C| whose closure contains the vertex y. We define a
map � : S × [0, 1] → S as follows �(x, t) = ty + (1 − t)x. (Notice that the latter
makes sense in S.) The map � is evidently continuous and defines a contraction of S
to the point y. ��
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8.3.4 Corollary. LetX be a reduced strictly k-analytic space isomorphic toW\Van,
whereW is a compact strictly analytic domain in the analytification Xan of a separated
scheme X of finite type over k and V is a Zariski closed subset of X. Then there are
canonical isomorphisms of finitely dimensional vector spaces over k

Hn(X, cX)
∼→ Hn(X, ks)G, n ≥ 0 .

Proof. By [Ber7, Theorem 10.1], the abelian group Hn(X,Z) is of finite rank and G
acts on it through a finite quotient. Since Hn(X, ks) = Hn(X,Z) ⊗Z k

s, it follows
that the action of G on Hn(X, ks) is discrete. It follows that, if there exists a proper
hypercovering X• → X such that the statement is true for all Xn’s, then it is also true
for X. Using this remark and de Jong’s results [deJ] (as in the proof of loc. cit.), the
situation is reduced to the case whenX is of the form considered in Theorem 8.3.1. ��

8.3.5 Remark. Assume that k is a finite extension of Qp, and let X be a sepa-
rated reduced scheme of finite type over k. By [Ber8, Theorem 1.1(a′′)], there are
canonical isomorphismHn(|Xan|,Qp)

∼→ Hn(X,Qp)
sm, whereHn(|Xan|,Qp) are

the cohomology groups of the underlying topological space of X
an = (X ⊗ k̂a)an,

Hn(X,Qp) are the p-adic étale cohomology groups of X = X⊗ka and, for a p-adic
representation V , V sm denotes the subspace of V consisting of the elements with open
stabilizer in G. Together with Corollary 8.3.4, this implies that there are canonical
isomorphisms

Hn(Xan, cXan)
∼→ (Hn(X,Qp)

sm ⊗Qp
ks)G = (Hn(X,Qp)⊗Qp

ks)G .

It follows that dimk H
n(Xan, cXan) = dimQp

Hn(X,Qp)
sm.
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