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ABSTRACT

Let k be a non-Archimedean field with nontrivial valuation, and k◦ its

ring of integers. In this paper we prove constructibility of vanishing cycles

sheaves for arbitrary formal schemes locally finitely presented over k◦ as

well as special formal schemes over k◦ (for discretely valued k). This allows

us to extend continuity results, established earlier for locally algebraic

formal schemes, to the whole classes of formal schemes.

Introduction

Let k be a non-Archimedean field with nontrivial valuation, k◦ its ring of in-

tegers, and k̃ its residue field. A formal scheme X over k◦ is said to be locally

finitely presented if it is a locally finite union of open affine subschemes of the

form Spf(A) with A isomorphic to a quotient of k◦{T1, . . . , Tm} by a finitely

generated ideal. If the valuation on k is discrete, a formal scheme X over k◦ is

said to be special if it is a locally finite union of open affine subschemes Spf(A)

with A isomorphic to a quotient of k◦{T1, . . . , Tm}[[S1, . . . , Sn]]. In both cases,

the generic fiber Xη of X is a paracompact strictly k-analytic space, and the

closed fiber Xs of X is a scheme of locally finite type over k̃. The class of locally

∗ This research was supported by Israel Science Foundation (grant No. 582/09),

Minerva Foundation and Alexander von Humboldt Foundation, and completed

when the author was a Friends of the Institute for Advanced Study Member.

Received March 7, 2014 and in revised form August 3, 2014

147



148 V. G. BERKOVICH Isr. J. Math.

finitely presented formal schemes X is preserved under the formal completion

X/Y along an open subscheme Y ⊂ Xs, and the class of special formal schemes

is preserved under the formal completion along an arbitrary subscheme of Xs.

In [Ber3] and [Ber6], we defined for both classes of formal schemes, respec-

tively, a vanishing cycles functor Ψη from the category of étale sheaves on Xη to

the category of étale sheaves on Xs = Xs ⊗˜k k̃
s provided with an action of the

Galois group of k. The comparison theorem [Ber3, 5.3] (resp. [Ber6, 3.1]) im-

plies that if X is the formal completion X̂/Y of a scheme X of finite type over k◦

along an open (resp. arbitrary) subscheme Y ⊂ Xs, then for any constructible

sheaf F on Xη with torsion orders prime to char(k̃) there is a canonical iso-

morphism RΨη(F)
∣∣
Y→̃RΨη(F̂/Y), where F̂/Y is the pullback of F on (X̂/Y)η.

In particular, by Deligne’s theorem on constructibility of the vanishing cycles

sheaves of schemes [SGA4 1
2 , Th. finitude, 3.2], the sheaves R

qΨη(F̂/Y) are con-
structible. It follows also that the étale cohomology groups of a quasi-algebraic

compact k-analytic space with coefficients in a locally constant sheaf of order

prime to char(k̃) are finite.

The purpose of this paper is to extend the latter facts to the whole classes of

compact k-analytic spaces (Theorem 1.1.1) and of locally finitely presented and

of special formal schemes (Theorems 1.1.2 and 3.1.1). We notice that, if the

characteristic of k is zero, finiteness of the cohomology groups and constructibil-

ity of the vanishing cycles sheaves for locally finitely presented formal schemes

and for formal completion of them along a subscheme of the closed fiber were

proved by Roland Huber in [Hub1] and [Hub2].

The main ingredients of our proof of the above results are Gabber’s weak

uniformization theorem [ILO, Exp. VII, 1.1] and its version, Theorem 2.1.3.

These theorems together with Deligne’s cohomological descent theory [SGA4,

Exp. Vbis] allow one to deduce the general case of the required facts from the

particular cases considered in [Ber3] and [Ber6].

In §1, we introduce for a k-analytic space X a class of étale sheaves, called

constructible, which includes finite locally constant sheaves and the pullbacks

of constructible sheaves on a scheme X of finite type over k for every morphism

X → X an. Theorem 1.1.1 states that, if k is algebraically closed and X is

compact, then for any abelian constructible sheaf F on X with torsion orders

prime to char(k̃), the groups Hq(X,F ) are finite. The proof is an application

of the cohomological descent theory, which is recalled in §1.2, and a uniformiza-

tion property for strictly k-analytic spaces, Theorem 1.3.1, which is a direct
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consequence of Gabber’s weak uniformization theorem. Theorem 1.1.2, which

states that for any formal scheme X locally finitely presented over k◦ and any

abelian constructible sheaf F on Xη with torsion orders prime to char(k̃) the

sheaves RqΨη(F ) are constructible, is deduced from Theorem 1.1.1. Theorem

1.1.2 allows one to extend the continuity results [Ber3, 8.1. and 8.6] to arbitrary

formal schemes finitely presented over k◦ (Corollaries 1.1.3 and 1.1.4).

In §2, we prove a version of Gabber’s theorem. This version, Theorem 2.1.3,

is about quasi-excellent noetherian schemes over a complete discrete valuation

ring, and it is related to Gabber’s theorem in a similar way as de Jong’s semi-

stable reduction theorem [deJ1, 6.5] is related to his theorem [deJ1, 4.1] for

varieties over a field. The proof closely follows the proof of Gabber’s result.

In §3, we introduce for a special formal scheme X over k◦ a class of étale

sheaves on Xη, called X-constructible, which is more restrictive than the class of

constructible sheaves. Theorem 3.1.1 states that, for any X-constructible sheaf

F with torsion orders prime to char(k̃), the sheaves RqΨη(F ) are constructible,

and Theorem 3.1.5 states that the formation of those sheaves is compatible

with extensions of the ground field. We also introduce a modified version of

the vanishing cycles functor which is better than that from [Ber6] in the sense

that it takes values in the category of étale sheaves provided with a continuous

action of the Galois group of k. Theorem 3.1.6 states that the values of the high

direct images of both vanishing cycles functors on X-constructible sheaves coin-

cide. The proof of Theorems 3.1.1, 3.1.5 and 3.1.6 is based on a uniformization

property for special formal schemes, Theorem 3.2.1, which is a consequence of

the above version of Gabber’s result. Theorems 1.1.1 and 3.1.1 allow one to ex-

tend the continuity results [Ber6, 4.1 and 4.5] to arbitrary quasicompact special

formal schemes over k◦ (Corollaries 3.1.3 and 3.1.4).

Acknowledgements. I am very grateful to Michael Temkin for drawing my

attention to the volume [ILO] on Gabber’s work. When I was trying to deduce

the uniformization property for special formal schemes (Theorem 3.2.1) from

Gabber’s theorem, Ofer Gabber suggested using the reasoning from the proof

of his theorem rather than the result itself. This suggestion has eventually led

me to Theorem 2.1.3. I am very grateful to him for that. I am very grateful

to the referee for many corrections, suggestions and comments that helped to

significantly improve the paper.
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1. Finiteness theorem for compact analytic spaces

1.1. Formulation of results. Let k be a non-Archimedean field. We say

that an étale sheaf F on a k-analytic space X is constructible if every point of

X has a neighborhood of the form V1 ∪ · · · ∪ Vn such that each Vi is an affinoid

domain that contains the point x and the restriction of F to Vi =M(AVi) is the

pullback of a constructible sheaf on the affine scheme Spec(AVi). For example,

any finite locally constant sheaf on X is constructible. The category of abelian

constructible sheaves on X is abelian, and the inverse image F
∣∣
Y

= ϕ∗(F ) of

a constructible sheaf F on X with respect to a morphism ϕ : Y → X is a

constructible sheaf on Y .

Theorem 1.1.1: Suppose that k is algebraically closed, and letX be a compact

k-analytic space. Then for any abelian constructible sheaf F on X with torsion

orders prime to char(k̃) the groups Hq(X,F ), q ≥ 0, are finite.

We now recall the definition (from [Ber3]) of the nearby cycles and vanishing

cycles functors Θ and Ψη for a formal scheme X locally finitely presented over

k◦. By [Ber3, Lemma 2.1], the correspondence Y �→ Ys induces an equivalence

between the category of formal schemes étale over X and the category of schemes

étale over Xs. We fix an inverse functor Ys �→ Y. Then for an étale sheaf F

on Xη and a scheme Ys étale over Xs, one has Θ(F )(Ys) = F (Yη), where the

right-hand side is the global section set of the pullback of F toYη. Furthermore,

let Xs (resp. Xη) denote the closed (resp. generic) fiber of the formal scheme

X = X⊗̂k◦(k̂s)◦ over (k̂s)◦. One has Xs = Xs ⊗˜k k̃
s and Xη = Xη⊗̂kk̂s. Then

Ψη(F ) = Θ
̂ks(F ), where F is the pullback of F to Xη. There is a canonical

continuous action of the Galois group G = Gal(ks/k) on Ψη(F ) compatible with

the action of G on Xs and, if F is abelian, it induces a continuous action of G

on the sheaves RqΨη(F ).

For a prime integer l, we set sl(k) = dimFl
(|k∗|/|k∗|l).

Theorem 1.1.2: Let X be a formal scheme locally finitely presented over k◦,
and let F be an abelian constructible sheaf on Xη with torsion orders prime to

char(k̃). Suppose that sl(k) <∞ for every prime l that divides a torsion order

of F . Then the nearby cycles sheaves RqΘ(F ) are constructible for all q ≥ 0.
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Foe example, the assumption is satisfied if the group |k∗| is finitely generated,

or if |k∗| is divisible (see also Remarks 1.1.5). This implies constructibility of

the vanishing cycles sheaves RqΨη(F ).

The following two statements were proved in [Ber3, 8.1 and 8.6] under the

assumption that all of the formal schemes considered are formal completions

of schemes of finite type over k◦ along their closed fiber. This assumption was

necessary because constructibility of the nearby cycles sheaves was available

only for those formal schemes. The same proof works in general due to Theorem

1.1.2.

Let T be a fixed formal scheme finitely presented over k◦, and let F be an

étale abelian sheaf on Tη. Given formal schemes X and Y finitely presented

over T, any T-morphism ϕ : Y→ X gives rise to homomorphisms of sheaves on

Ys and Ys, respectively,

θq(ϕ, F ) :ϕ∗
s(R

qΘ(F
∣∣
Xη

))→ RqΘ(F
∣∣
Yη

),

θqη(ϕ, F ) :ϕ
∗
s(R

qΨη(F
∣∣
Xη

))→ RqΨη(F
∣∣
Yη

).

Corollary 1.1.3: Let F be an abelian constructible sheaf on Tη with torsion

orders prime to char(k̃), and suppose that sl(k) < ∞ for every prime l that

divides a torsion order of F . Given a formal scheme X finitely presented over T,

there exists a nonzero ideal a ⊂ k◦ such that, for any formal scheme Y finitely

presented over T and any pair of T-morphisms ϕ, ψ : Y → X that coincide

modulo a, one has θq(ϕ, F ) = θq(ψ, F ) for all q ≥ 0.

For a prime l, a constructible Zl-sheaf on a k-analytic space X is a pro-

jective system

F = (Fm)m≥0

of constructible Z/lm+1Z-modules Fm such that, for each m ≥ 1, the canonical

homomorphism Fm→Fm−1 induces an isomorphism Fm⊗Z/lm+1ZZ/l
mZ→̃Fm−1.

Furthermore, for a formal scheme X over T and a nonzero ideal a ⊂ k◦, we
denote by G(X/T) the group of T-automorphisms of X and by Ga(X/T) its

subgroup of the automorphisms trivial modulo a.

Corollary 1.1.4: Let F be a constructible Zl-sheaf on Tη, l 	= char(k̃), and

suppose that sl(k) < ∞. Given a formal scheme X finitely presented over T,

there exists a nonzero ideal a ⊂ k◦ such that the group Ga(X/T) acts trivially
on all of the sheaves RqΘ(Fm

∣∣
Xη

).
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Remarks 1.1.5: (i) The assumption sl(k) < ∞ in Theorem 1.1.2 is necessary

since, for X = Spf(k◦) with algebraically closed residue field k̃, the sheaf

R1Θ(Z/lZ)

is associated to the group H1(G,Z/lZ), which is isomorphic to |k∗|/|k∗|l.
(ii) If sl(k) < ∞, then sl(H(x)) < ∞ for any point x of a k-analytic space

X . Indeed, in order to show this, we may assume that X =M(A) is k-affinoid.

Furthermore, taking a closed immersion of X in a closed polydisc of dimension

n, we may assume that X is the polydisc. The latter is an affinoid domain in the

affine spaceAn, and so we may assume thatX = An. Finally, induction reduces

the situation to the case n = 1. If x is a point of type (1) or (4), then the quotient

group |H(x)∗|/|k∗| is torsion, and it is easy to see that sl(H(x)) ≤ sl(k). If x is

of type (2) or (3), then sl(H(x)) = sl(k) or sl(H(x)) = sl(k) + 1, respectively.

1.2. Cohomological descent on non-Archimedean analytic spaces.

Let k be a non-Archimedean field. In this subsection we recall and apply some

definitions and facts from the cohomological descent theory ([SGA4, Exp. Vbis]

and [Del]) to k-analytic spaces. This theory introduces for a given Grothendieck

topology a stronger topology that does not change cohomology groups but al-

lows one to calculate them using hypercoverings [SGA4, Exp. V, §7] by objects

from a special class.

Let E be a category that admits finite projective limits and finite sums which

are universally disjoint (in the sense of [SGA4, Exp. II, Definition 4.5]). A sim-

plicial object of E is an object of the category Δ◦E of contravariant functors from
Δ to E , where Δ is the category whose objects are the sets [n] = {0, 1, . . . , n},
n ≥ 0, and morphisms are nondecreasing maps. Such an object is denoted by

X• = (Xn)n≥0, where Xn is the image of [n], and X•(f) denotes the morphism

Xm → Xn that corresponds to a morphism f : [n] → [m]. If δi, 0 ≤ i ≤ n+ 1,

denotes the injective morphism [n] → [n + 1] that omits i, and si, 0 ≤ i ≤ n,

denotes the surjective morphism [n + 1] → [n] with si(i) = si(i + 1), the cor-

responding morphisms Xn+1 → Xn and Xn → Xn+1 are denoted in the same

way.

For example, every object S of E defines a constant simplicial object S•

which corresponds to the functor on Δ that takes the constant value S. An

augmentation of a simplicial object X• to S is a morphism

a = (an)n≥0 : X• → S•
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which is briefly denoted by a : X• → S. The functor

Δ◦(E/S)→ E/S : (X•
a→ S) �→ (X0

a0→ S)

from the category of simplicial objects augmented to S to the category of

morphisms X
ϕ→ S has right adjoint (X

ϕ→ S) �→ (cosk(ϕ) → S). Here

cosk(ϕ)n is the fiber product of n + 1 copies of X over S, and morphisms

cosk(ϕ)n → cosk(ϕ)m that correspond to morphisms [m] → [n] are defined in

the evident way.

Every simplicial k-analytic spaceX• defines an étale siteX•ét
as follows. Let

Ét(X•) be the category whose objects are pairs (n, f) consisting of n ≥ 0 and an

étale morphism f : U → Xn and morphisms (m, g)→ (n, f) with g : V → Xm

are pairs consisting of morphisms [n] → [m] and V → U compatible with the

corresponding morphism Xm → Xn. The étale site X•ét
is the Grothendieck

topology on the category Ét(X•) generated by the pretopology for which the

set of coverings of (n, f) with f : U → Xn is formed by families

{(n, fi)
gi→ (n, f)}i∈I

over the identity morphism on [n] and with fi : Ui → Xn such that

U =
⋃
i∈I

gi(Ui).

The category of sheaves on X•ét
is denoted by X •̃ét (the étale topos of

X•ét
). For d ≥ 0, the category of étale Z/dZ-modules on X• is denoted by

S(X• ,Z/dZ), and its derived category is denoted by D(X• ,Z/dZ).

An étale sheaf on X• is nothing else than a family F • of étale sheaves Fn

on Xn and a family of X•(f)-morphisms F •(f) : Fn → Fm (i.e., morphisms of

sheaves X•(f)
∗(Fn) → Fm on Xm) for all morphisms f : [n] → [m]. One also

requires that F •(f ◦ g) = F •(f) ◦ F •(g) for pairs of composable morphisms.

The global sections functor is the functor Γ : F • �→ Ker(F 0(X0)
→→ F 1(X1)).

The values of its high direct images on an abelian sheaf F • are denoted by

Hq(X• , F
•).

Examples 1.2.1: (i) For a simplicial k-analytic space X• , the structural sheaves

OXn form the structural sheaf of rings on X• .

(ii) For an augmented k-analytic space X• → S, the sheaves of relative dif-

ferentials ΩmXn/S
form a complex of sheaves (Ω

·
Xn

)n≥0, the de Rham complex

of X• .
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(iii) If F • is an étale abelian sheaf on X• , the flabby Godement resolutions

C·
(Fn) (see [Ber4, §1]) form a complex of sheaves on X• . Using it, one can

construct for every complex of étale abelian sheaves F
·,• ∈ D+(X• ,Z) a quasi-

isomorphism F
·,• → K

·,•
such that all of the sheaves Km,n are flabby.

(iv) A morphism of simplicial k-analytic spaces ϕ = (ϕn)n≥0 : Y• → X•

gives rise to a morphism of sites Y• ét
→ X•ét

. The adjoint functors ϕ∗ and

ϕ∗ take sheaves F • on X• and G• on Y• to the sheaves (ϕ∗
nF

n)n≥0 on Y• and

(ϕn∗Gn)n≥0 on X• , respectively. The high direct image functor

Rϕ∗ : D+(Y• ,Z)→ D+(X• ,Z)

is calculated componentwise. Namely, if G
·,•

is a complex of étale abelian

sheaves on Y• , one can take a quasi-isomorphism G
·,• → K

·,•
as in (iii), and

one has Rϕ∗G
·,•

= ϕ∗K
·,•
. In particular, (Rϕ∗G

·,•
)n = Rϕn∗G

·,n.

(v) An étale sheaf on a constant k-analytic space S• is a cosimplicial étale

sheaf on S (i.e., a covariant functor Δ→ S ˜́et). Such an abelian sheaf F • defines

a differential complex (Fn, d =
∑

i(−1)iδi) of sheaves on S. More generally,

a complex of étale abelian sheaves F
·,• ∈ D+(S• ,Z) defines a simple complex

(sF
·,•
)n =

⊕
p+q=n F

p,q with the differential

d(fpq) = dF (f
pq) + (−1)p

∑
i

(−1)iδi(fpq).

The functor s takes acyclic complexes to acyclic ones and, therefore, it defines

an exact functor s : D+(S• ,Z)→ D(S,Z).

(vi) Let a : X• → S be an augmented k-analytic space. If F is an étale

sheaf on S, then a∗(F ) = (a∗nF )n≥0 is an étale sheaf on X• , and the functor

F �→ a∗(F ) has a right adjoint a∗ defined by

a∗(F •) = Ker(a0∗(F 0)
→→ a1∗(F 1)),

where the two arrows are induced by δ∗0 and δ∗1 . One has a∗ = ε∗a•∗ , where a•

is the corresponding morphism X• → S• and ε is the canonical augmentation

S• → S. It follows from (v) that Rε∗→̃s and, therefore, Ra∗ = sRa•∗ .

One says that an augmented k-analytic space a : X• → S is of Z/dZ-

cohomological descent if the adjunction morphism of functors Id → Ra∗a∗

from D+(S,Z/dZ) to itself is an isomorphism or, equivalently, for every

F ∈ S(S,Z/dZ), one has F→̃ Ker(a0∗a∗0F → a1∗a∗1F ) and R
qa∗(a∗F ) = 0 for
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all q ≥ 1. One says that a morphism of k-analytic spaces ϕ : X → S is of Z/dZ-

cohomological descent if the augmentation morphism cosk(ϕ) → S is. One

says that a morphism of k-analytic spaces ϕ : X → S is of universal Z/dZ-

cohomological descent, if any base change of ϕ is of Z/dZ-cohomological

descent. For example, if {Ui → S}i∈I is a covering in the étale topology, then

the morphism
∐
i∈I Ui → S is of universal Z-cohomological descent. By the

cohomological descent criterion [SGA4, Exp. Vbis, 3.2.4] and the base change

theorem for cohomology with compact support [Ber2, 7.7.1], any surjective com-

pact morphism ϕ : X → S is of universal Z/dZ-cohomological descent for all

d ≥ 1 prime to char(k̃).

By a general result [SGA4, Exp. Vbis, 3.3.1], the category of universal Z/dZ-

cohomological descent morphisms X → S provided with the families of mor-

phisms {Xi → X}i∈I , for which
∐
i∈I Xi → X is a universal Z/dZ-cohomo-

logical descent morphism, is a Grothendieck pretopology. The Grothendieck

topology generated by it is called the étale topology of universal Z/dZ-

cohomological descent. Of course, this topology is stronger than the étale

topology, and it follows from the definition that the cohomology groups of any

étale Z/dZ-module F on S calculated in both topologies are the same. Recall

now the definition of a hypercovering.

Let Δm, m ≥ 0, be the full subcategory of Δ formed by the objects [n] with

n ≤ m. An m-truncated simplicial object of E is an object of the category Δ◦
mE .

The skeleton is the restriction functor skm : Δ◦E → Δ◦
mE , and the coskeleton

is the functor coskm : Δ◦
mE → Δ◦E right adjoint to skm. Given an object S

in E , the same functors applied to the category E/S are denoted by skSm and

coskSm. If now E admits universally disjoint sums (not necessarily finite) and is

provided with a Grothendieck topology, a hypercovering of an object S is an

augmented simplicial object a : X• → S such that the morphisms a0 : X0 → S

and Xn+1 → (coskSnsk
S
nX•)n+1 for all n ≥ 0 are coverings in the topology of E .

In [SGA4, Exp. Vbis, §5.1], one describes a general procedure for constructing

simplicial objects which is used for constructing hypercoverings with required

properties. We briefly recall it.

First of all, a simplicial object X• of E is said to be σ-split if there exists a

family of subobjectsNXn ofXn, n ≥ 0, such that the morphism
∐
NXm → Xn,

where the sum is taken over all morphisms [n] → [m] with m ≤ n, is an

isomorphism.
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Suppose we are given a functor π : E → B such that, for every object S ∈ B,
the category ES (the fiber of E at S) admits finite projective limits and arbitrary

universally disjoint sums. One introduces a property Q of an object of E which

is stable by isomorphisms and satisfies the conditions (a)–(c) from loc. cit.,

5.1.4. One also introduces a property P of a morphism in E over the identity

isomorphism of an object of B. This property is assumed to be stable under

isomorphisms and to satisfy the conditions (d)–(f) from loc. cit.. One says that

a simplicial object X• of E satisfies the condition (APQ) if

(1) π(X•) is a constant simplicial object S• for some S ∈ B;

(2) as a simplicial object of ES, X• is σ-split;

(3) X0 possesses the property Q;

(4) for all n ≥ 0, the morphism NXn+1 → (coskSnX•)n+1 possesses the

property P .

Finally, let E(APQ) be the category of simplicial objects X• of E which satisfy

the condition (APQ) with morphisms of simplicial objects Y• → X• such that

π(Yn) → π(Xn) is the same morphism in B for all n ≥ 0. Then there is a

canonical functor π : E(APQ) → B. Proposition 5.1.7 from loc. cit. asserts that

the functor π is surjective on objects and morphisms. Moreover, for any object

S of B and any pair (X• , Y•) of objects of E(APQ),S , there exist two morphisms

Z• → X• and Z• → Y• from the same object of E(APQ),S .

Examples 1.2.2: (i) Examples of the previous situation we are going to consider

are of the following type. Suppose B is a category that admits finite projective

limits and arbitrary universally disjoint unions, Q′ is a family of objects in

B which is stable by isomorphisms and disjoint unions, and P ′ is a family of

morphisms which is stable under isomorphisms, compositions and base change

and such that, for every object S of B, there exists a morphism X → S in P ′

with X in Q′. Let E be the category of morphisms X → S in P ′ with X in Q′,
and π : E → B the canonical functor (X → S) �→ S. Then the properties Q of

objects and P of morphisms in E that correspond to the families Q′ and P ′ in
B satisfy the conditions (a)–(f) from loc. cit., 5.1.4, and each object of E(APQ),S

gives rise to an augmented simplicial object X• → S of B with all Xn in Q′.
(ii) Let B be the category of paracompact k-analytic spaces, Q′ the family of

all objects of B, and P ′ the family of compact surjective morphisms. These fam-

ilies evidently satisfy the conditions of (i). The corresponding hypercoverings

will be said to be compact. Every compact hypercovering is a hypercovering in
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the étale topology of universal Z/dZ-cohomological descent for all d ≥ 1 prime

to char(k̃).

1.3. A uniformization theorem for paracompact strictly k-analytic

spaces. Let S be a scheme. A morphism ϕ : Y → S is said to be maximally

finitely dominant if the image of the generic point y of every irreducible

component of Y is the generic point of an irreducible component of S and

the extension of residue fields κ(y)/κ(ϕ(y)) is finite. One denotes by alt/S
the category of maximally finitely dominant morphisms Y → S. The alteration
topology on S is the Grothendieck topology on alt/S defined by the pretopology

which is generated by coverings in the Zariski topology and by proper surjective

and maximally finitely dominant morphisms. Notice that any covering in the

étale topology of S has a refinement in the alteration topology of S ([ILO,

Exp. II, 3.1.1]).

Gabber’s “weak” uniformization theorem [ILO, Exp. VII, Theorem 1.1] states

that, given a noetherian quasi-excellent scheme S and a nowhere dense closed

subset Z ⊂ S, there exists a finite family of morphisms {Si → S}i∈I which is

a covering in the alteration topology of S and such that each Si is regular and
connected and the support of the preimage of Z in Si is a divisor with strict

normal crossings. (The empty set is considered as a divisor with strict normal

crossings.)

Theorem 1.3.1: Suppose that the field k is perfect and its valuation is non-

trivial. Then for every paracompact strictly k-analytic space X , there exists a

compact surjective morphism
∐
i∈I Yi → X with each Yi of the form Ŷη, where

Y is an affine scheme finitely presented over k◦ with Yη smooth over k.

Proof. Since X is paracompact, it admits a locally finite covering by strictly

affinoid domains {Ui}i∈I . If we can find, for every i ∈ I, a surjective mor-

phism
∐ni

j=1 Yij → Ui with each Yij of the form as in the formulation, then∐
i∈I,1≤j≤ni

Yij → X is a required morphism. This reduces the situation to the

case when X =M(A) is strictly k-affinoid.

By a result of Kiehl [Kiehl] (see also [Duc]), the affine scheme X = Spec(A) is
excellent. We can therefore apply Gabber’s theorem. It follows that there exists

a finite family of morphisms {Xi → X}i∈I which is a covering in the alteration

topology of X and such that each Xi is regular and connected. By [Ber2, §2.6],
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each Xi defines a good strictly k-analytic space X an
i , and from [Ber2, 2.6.3] it

follows that all strictly affinoid subdomains of X an
i are regular.

We claim that one can find, for every i ∈ I, a finite family of strictly affinoid

domains {Xij ⊂ X an
i }j∈Ji such that X =

⋃
i∈I,j∈Ji

ϕi(Xij). Indeed, it suffices

to consider the two types of coverings that generate the alteration topology of

X . If such a covering is a proper surjective and maximally finitely dominant

morphism Y → X , then Yan is compact and the induced map Yan → X is

surjective, by [Ber2, 2.6.8], and this implies the required fact. Suppose that

{Xi → X}i∈I is a covering in the Zariski topology of X . Replacing it by a

refinement, we may assume that each Xi is a principal open subset D(fi) with

fi ∈ A such that the ideal generated by all fi’s coincides with A. It follows that
1 =

∑
i∈I gifi for some elements gi ∈ A. We set r = maxi∈I maxx∈X |gi(x)|.

Then for every point x ∈ X there exists i ∈ I with |fi(x)| ≥ r−1. This implies

that X =
⋃
i∈I Vi for the strictly affinoid domains Vi = {x ∈ X

∣∣|fi(x)| ≥ r−1},
and the claim follows.

The above claim reduces the situation to the case when the strictly k-affinoid

spaceX and the scheme X are regular. Since the field k is perfect, it follows from

[Ber5, §5], that X is smooth in the sense of rigid geometry (called rig-smooth

in [Ber7, §1.1]).

Lemma 1.3.2: Let k be a non-Archimedean field with nontrivial valuation, and

let R be a local henselian subring of k◦ that contains a nonzero element a ∈ k◦◦
and whose a-adic completion R̂ coincides with k◦ (e.g., R = k◦). Then every

rig-smooth k-affinoid space X =M(A) is of the form Ŷη, where Y is an affine

scheme finitely presented over R with Yη smooth over the fraction field of R.

The lemma implies that X is isomorphic to the intersection of the analytifi-

cation of a smooth closed subset of an affine space with the unit closed polydisc.

Indeed, if Y = Spec(B), a surjective homomorphism k◦[T1, . . . , Tn] → B gives

rise to a closed immersion of the smooth k-scheme Yη = Spec(B′) in the n-

dimensional affine space, where B′ = B ⊗k◦ k, such that the intersection of the

analytification Yan
η with the unit closed polydisc coincides with X .

Proof. One can find a complete a-adic algebra A topologically finitely presented

and flat over k◦ with A ⊗k◦ k = A. By [Tem, Proposition 3.3.2] (see Remark

1.3.4), A is formally smooth over R̂ = k◦ outside V (a) in the sense of [Elk,

p. 581] and, by Elkik’s theorem [Elk, Theorem 7 and Remark 2, p. 587], there
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exists a finitely presented R-algebra B which is smooth over the fraction field of

R and whose a-adic completion B̂ is isomorphic to A. It follows that the affine

scheme Y = Spec(B) possesses the required property.

Corollary 1.3.3: If the field k is perfect and its valuation is nontrivial, ev-

ery paracompact strictly k-analytic space X admits a compact hypercovering

a : Y• → X in which all Yn are disjoint unions of strictly affinoid domains in

the analytifications of smooth affine schemes over k.

Remark 1.3.4: In [Tem, Proposition 3.3.2], the setting is assumed to be the same

as that before the formulation and, in particular, the ground field is assumed

to be discretely valued. But the proof in fact does not use this assumption.

Proof of Theorem 1.1.1. First of all, it suffices to consider the case when

X =M(A) is k-affinoid and F is a pullback of an abelian constructible sheaf

F to X = Spec(A). By [SGA4, Exp. IX, 2.14(ii)], one can find a finite family

of finite morphisms {Yi
pi→ X}i∈I and a monomorphism

F → F ′ =
⊕
i∈I

pi∗(Gi),

where Gi is an abelian constant sheaf on Yi = Spec(Bi). If F ′ is the pullback

of F ′ to X , then

Hq(X,F ′) =
⊕
i∈I

Hq(Yi, Gi),

where Gi is the pullback of Gi to Yi = M(Bi). This implies validity of the

required fact for q = 0 since the sets π0(Yi) are finite. Furthermore, the pullback

F ′′ of F ′′ = Coker(F → F ′) is a constructible sheaf on X and, therefore, if we

know finiteness of cohomology groups with coefficients in finite constant sheaves,

finiteness of the group Hq(X,F ) is reduced to that of the group Hq−1(X,F ′′).
Thus, by induction on q, we may assume that F = ΛX is the constant sheaf

associated with a finite abelian group Λ of order prime to char(k̃).

Furthermore, by the invariance of cohomology under extensions of the ground

field [Ber2, 7.6.1], we may assume that the valuation on k is nontrivial and X

is strictly k-affinoid. Since the finiteness statement is true for compact quasi-

algebraic k-analytic spaces ([Ber3, 5.6]), it suffices to show that X admits a

compact hypercovering a : Y• → X in which all Yn are quasi-algebraic. But

this follows from Corollary 1.3.3.
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Proof of Theorem 1.1.2. In Step 1 we prove that the vanishing cycles sheaves

RqΨη(F ) are constructible and, in Step 2, we deduce constructibility of the

nearby cycles sheaves RqΘ(F ).

Step 1. We follow the proof of [SGA4 1
2 , Th. finitude, Theorem 3.2]. Since

the statement is local with respect to X, we may assume that X = Spf(A) is

affine with topologically finitely presented A and, in particular, that

d = dim(Xη) < ∞. We may also assume that A is flat over k◦. If d = 0,

then X is the completion of the scheme Spec(A) finite over k◦, and the re-

quired fact is known. Suppose that d ≥ 1 and that the theorem is true for

schemes whose generic fibre has dimension at most d − 1. We claim that, for

every q ≥ 0, there exists a constructible subsheaf Gq ⊂ RqΨη(F ) such that the

supports of local sections of the quotient RqΨη(F )/Gq are finite. First of all,

we recall a result from [Ber3] which is an analog of Lemma 3.4 from loc. cit.

Suppose that the canonical morphism X→ Spf(k◦) goes through a morphism

X → A1 := Spf(k◦{T }). Notice that A1 is the formal completion of the affine

line over k◦, and A1
η is the one-dimensional unit disc over k. Let t be the maximal

point of A1
η (it corresponds to the norm of the k-affinoid algebra k{T }). Then

the image s′ of t under the reduction map π : A1
η → A1

s is the generic point of

A1
s, π

−1(s′) = {t} and H̃(t) = k(s′) = k̃(T ). We set

X′ = X×A1 Spf(H(t)◦).

This is a formal scheme finitely presented over H(t)◦. Let X′
s′ and X′

η′ denote

the closed and the generic fibres of X′, and let Ψη′ denote the corresponding

vanishing cycles functor. The canonical morphism of formal schemes λ : X′ → X

induces morphisms λs : X′
s′→̃(Xs)s′ → Xs and λη : X′

η′→̃(Xη)t → Xη, where

(Xs)s′ (resp. (Xη)t) is the fibre of the morphism Xs → A1
s (resp. Xη → A1

η) at

the point s′ (resp. t). Let F ′ denote the pullback of the sheaf F with respect

to λη, and fix an embedding of fields ks ↪→ H(t)s. It induces a morphism

λs : X
′
s′→̃(Xs)s′ → Xs. By [Ber3, 4.6(ii)], there is a canonical isomorphism

λ∗s(R
qΨη(F ))→̃RqΨη′(F ′)P ,

where P = G(H(t)s/H(t)nrks) (it is a pro-p-group, where p = char(k̃)).

By [Ber2, 2.5.2], dim(X′
η′) = d− 1, and therefore, by the induction hypoth-

esis, the sheaf on the right-hand side is constructible. We now take a closed

immersion X → An = Spf(k◦{T1, . . . , Tn}) to the formal affine space An. It

gives rise to a closed immersion of the affine schemes Xs to the affine space Ans
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over k̃. By Lemma 3.5 from [SGA4 1
2 , Th. finitude], applied to the vanishing

cycles sheaf RqΨη(F ) on Xs and to the above closed immersion, there exists a

constructible subsheaf Gq ⊂ RqΨη(F ) such that the supports of local sections

of the quotient Hq = RqΨη(F )/Gq are finite, i.e., the claim is true.

It follows that Hp(Xs,Hq) = 0 for all p ≥ 1 and, in order to prove that

the sheaves RqΨη(F ) are constructible, it suffices to verify that the groups

H0(Xs,Hq) are finite. For this we use the spectral sequence [Ber3, 4.5(iii)]

Ep,q2 = Hp(Xs, R
qΨη(F )) =⇒ Hp+q(Xη, F ).

As at the end of the proof of [SGA4 1
2 , Th. finitude, 3.2], we consider the images

of the above abelian groups in the quotient of the category of abelian groups by

the thick subcategory of finite abelian groups. By the finiteness result loc. cit.,

Corollary 1.10, one has Ep,q2 ∼ Hp(Xs,Hq) and, therefore, Ep,q2 ∼ 0 for all

p ≥ 1. It follows that E0,q
2 ∼ H0(Xs,Hq) ∼ Hq(Xη, F ). The latter group is

finite, by Theorem 1.1.1.

Step 2 (cf. the proof of [SGA4 1
2 , Th. finitude, 3.11]). First of all, for a subfield

k ⊂ K ⊂ ks, let XsK and XηK denote the closed and the generic fibres of

the formal scheme XK = X⊗̂k◦K̂◦ over K̂◦. (One has XsK = Xs ⊗ K̃ and

XηK = Xη⊗̂K̂.) Let also ΘK denote the nearby cycles functor for XK and, for

an étale sheaf F , let FK denote the pullback of F to XηK . It follows from [Ber3,

4.1] that the higher direct images of the functor F �→ ΘK(FK) are RqΘK(FK)

(they will be denoted by RqΘK(F )), and that the latter are associated with the

presheaves Ys �→ Hq(Yη, FK) (for Y étale over XK). It follows that, for a pair

K ⊂ L of Galois extensions of k, there is a Hochschild–Serre spectral sequence

Epq2 = Hp(Gal(L/K), RqΘL(F )) =⇒ Rp+qΘK(F ),

where Hp(Gal(L/K), R) is the value of the p-th derived functor of the func-

tor R �→ RGal(L/K) on the category of abelian sheaves on XsL , provided with

a continuous action of the group Gal(L/K) compatible with its action on

XsL , to the category of abelian sheaves on XsK . (Given an étale morphism

U → XsK , one has RGal(L/K)(U) = R(U ×XsK

XsL)
Gal(L/K), and therefore

ΘK(F ) = ΘL(F )
Gal(L/K).)

We now turn to the proof of our theorem. We may assume that the residue

field k̃ is algebraically closed, and F is l-torsion for a prime integer l not divisible

by char(k̃). Suppose that the order of the quotient group |k∗|/|k∗|l is lm. Then
the quotient of the Galois group G of k by the maximal invariant subgroup P
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of profinite order prime to l is isomorphic to Zl(1)
m (e.g., see [Ber2, 2.4.4]). It

follows that there is an increasing chain of abelian extensions

k0 = k ⊂ k1 ⊂ · · · ⊂ km ⊂ ks

with Gal(ks/km) = P and each Gal(ki/ki−1) isomorphic to Zl(1). Applying the

above spectral sequence to the pair km ⊂ ks, we get RqΘkm(F ) = RqΨη(F )
P .

By Step 1, the sheaves RqΨη(F ) are constructible and, in particular, the group

G acts on them through a finite quotient. If σ1, . . . , σn are representatives of

the similar quotient of the group P , then the sheaf RqΨη(F )
P is the kernel of

the homomorphism from RqΨη(F ) to the product of n copies of itself defined

by the element σ1 − 1, . . . , σn − 1 and, therefore, this sheaf is constructible.

Suppose now that, for 1 ≤ i ≤ m, the sheaves RqΘki(F ) are constructible. If

σ is a generator of the Galois group Gal(ki/ki−1), then for the above spectral

sequence, applied to the pair ki−1 ⊂ ki, we get E0q
2 = Ker(σ − 1, RqΘki(F )),

E1q
2 = Coker(σ − 1, RqΘki(F )), and Epq2 = 0 for p 	= 0, 1. These sheaves are

constructible and, therefore, so are the sheaves RqΘki−1(F ).

2. A version of Gabber’s weak uniformization theorem

2.1. Formulation of the result. For a scheme X , the underlying reduced

scheme is denoted by Xred. For a discrete valuation ring R, we denote by R̃

its residue field, i.e., the quotient R/mR of R by its maximal ideal mR. For a

scheme X over R, the closed subscheme X̃ = X⊗R R̃ is said to be the R-special

fiber of X . Notice that every closed subset Z ⊂ X (considered as a reduced

scheme) is a union Zf ∪ Z ′, where Zf is flat over R and Z ′ ⊂ (X̃ )red.

Definition 2.1.1: (i) A scheme X over R is said to be an R-strict normal

crossings scheme (or, for brevity, an R-snc scheme) if X is a separated

noetherian connected regular scheme flat over R and its R-special fiber X̃ is a

divisor with strict normal crossings.

(ii) A pair (X ,Z) consisting of scheme X over R and a closed subset Z ⊂ X
is said to be an R-snc pair if

(1) X is an R-snc scheme;

(2) Z is a divisor with strict normal crossing;

(3) if Zf =
⋃
i∈I Zi is the decomposition of Zf into irreducible components

then, for every subset J ⊂ I, the intersection ZJ =
⋂
i∈J Zi is a disjoint

union of R-snc schemes.
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Remarks 2.1.2: (i) If X is defined over the fraction field of R or, equivalently,

X̃ = ∅, then X is an R-snc scheme if and only if it is a noetherian connected

regular scheme. (Recall that the empty subset of X is considered as a divisor

with strict normal crossing.)

(ii) If a pair (X ,Z) possesses the properties (1) and (2) and Z contains

(X̃ )red = X̃ , then (X ,Z) also possesses the property (3), i.e., it is an R-snc

pair. Indeed, let x be a point in Z̃J = ZJ ∩ X̃ . Shrinking X , we may assume

that x lies in the intersection of all of the irreducible components of Z. By the

assumption, we can find a regular system of local parameters {c1, . . . , cd} at x
such that c1, . . . , cm with 1 ≤ m ≤ d−1 define the irreducible components of Zf
at x and cm+1, . . . , cn withm+1 ≤ n ≤ d define the irreducible components of X̃
at x. Suppose also c1, . . . , ck with 1 ≤ k ≤ m define the irreducible components

for the set J . Multiplying cm+1 by a function invertible in a neighborhood of

x, we may assume that π = cm+1 · · · cn is a uniformizing element of R. Then

{ck+1, . . . , cn} is a regular system of local parameters of ZJ at x, the elements

cm+1, . . . , cn define the irreducible components of Z̃J at x, and their product is

π. This implies that Z̃J is a divisor in ZJ with strict normal crossings.

Recall that an extension of fields K/k is said to possess the property of Epp

if, in the case they are of positive characteristic p, all elements of the maximal

perfect subfield Kp∞ =
⋂∞
n=1K

pn of K are algebraic and separable over k. The

residue field of a point x of a scheme is denoted by κ(x).

Theorem 2.1.3: Let X be a noetherian quasi-excellent scheme flat over a com-

plete discrete valuation ring R, and let Z be a nowhere dense closed subset of

X that contains (X̃ )red. Suppose that the residue field R̃ is perfect and, for

every closed point x ∈ X̃ , the extension κ(x)/R̃ possesses the property of Epp.

Then there exists a finite covering {Xi
ϕi→ X}i∈I in the alteration topology

of X such that each morphism Xi → Spec(R) factors through a morphism

Xi → Spec(Ri) that makes (Xi, ϕ−1
i (Z)red) an Ri-snc pair, where Ri is the

ring of integers of a finite extension of the fraction field of R.

Remarks 2.1.4: (i) Gabber’s weak uniformization theorem [ILO, Exp. VII, The-

orem 1.1] guarantees existence of a finite covering {Xi
ϕi→ X}i∈I in the alteration

topology of X such that each Xi is a regular connected scheme in which the

closed subset ϕ−1
i (Z)red is a divisor with strict normal crossings. By Remark

2.1.2(ii), Theorem 2.1.3 actually states that one can find such a covering with



164 V. G. BERKOVICH Isr. J. Math.

the additional property that the R-algebra O(Xi) of each Xi contains the ring

of integers Ri of a finite extension of R and the Ri-special fiber Xi ⊗Ri R̃i is

reduced. Notice that for X defined over the fraction field of R, Theorem 2.1.3

follows from Gabber’s theorem.

(ii) The assumption on the property of Epp is necessary because in the case,

when X is the spectrum of a complete discrete valuation ring, the statement

of Theorem 2.1.3 is equivalent to Epp’s theorem [Epp, 1.9] which requires that

assumption. This will in fact serve as a basis of induction on the dimension of

X in the proof. On the other hand, the assumption on perfectness of the field

R̃ can be, probably, removed.

(iii) While restricting to R-schemes of finite type, our definitions of an R-

snc scheme and of an R-snc pair are weaker than de Jong’s definitions of a

semi-stable scheme and of a semi-stable pair over R ([deJ1, 2.16 and 6.3]).

Namely, X is semi-stable over R if, in addition to being R-snc, the generic fiber

Xη is smooth over the fraction field of R and all of the joint intersections of

the irreducible components of X̃ are smooth over R̃. His Theorem 6.5 from

loc. cit. (which does not require perfectness of R̃) implies that there exists an

alteration ϕ : X ′ → X for which the pair (X ′, ϕ−1(Z)red) is strictly semi-stable

over the ring of integers of a finite extension of the fraction field of R.

(iv) The proof of Theorem 2.1.3 follows the proof of Gabber’s theorem. We

briefly recall the setting, constructions and facts of each step from the proof of

the latter, and describe the necessary changes that should be done to get the

statement of Theorem 2.1.3.

2.2. Reduction to the local noetherian complete normal case.

Step 1. Suppose that Theorem 2.1.3 is true for affine schemes Spec(A), where

A is a local noetherian henselian excellent normal R-flat algebra of dimension

at most d ≥ 1. Then Theorem 2.1.3 is true for X of dimension d. Indeed,

the canonical morphism from the disjoint union of its irreducible components

to X is a covering in the alteration topology and, therefore, we may assume

that X is integral and X̃ 	= ∅ (see Remark 2.1.4(i)). Furthermore, since X is

quasi-excellent, the canonical morphism from the normalization of X to X is

also a covering in the alteration topology and, therefore, we may assume that

X is normal. Let x be a closed point of X lying in X̃ . By [EGAIV, 18.7.6],

the henselization X(x) of X at x is an excellent scheme. Since x is the only

closed point in the special fibre of X(x) and has the same residue field as in
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X , we can apply the assumption. It follows that there exists a finite covering

{Xi
ϕi→ X(x)}i∈I in the alteration topology of X(x) such that, for every i ∈ I,

(Xi, ϕ−1
i (Z)red) is an Ri-snc pair, where Ri is the ring of integers of a finite

extension of the fraction field of R. By [ILO, Exp. II, 4.1.2], this covering is the

base change of a covering {Vi → U}i∈I in the alteration topology of an étale

neighborhood U of x in X . Since the R-algebra O(Xi) is the inductive limit

of the R-algebras O(Vi) taken over U ’s, we can find a sufficiently small U such

that each O(Vi) contains Ri. The remaining part of the proof of [ILO, Exp. II,

4.3.3] is applicable to our case.

Step 2. Suppose that the theorem is true for affine schemes Spec(A), where

A is a local noetherian complete normal flat R-algebra of dimension at most

d. Then Theorem 2.1.3 is true for X = Spec(A), where A is a local noe-

therian henselian excellent normal flat R-algebra of dimension d. Indeed, let

X = Spec(A), where A is such an R-algebra, and let Z be a nowhere dense

closed subset of X that contains (X̃ )red. We follow the proof of [ILO, Exp. III,

Proposition 6.2]. First of all, since A is excellent, its completion Â with re-

spect to the maximal ideal m is also normal and, since Â is flat over A, the

preimage Ẑ of Z in X̂ = Spec(Â) is nowhere dense. For n ≥ 0, one sets

Xn = Spec(A/mn+1) and, for a scheme Y over X , one sets Yn = Y ×X Xn.
Notice that there is a canonical isomorphism X̂n→̃Xn. Two morphisms X̂ → Y
and X → Y are said to be n-close if their restrictions to X̂n = Xn coincide.

Notice also that there is a canonical closed immersion Y0 → Ỹ.
The R-algebra Â is a filtered inductive limit lim−→Aα of finitely generated A-

algebras Aα, α ∈ E. If Xα = Spec(Aα), there is an isomorphism of schemes

X̂ →̃ lim←−Xα. Recall (see [EGAIV, §8]) that every scheme Y of finite type over X̂
is a base change of a scheme Yα of finite type over Xα for some α (it is called a

model of Y over Xα). Moreover, given two models Yα and Yβ of Y, there exist

γ ≥ α, β and an Xγ-isomorphism Yα×XαXγ→̃Yβ×Xβ
Xγ . Similar facts hold for

morphisms between schemes of finite type over X̂ . The canonical morphisms

X̂ → Xα and Xα → X will be denoted by sα and tα, respectively.

By the theorem of Popescu [Pope, 1.3], the excellent henselian local ring

A possesses the Artin approximation property. This implies that, for every

α ∈ E, the set Xα(A) = Hom(X ,Xα) is dense in Xα(Â) = Hom(X̂ ,Xα)
in the m-adic topology. It follows that, for every n ≥ 0 and α ∈ E, there

exists a section u : X → Xα of the morphism tα : Xα → X which is n-close
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to the morphism sα : X̂ → Xα. One then defines, for a scheme Y of finite

type over X̂ with a model Yα over Xα, a scheme Y(u) = Yα ×Xα,u X (it is

denoted by Yu in [ILO, Exp. III]). Since u is n-close to sα, it follows that

there is a canonical isomorphism Y(u)
n = (Y(u))n→̃Yn. Similarly, any morphism

ϕ : Y ′ → Y between schemes of finite type over X̂ with a model ϕα : Y ′
α → Yα

gives rise to a morphism ϕ(u) : Y ′(u) → Y(u), and the induced Xn-morphisms

ϕ
(u)
n : Y ′(u)

n → Y(u)
n and ϕn : Y ′

n → Yn are compatible.

For a dominant morphism Y ′ → Y, Y ′
r denotes the closed reduced subscheme

of Y ′ which is the union of all irreducible components of Y ′ that dominate an

irreducible component of Y. By [ILO, Exp. III, 3.1(ii)], given a finite covering

{Yi → X̂}i∈I in the alteration topology of X̂ , there exist α0 ∈ E and n0 ≥ 1

such that, for every α ≥ α0, every n ≥ n0, every section u : X → Xα of tα

which is n-close to sα, and every family of models Yi,α of Yi over Xα, the family

composition morphism {(Y(u)
i )r → Y(u)

i → X}i∈I is a covering in the alteration

topology of X . Furthermore, by loc. cit. 5.4(iii), given a morphism of finite type

Y → X̂ with rY regular (resp. of dimension m), there exist α0 ∈ E and n0 ≥ 1

such that for every α ≥ α0, every n ≥ n0, every section u : X → Xα of tα which

is n-close to sα, and every model Yα of Y over Xα, the scheme Y(u) is regular

(resp. of dimension m) in an open neighborhood of Y(u)
0 .

Let now {Yi
ϕi→ X̂}i∈I be a finite covering in the alteration topology of X̂ such

that, for every i ∈ I, (Yi, ϕ−1
i (Ẑ)red) is an Ri-snc pair, where Ri is the ring of in-

tegers of a finite extension of the fraction field of R. Since O(Yi) = lim−→O(Yi,α),
we can find α0 ∈ E such that the R-algebra O(Yi,α) contains Ri for all α ≥ α0

and i ∈ I. Replacing E by the subset {α
∣∣α ≥ α0}, we may assume that

Ri ⊂ O(Yi,α) for all α ∈ E and i ∈ I. Then, for every i ∈ I, there is an iso-

morphism of Ri-special fibers Ỹi→̃ lim←−Ỹi,α. Let Wi be the regularity locus of

Ỹi; it is an open subscheme of Ỹi. Its complement Σi = Ỹi\Wi, provided with

the reduced structure, is a closed subscheme of Ỹi. Since Ỹi is a divisor with

strict normal crossings,Wi consists of the points that lie in only one irreducible

component of Ỹi (all of them are of dimension di−1, where di = dim(Yi)) and
dim(Σi) ≤ di − 2. Replacing E by the subset {α

∣∣α ≥ α0} for α0 large enough,

we may assume that Wi→̃ lim←−Wi,α and Σi→̃ lim←−Σi,α for complementary open

and closed subschemesWi,α,Σi,α ⊂ Ỹi, respectively. By the results stated in the

previous paragraph and the proof of [ILO, III, 6.2], there exist α0 ∈ E, n0 ≥ 1
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such that for every α ≥ α0, every n ≥ n0, every section u : X → Xα of tα which

is n-close to sα, and every i ∈ I, the following is true:

(1) the scheme Y(u)
i is regular of dimension di in an open neighborhood of

(Y(u)
i )0;

(2) the scheme W(u)
i is regular (di − 1)-equidimensional and

dim(Σ
(u)
i ) ≤ di − 2;

(3) the support of the preimage of Z in Y(u)
i is a divisor with strict normal

crossings in an open neighborhood of (Y(u)
i )0;

(4) the family {(Y(u)
i )r → X}i∈I is a covering in the alteration topology of

X .
For i ∈ I, let {Y ′

j}j∈Ji be the connected components of an open neighborhood

of (Y(u)
i )0 in which the above properties (1) and (3) hold. We also set Rj = Ri

for j ∈ Ji. By (4) and [ILO, Exp. II, 4.1.1], {Y ′
j

ψj→ X}j∈J with J =
⋃
i∈I Ji

is a covering in the alteration topology of X . By the construction, each Y ′
j

is connected and regular, and the support of ψ−1
j (Z) is a divisor with strict

normal crossings. By (2), if j ∈ Ji, the intersection W(u)
i ∩ Ỹ ′

j is dense in

Ỹ ′
j and, therefore, Ỹ ′

j is reduced at the generic points of all of its irreducible

components. Since (Ỹ ′
j)red is a divisor with strict normal crossing, it follows

that Ỹ ′
j is reduced (see [ILO, Exp. IV, 4.2.4]). Thus, each (Y ′

j , ψ
−1
j (Z)) is an

Rj-snc pair.

2.3. A version of the Cohen–Gabber theorem. Let R be a complete

discrete valuation ring with fraction field K. An open subset U of a scheme X
over R is said to be R-dense if Ũ is dense in X̃ .

Proposition 2.3.1: Let X = Spec(A), where A is a local noetherian complete

normal and flat R-algebra of dimension d ≥ 1 with residue field k and such that

mRA 	= A. Suppose that the residue field R̃ is perfect and the extension k/R̃

possesses the property of Epp. Then

(1) there exists a finite surjective morphism X ′ = Spec(A′)→ X , where A′

is a local normal flatR-algebra which contains a complete discrete valua-

tion ring S whose residue field coincides with that ofA′ andmS = mR′S

for the ring of integers R′ of a finite extension of K in the fraction field

of S;
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(2) there exists a finite surjective morphism X ′ → Spec(S[[T1, . . . , Td−1]])

étale at an R′-dense open subset of X ′.

Proof. Step 1. We claim that, for every prime ideal p ⊂ Ã, the extension L/R̃,
where L is the fraction field of the local noetherian complete ring Ã/p, possesses

the property of Epp. Indeed, since the field R̃ is perfect, the residue field k of

Ã (which coincides with that of A) is separable and, therefore, formally smooth

over R̃. By [EGAIV, Ch. 0, 19.6.2], there exists a subfield k1 of Ã that contains

R̃ and such that the canonical homomorphism Ã→ k induces an isomorphism

k1→̃k. By the assumption, the extension k1/R̃ possesses the property of Epp,

and by [ILO, Exp. IV, 3.2.3(iv)], the extension L/k1 possesses the same property.

The claim now follows from loc. cit., 3.2.3(i).

Step 2. By Step 1, we can apply Epp’s theorem [Epp, 1.9] to the minimal prime

ideals of Ã. It follows that one can find a finite extension K ′ of K such that

for the integral closure R′ of R in K ′ the special fiber X̃ ′′ of the normalization

X ′′ = Spec(A′′) of (the reduction of) X ⊗R R′ is reduced at the generic points

of the irreducible components. By [ILO, Exp. IV, 4.2.4], X̃ ′′ is reduced. The

ring A′′ is semi-local, and so for any connected component X ′ = Spec(A′) of

X ′′ the ring A′ is local and the canonical morphism X ′ → X is finite surjective.

We choose such a connected component X ′.

Step 3. Let k′ be the residue field of A′. Since the field R̃′ is finite over R̃, it is
also perfect, and so k′ is formally smooth over R̃′. It follows from [EGAIV, Ch.

0, 19.7.2], that there exist a local noetherian complete ring S, a formally smooth

homomorphism R′ → S, and an isomorphism S ⊗R′ R̃′→̃k′. (In particular, the

residue field of S is k′.) Since the maximal ideal of S is generated by the

maximal ideal of R′, S is a discrete valuation field.

Step 4. The quotient ring A′/mR′A′ is reduced and its residue field is k′.
Since A′ is excellent and flat over R′, the quotient ring A′/mR′A′ is (d − 1)-

equidimensional. By the Cohen-Gabber theorem [ILO, Exp. IV, 2.1.1], there

exist a R̃′-lifting k′ ↪→ A′/mR′A′ and elements a1, . . . , ad−1 in the maximal

ideal of A′/mR′A′ such that the induced homomorphism

k′[[T1, . . . , Td−1]]→ A′/mR′A′ : Ti �→ ai

is finite and generically étale.
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Step 5. The homomorphism R′ → S is formally smooth. It follows that

the composition homomorphism S → k′ → A′/mR′A′ can be lifted to an R′-
homomorphism S → A′. Lifting the elements ai’s to A′, we get an injective

homomorphism S[[T1, . . . , Td−1]] → A′ which is finite, by [Bou, Ch. III, §2,
n◦ 11, Prop. 14], and étale over the generic point of the R′-special fiber of

Spec(S[[T1, . . . , Td−1]]), by Step 4.

2.4. Partial algebraization.

Proposition 2.4.1: Let R be a complete discrete valuation ring, and A a

local noetherian complete normal faithfully flat R-algebra of dimension d ≥ 2

and with residue field k. Suppose that the residue field R̃ is perfect and the

extension k/R̃ possesses the property of Epp. Then there exists a local normal

finite A-algebra A′ faithfully flat over R and such that, for any finite family of

ideals {a′i}i∈I of A′, one can find a local noetherian regular complete and flat

R-algebra B of dimension d − 1 and an R-homomorphism α : C → A′ from a

finitely generated B-algebra C of dimension d for which

(1) n = α−1(mA′) is a maximal ideal of C;

(2) α induces an isomorphism Ĉn→̃A′;
(3) all of the ideals a′i are induced by ideals of Cn.

In geometric terms, Proposition 2.4.1 states that there exists a finite mor-

phism f : X ′ = Spec(A′) → X = Spec(A) with A′ as above such that,

for any finite family {Z ′
i}i∈I of closed subschemes of X ′, one can find mor-

phisms X ′ g−→ Y = Spec(C)
ϕ−→ S = Spec(B) with B and C as above and

X̂ ′ = Spf(A′)→̃Ŷ/y for a closed point y ∈ Ỹ and Z ′
i = g−1(Wi) for closed

subschemes Wi ⊂ Y.

Proof. Let X ′ = Spec(A′) → X = Spec(A) be a finite surjective morphism

with the properties (1) and (2) of Proposition 2.3.1. It suffices to show that

the R-algebra A′ and every family a′1, . . . , a
′
n of primary ideals of A′ possess the

required properties. Let a be one of the ideals a′i. There are the following two

cases.

(1) dim(A′/(a + mR′A′) = d − 1. In this case the prime ideal p which

is the radical of a has height one. Since A′ is normal, it follows that

a = A′∩pmA′
p for some m ≥ 1 (see Corollary of Proposition 9 in [Serre,

Ch. III, C, §1]).



170 V. G. BERKOVICH Isr. J. Math.

(2) dim(A′/(a + mR′A′) < d − 1. In this case, the image of the corre-

sponding closed subset V (a) in Spec(S[[T1, . . . , Td−1]]) is contained in

the closed subset V (ga) for some element ga ∈ S[[T1, . . . , Td−1]], which

is not equal to zero modulo mR′ , where S is from Proposition 2.3.1.

Let g be the product
∏
ga taken over all a ∈ {a′1, . . . , a′n} of type (2). (If there

are no such ideals, then g = 1.) Let also f be an element of S[[T1, . . . , Td−1]],

which is not zero modulo mR′ and such that the morphism

X ′ → Spec(S[[T1, . . . , Td−1]])

is étale outside V (f). We set h = fg. Replacing each Ti for 1 ≤ i ≤ d − 2

by an element of the form Ti + TNi

d−1 with Ni ≥ 1 and multiplying h by an

invertible element, we may assume that h is a Td−1-distinguished element of

S[[T1, . . . , Td−1]], i.e., h = T ld−1+
∑l−1

i=0 piT
i
d−1 for elements pi from the maximal

ideal of B = S[[T1, . . . , Td−2]] (see [Bou, Ch. VII, §3, n◦ 7, Lemma 3]). We notice

that in this case each ga as above is a product of a Td−1-distinguished element

and an invertible element.

Let B{Td−1} be the henselization of the ring B[Td−1] at the maximal ideal

(mB, Td−1). The element h lies in the maximal ideal of B{Td−1} and, therefore,
the pair (B{Td−1}, (h)) is henselian, by [ILO, Ch. V, 1.2.3]. Since h is a Td−1-

distinguished element, the Weierstrass preparation theorem [Bou, Ch. VII, §3,
n◦ 8, Prop. 5] implies that the h-adic completion of B{Td−1} coincides with

B[[Td−1]] = S[[T1, . . . , Td−1]] (see [ILO, Ch. V, 1.1.3]). Since X ′ is finite over

Spec(B[[Td−1]]) and étale outside V (h), it follows from Elkik’s theorem [Elk,

Theorem 5] that A′→̃C′ ⊗B{Td−1} B[[Td−1]] for a finite local B{Td−1}-algebra
C′ étale outside V (h). It follows that the local ring C ′ is henselian and of

dimension d, the preimage of its maximal ideal mC′ in A′ coincides with mA′ ,

and A′ coincides with the mC′-adic completion of C′. (Notice that residue fields
of A′ and C ′ coincide with that of S.)

By [ILO, Exp. V, 2.2.4], each ideal a of type (1) comes from an ideal of C ′.
If a is of type (2), then ga is a product of a Td−1-distinguished element and an

invertible element and, by the Weierstrass preparation theorem, B[[Td−1]]/(ga)

is finite over B. This implies that A′/a is also finite over B and, by [ILO,

Exp. V, 2.2.6], a comes from an ideal of C ′.
Recall now that the henselisation B{Td−1} is a filtered inductive limit of

finitely generated étale B[Td−1]-algebras D with a unique maximal ideal m

over the zero ideal of B[Td−1] and B[[Td−1]]→̃D̂m. Notice that the dimension
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of every such D is equal to d. By [EGAIV, Theorem 8.8.2], we can find such D

and a finite D-algebra C for which there is an isomorphism C⊗DB{Td−1}→̃C′

and all of the ideals a′i are induced by ideals of C. It follows that C is of

dimension d, and the preimage of mA′ with respect to induced homomorphism

C → A′ is a maximal ideal n with Ĉn→̃A′.

Proof of Theorem 2.1.3. Step 1. Suppose we are in the situation of Theorem

2.1.3. Since X is quasi-compact, it suffices to show that every closed point x ∈ X
has an open neighborhood U which admits a finite covering {Xi → U}i∈I in the

alteration topology of U with the properties stated in the theorem. If x 	∈ X̃ ,
this follows from Gabber’s theorem [ILO, Exp. VII, Theorem 1.1]. Suppose

therefore that x ∈ X̃ . We may assume that X is of dimension d ≥ 1 and that

the statement is true for schemes of dimension at most d− 1. By §2.2, one may

assume that X = Spec(A), where A is a local noetherian normal complete flat

R-algebra of dimension d. If d = 1, the required statement follows from Epp’s

theorem [Epp 1.9]. Suppose therefore that d ≥ 2.

Step 2. Consider a morphism of schemes f : X ′ → X that possesses the

properties of Proposition 2.4.1. Since it is an alteration, we can replace X by

X ′, Z by f−1(Z)red and x by the closed point of X ′, and so we may assume

that there are morphisms of schemes X g→ Y = Spec(C)
ϕ→ S = Spec(B) with

the properties of that proposition for the closed subscheme Z. In particular,

g induces an isomorphism X̂ = Spf(A)→̃Ŷ/y for a closed point y ∈ Ỹ and

Z = g−1(W) for a closed subset (Ỹ)red ⊂ W ⊂ Y.
Suppose there is a finite covering {Yi

ψi→ Y}i∈I in the alteration topology of

Y such that, for every i ∈ I, (Yi,Wi) with Wi = ψ−1
i (W)red is an Ri-snc pair,

where Ri is the ring of integers of a finite extension of the fraction field of R.

Since the morphism g is flat, it follows that {Xi → X}i∈I with Xi = Yi ×Y X
is a finite covering in the alteration topology of X (see [ILO, Exp. II, 2.3.4]).

Let Zi be the preimage ofWi in Xi (it coincides with the preimage of Z in Xi).
We claim that each (Xi,Zi) is an Ri-snc pair. Indeed, since Y is an excellent

scheme, the morphism g is regular, and from [EGAIV, 6.8.3] it follows that the

morphisms Xi → Yi are regular. Hence, by [EGAIV, 6.5.2(ii)], regularity of

Yi implies regularity of Xi. For the same reason, the preimage of any regular

subscheme of Yi in Xi is regular. This implies that the support of Zi is a divisor

with strict normal crossings. Since the Ri-special fiber X̃i of Xi is the preimage

of the Ri-special fiber Ỹi of Yi, it follows also that the support of X̃i of Xi is
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a divisor with strict normal crossings, and it is regular at the generic points of

all of its irreducible components. Then X̃i is reduced, by [ILO, Exp. IV, 4.2.4].

This implies that X̃i is a divisor with strict normal crossings, and the claim

follows.

Thus, replacing X by Y, we may assume that X is an integral scheme of

dimension d provided with a dominant morphism of finite type of relative di-

mension one ϕ : X → S = Spec(B) and x is a closed point in X̃ . We can

compactify the morphism ϕ and assume that it is proper. Finally, replacing X
by a blow-up, we may assume that Z is a divisor.

Step 3. By de Jong’s theorem [deJ2, 2.4], there exists a commutative diagram

X
ϕ �� S

X ′

f ′

��

ϕ′
�� S ′
f

��

where f and f ′ are alterations, ϕ′ is a projective semi-stable family of curves

with smooth irreducible generic fiber, and f ′−1(Z)red ⊂ D ∪ ϕ′−1(T )red, where
D is a divisor of X ′ étale over S ′ which lies in the smoothness locus of ϕ′, and T
is a nowhere dense closed subset of S ′ that contains (S̃ ′)red. We can therefore

replace S and X by S ′ and X ′, respectively, and assume that ϕ is a projective

semi-stable family of curves with smooth irreducible generic fiber. Of course,

the scheme S is not necessarily regular. Notice also that the above property of

ϕ is preserved by any base change. By the induction hypothesis, there exists

a finite covering {Si
ψi→ S}i∈I in the alteration topology of S such that each

(Si, ψ−1
i (T )red) is an Ri-snc pair for the ring of integers Ri of a finite extension

of the fraction field of R. We can therefore replace R by Ri, S by Si, X by

X ⊗S Si, Z by its preimage in the latter, and x by a closed point of the latter

over it, and assume that (S, T ) is an R-snc pair. It follows that, if the point x

lies in the smooth locus of the morphism ϕ, it has an open neighborhood U for

which (U ,Z ∩ U) is an R-snc pair. Assume therefore that x does not lie in the

smoothness locus of ϕ. Since the divisor D lies in the latter set, we can shrink

X and assume that D = ∅. (In particular, ϕ is already not projective.) Since

Z is a divisor, we may increase it so that Z = ϕ−1(T ).

Step 4. Shrinking S, we may assume that S = Spec(C) is affine, T has n irre-

ducible components for 1 ≤ n ≤ d− 1, each of them is generated by a function
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from a regular system of parameters of C, and the point ϕ(x) lies in the intersec-

tion of all of them. Shrinking S again and replacing X by an étale neighborhood

of the point x, we may assume that X = Spec(A) is affine and that it admits

an étale morphism to an affine scheme of the form Spec(C[u, v]/(uv−c)) for an
element c ∈ C invertible at S\T . Since x does not lie in the smoothness locus

of ϕ, we have u(x) = v(x) = 0. To finish the proof, we apply Kato’s results

[Kato] on resolution of toric singularities which are briefly recalled below.

The schemes S and X are provided with fine saturated logarithmic structures

(S, NS) and (X ,MX ) which are log-regular in the sense of [Kato, (2.1)]. Recall

(see [ILO, Exp. VI, §1]) that NS and MX are the subsheaves (in the Zariski

topology) of the multiplicative submonoids ofOS andOX consisting of functions

invertible outside T and Z, respectively. In our case, the support of Z coincides

with the set F (X ) consisting of the points y ∈ X such that the maximal ideal

my of OX ,y is generated by non-invertible elements of MX ,y. The set F (X )
provided with the induced topology and the inverse image of the sheafMX/O∗

X
is monoidal space which is an affine fan in the sense of [Kato, (9.3) and (10.1)].

If F ′ → F (X ) is a proper subdivision [Kato, (9.6) and (9.7)], then the loga-

rithmic scheme (X ′,MX ′) = (X ,MX )×F (X ) F
′ is also log-regular, F ′ is identi-

fied with the fan F (X ′) of (X ′,MX ′) (and with the support Z ′ of the preimage

of Z in X ′), and the morphism X ′ → X is proper birational [Kato, (10.3)].

Moreover, the scheme X ′ is regular at a point y′ ∈ Z ′ if and only if the quo-

tient MX ′,y′/O∗
X ′,y′ is isomorphic to a power of N, the additive monoid of

non-negative integers {0, 1, 2, . . .}. In this case, the intersection of Z ′ with an

open neighborhood of y′ is a divisor with strict normal crossings, and repre-

sentatives of the free generators of the stalk in MX ′,y′ define the irreducible

components of Z ′ that pass through y′. If, in addition, y′ ∈ X̃ ′ and the product

of those of the representatives that define the irreducible components of X̃ ′ that
pass through y′ is equal to a uniformizing element of R, then X̃ ′ is a divisor

with strict normal crossings in an open neighborhood of y′ in X ′, i.e., (X ′,Z ′)
is an R-snc pair at y′. We are going to construct a required finite covering in

the alteration topology of X , which is a composition of such proper birational

morphisms and open coverings and which consists of log regular schemes with

the above properties.

Step 5. We fix elements c1, . . . , cn ∈ C that define the irreducible components

of T . Multiplying one of them by an invertible element of C, we may assume
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that the product of ci’s that define the irreducible components of S̃ is a uni-

formizing element π of R. Multiplying the element c by an invertible element of

C, we may assume that c lies in the submonoid P ⊂ C generated by c1, . . . , cn.

Since the latter are a part of a regular system of parameters of C, the monoid

P is isomorphic to Nn. Let Q be the submonoid of A generated by P and the

elements u and v. Then P and Q are finitely generated saturated monoids, and

the canonical homomorphisms P → C and Q→ A are charts of the logarithmic

structures NS and MX .

Step 6. Let c = cr11 · · · crmm with 1 ≤ m ≤ n and ri ≥ 1 for 1 ≤ i ≤ m. Suppose

the elements c1, . . . , ck and cm+1, . . . , cm+l for 0 ≤ k ≤ m and 0 ≤ l ≤ n −m
define the irreducible components of S̃. By Step 5, one has

π = c1 · · · ck · cm+1 · · · cm+l.

(The scheme S is not used anymore in what follows.) The elements

c1, . . . , cn, cn+1 = u

are free generators of the abelian group Qgr, and the submonoid Q ⊂ Qgr is

generated by the elements c1, . . . , cn, cn+1, c · c−1
n+1. Let L be the dual abelian

group Hom(Qgr,Z) whose operation is written additively. Its basis is formed

by the elements e1, . . . , en, en+1 for which 〈ei, cj〉 = δij . If σ is a strongly

convex rational cone in LR = L⊗Z R, the intersection of each one-dimensional

face of σ with L is isomorphic to N, i.e., it is generated by a unique element,

and we denote by E(σ) the set of such generators. Notice that the monoid

σ⊥ = {y ∈ Qgr
∣∣〈�, y〉 ≥ 0 for all � ∈ σ} is isomorphic to Nn+1 if and only if

elements of E(σ) are free generators of the abelian group L.

Step 7. Let σ be the strongly convex rational cone in LR dual to Q, i.e.,

σ = Q⊥ = {� ∈ LR

∣∣〈�, y〉 ≥ 0 for all y ∈ Q}.

Then

E(σ) = {e1, . . . , en, e1 + r1en+1, . . . , em + rmen+1}.
The cone σ can be represented as a union σ1 ∪ · · · ∪ σm with

E(σi) = {e1 + r1en+1, . . . , ei + rien+1, ei, . . . , en}.

We claim that, for 1 ≤ i, j ≤ m, the intersection σi ∩σj is a face in both σi and

σj . Indeed, suppose that i < j, and set d = c2r11 · · · c2rii ci+1 · · · cj−1c
−2
n+1 ∈ Qgr.

Then the number 〈�, d〉 is zero for � ∈ E(σi)∩E(σj), positive for � ∈ E(σi)\E(σj),
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and negative for � ∈ E(σj)\E(σi). This implies that every element from σi ∩ σj
is a linear combination of elements from E(σi) ∩ E(σj) and, therefore,

E(σi ∩ σj) = E(σi) ∩ E(σj).

Since any subset of E(σi) (resp. E(σj)) generates a face of σi (resp. σj), the

claim follows.

The claim implies that σ1, . . . , σm are the cones of maximal dimension n+ 1

in the subdivision of σ formed by their joint intersections. Let F ′ be the corre-

sponding proper subdivision of F (X ), and let (X ′,MX ′) = (X ,MX ) ×F (X ) F
′.

The scheme X ′ admits an open covering by the affine schemes Xi = Spec(Ai)

for Ai = A ⊗Z[Q] Z[Qi], where Qi is the submonoid of Qgr dual to σi. It

suffices therefore to construct a proper subdivision of each cone σi so that

the corresponding proper birational morphism X ′
i → Xi possesses the required

properties.

Step 8. For 1 ≤ i ≤ m, the cone σi can be represented as a union σi1∪· · ·∪σiri
with

E(σij)={e1+r1en+1, . . . , ei−1+ri−1en+1, ei+(j−1)en+1, ei+jen+1, ei+1, . . . , en}.

Notice that the latter elements form a basis of L. The reasoning from Step 7

shows that the intersection σij ∩ σil is a face in both σij and σil. Namely,

suppose that 1 ≤ j < l ≤ ri. If l = j + 1 (resp. l > j + 1), we set

d = cr11 · · · c
ri−1

i−1 c
j
i c

−1
n+1 (resp. c2r11 · · · c2ri−1

i−1 c2j+1
i c−2

n+1). Then the number 〈�, d〉
is zero for � ∈ E(σij) ∩ E(σil), positive for � ∈ E(σij)\E(σil), and negative

for � ∈ E(σil)\E(σij). It follows that σi1, . . . , σiri are the cones of maxi-

mal dimension n + 1 in the subdivision of σi formed by their joint inter-

sections. Let F ′
i be the corresponding proper subdivision of F (Xi). We set

(X ′
i ,MX ′

i
) = (Xi,MXi) ×F (Xi) F

′
i and denote by Z ′

i the preimage of Z in X ′
i .

We claim that (X ′
i ,Z ′

i) is an R-snc pair.

Indeed, the monoid Qij = σ⊥
ij is generated by the n+ 1 elements

c1, . . . , ci−1, c
r1
1 · · · c

ri−1

i−1 c
j
i c

−1
n+1, c

−r1
1 · · · c−ri−1

i−1 c1−ji cn+1, ci+1, . . . , cn

which form the basis of the abelian group Qgr dual to the above basis of L.

Let Xij = Spec(Aij) be the open subscheme of X ′
i that corresponds to the

cone σij . (One has Aij = Ai ⊗Z[Qi] Z[Qij ].) It is a regular affine scheme,

and the canonical homomorphism Qij → Aij is a chart of the logarithmic

structure MX ′
i
on Xij . If i ≥ k + 1, the irreducible components of X̃ij are
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defined by the elements c1, . . . , ck, cm+1, . . . , cm+l. If i ≤ k, the irreducible

components of X̃ij are defined, in addition, by the elements cr11 · · · c
ri−1

i−1 c
j
i c

−1
n+1

and c−r11 · · · c−ri−1

i−1 c1−ji cn+1. In both cases, π is the product of all of these

elements. This implies that the pair (X ′
i ,Z ′

i) possesses the required properties

(from Step 4), i.e., it is an R-snc pair.

3. Finiteness theorem for special formal schemes

3.1. Formulation of results. Let k be a non-Archimedean field with non-

trivial discrete valuation. The nearby cycles and vanishing cycles functors Θ

and Ψη for a special formal scheme X are defined in the same way as for locally

finitely presented formal schemes (see [Ber6, §2]). There is also a canonical

action of the Galois group G = Gal(ks/k) on the vanishing cycles sheaves com-

patible with the action of G on Xs, but this action is not necessarily continuous

(see [Ber6, Remark 2.6(i)] and Corollary 3.1.2 below).

We say that an étale sheaf F on the generic fiber Xη of a special formal

scheme X over k◦ is X-constructible if every point of X has an open affine

neighborhood X′ = Spf(A) such that the restriction of F to X′
η is the pullback

of an étale constructible sheaf on Spec(A ⊗k◦ k). For example, any locally

constant sheaf on Xη, which is induced by a finite discrete G-module, is X-

constructible. The category of abelian X-constructible sheaves on Xη is abelian,

and the inverse image F
∣∣
Yη

= ϕ∗
η(F ) of an X-constructible sheaf F on Xη with

respect to a morphism ϕ : Y→ X is an Y-constructible sheaf on Yη.

Theorem 3.1.1: Let X be a special formal scheme over k◦, and F an abelian

X-constructible sheaf on Xη with torsion orders prime to char(k̃). Then

(i) the sheaves RqΨη(F ) are constructible;

(ii) if the residue field k̃ is perfect, the sheaves RqΘ(F ) are constructible.

Corollary 3.1.2: In the situation of Theorem 3.1.1, if X is quasicompact, the

étale cohomology groupsHq(Xη, F ) are finite discrete G-modules. In particular,

the action of G on the sheaves RqΨη(F ) is discrete.

Proof. By [Ber6, Corollary 2.3(ii)], there is a spectral sequence

Epq2 = Hp(Xs, R
qΨη(F )) =⇒ Hp+q(Xη, F )
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and, therefore, the finiteness statement follows from constructibility of the

sheaves RqΨη(F ) and Deligne’s finiteness theorem [SGA4 1
2 , Th. finitude, 1.1].

To prove the discreteness statement, we notice that there is an increasing se-

quence X1 ⊂ X2 ⊂ · · · of compact analytic subdomains of Xη such that each

Xi lies in the topological interior of Xi+1 of Xη and Xη =
⋃∞
i=1Xi. By [Ber2,

6.3.12] (see also [Ber8, 4.2]), there is a canonical isomorphism

Hq(Xη, F )→̃ lim←−H
q(Xi, F ).

By the above, the group on the left-hand side is finite and, by Theorem 3.1.1, the

groups on the right-hand side are finite. It follows that there exists a sufficiently

large i ≥ 1 such that the homomorphism Hq(Xη, F ) → Hq(Xi, F ) is injective.

Since Xi is compact, Hq(Xi, F ) is a discrete G-module and, therefore, the same

is true for Hq(Xη, F ).

The following two statements were proved in [Ber6, 4.1 and 4.5] under the

assumption that all of the formal schemes considered are formal completions

of schemes of finite type over k◦ along subschemes of their closed fibers. This

assumption was necessary because constructibility of the nearby and vanishing

cycles sheaves and finiteness of the étale cohomology groups of compact analytic

spaces were not available in general. The same proof works in the general case

due to Theorems 3.1.1 and 1.1.1.

Let T be a fixed quasicompact special formal scheme over k◦, and let F be an

abelian étale sheaf on Tη. As in §1.1, given special formal schemes X and Y over

T, any T-morphism ϕ : Y→ X gives rise to homomorphisms θq(ϕ, F ) between

sheaves of nearby cycles on Ys and θ
q
η(ϕ, F ) between sheaves of vanishing cycles

on Ys, respectively.

Corollary 3.1.3: Given quasicompact special formal schemes X and Y over

T and an abelian T-constructible sheaf F on Tη with torsion orders prime to

char(k̃), there exists an ideal of definition J of Y such that, for any pair of

morphisms ϕ, ψ : Y→ X that coincide modulo J , one has θqη(ϕ, F ) = θqη(ψ, F )

for all q ≥ 0. If the field k̃ is perfect, the same fact holds for homomorphisms

between sheaves of nearby cycles.

For a prime l, a T-constructible Zl-sheaf on Tη is a projective system

F = (Fm)m≥0
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of T-constructible Z/lm+1Z-modules Fm such that, for each m ≥ 1, the canon-

ical homomorphism induces an isomorphism

Fm ⊗Z/lm+1Z Z/lmZ→̃Fm−1.

Furthermore, for a special formal scheme X over T and an ideal of defini-

tion I of X, we denote by GI(X/T) the subgroup of the group G(X/T) of

T-automorphisms of X consisting of the automorphisms trivial modulo I.

Corollary 3.1.4: Let F be an T-constructible Zl-sheaf on Tη with l 	=char(k̃).

Given a quasicompact formal scheme X over T, there exists an ideal of defini-

tion I of X such that the group GI(X/T) acts trivially on all of the sheaves

RqΨη(Fm
∣∣
Xη

). If the field k̃ is perfect, the same statement holds for the nearby

cycles sheaves.

The following theorem is an extension to special formal schemes and X-

constructible sheaves of the property of formal schemes locally finitely presented

over k◦, established in [Ber3, Theorem 4.9] (see also [Ber6, Remark 2.6(i)]).

Let K be a discretely valued non-Archimedean field over k. For a special

formal scheme X over k◦, we denote by XηK and XsK the generic and closed

fibers of the special formal scheme XK = X⊗̂k◦K◦ over K◦, and denote by ΨηK
the vanishing cycles functor for XK . We fix an embedding of fields ks ↪→ Ks

and denote by g the induced morphism XsK → Xs.

Theorem 3.1.5: In the above situation, let F be an abelian X-constructible

sheaf on Xη with torsion orders prime to char(k̃). Then there is a canonical

isomorphism g∗(RΨη(F ))→̃RΨηK (FK), where FK is the pullback of F to XηK .

The last Theorem 3.1.6 is a refinement of Corollary 3.1.2 in the case when the

field k̃ is perfect. For a finite extension K of k in ka, let ΘK denote the nearby

cycles functor for the formal scheme XK = X⊗̂k◦K◦ and, for an étale sheaf on

Xη, we set Ψ′
η(F ) = lim−→ i

∗
K(ΘK(FK)), where K runs through finite extensions

of k in ka, iK is the morphism Xs → XsK , and FK is the pullback of F on XηK .

The correspondence F �→ Ψ′
η(F ) is a functor to the category of étale sheaves on

Xs provided with a continuous action of the Galois group G compatible with

its action on Xs. There is a canonical morphism of functors Ψ′
η → Ψη, which is

an isomorphism if X is of locally finite type over k◦ (see [Ber3, Lemma 4.3]).
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Theorem 3.1.6: Suppose that the residue field k̃ is perfect, and let F be an

abelian X-constructible sheaf on Xη with torsion orders prime to char(k̃). Then

(i) if X is quasicompact, then lim−→Hq(XηK , F )→̃Hq(Xη, F ) for all q ≥ 0;

(ii) the homomorphism RΨ′
η(F )→ RΨη(F ) is an isomorphism.

Remark 3.1.7: Let Q be an étale sheaf on Xs provided with a continuous ac-

tion of the group G which is compatible with the action of G on Xs. If I

is the inertia subgroup of G, then QI is an étale sheaf on Xs provided with

an action of Galois group of k̃ and, therefore, it is the pullback of an étale

sheaf on Xs. Let IG(Q) denote the latter sheaf. By the definition of the func-

tor Ψ′
η, there is a canonical isomorphism of functors Θ→̃IG ◦ Ψ′

η. It follows

that, for any abelian étale sheaf F on Xη, there is a canonical isomorphism

RΘ(F )→̃RIG(RΨ′
η(F )). Thus, in the situation of Theorem 3.1.6, there is a

canonical isomorphism RΘ(F )→̃RIG(RΨη(F )) and, in particular, there is a

Hochschild–Serre spectral sequence Ep,q2 = Hp(G,RqΨη(F )) =⇒ Rp+qΘ(F ).

3.2. A uniformization theorem for special formal schemes. A mor-

phism ϕ : Y→ X between special formal schemes over k◦ is said to be of locally

finite type if the preimage of every open affine subscheme Spf(A) of X is a

union of open affine subschemes Spf(B) with B isomorphic to a quotient of the

adic A-algebra A{T1, . . . , Tm}, m ≥ 0. It is equivalent to the property that the

subsheaf of ideals of OY generated by an ideal of definition of X is an ideal of

definition of Y. If such a morphism is quasi-compact, it is said to be of finite

type.

Theorem 3.2.1: Let X be a special formal scheme over k◦, and suppose that

the residue field k̃ is perfect. Then there exists a morphism of finite type∐
i∈I Yi → X with induced surjective map

∐
i∈I Yi,η → Xη and each Yi of the

form X̂/Y , where X is a strictly semi-stable affine scheme over k′◦ for a finite

extension of k and Y is a union of irreducible components of Xs.

Let k be an arbitrary non-Archimedean field with nontrivial discrete valua-

tion, and A be a special k◦-algebra. We set X = Spf(A) and X = Spec(A),

and denote by J a subsheaf of ideals of OX which corresponds to a fixed ideal

of definition of X. Recall that A is an excellent ring by results of P. Valabrega

[Val1, Proposition 7] (in the equicharacteristic case) and [Val2, Theorem 9] (in

the mixed characteristic case). It follows that any scheme of locally finite type
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over A is also excellent. It follows also that A is regular if and only if the com-

pletion ÔX,x of OX,x (which coincides with the completion ÔX ,x of OX ,x) is

regular for each closed point x ∈ Xs. (This allows one to define in the evident

way the notion of a regular special formal scheme over k◦.)
A scheme of locally finite type over X is a scheme Y over X which is a

locally finite union of affine schemes of finite type over X . The completion Ŷ
of Y with respect to the ideal JOY is a special formal scheme over k◦, and the

correspondence Y �→ Ŷ is a well defined functor. For example, X̂ = X. The

generic fiber Ŷη of Ŷ is a paracompact (and, in particular, Hausdorff) strictly

k-analytic space, and the closed fiber Ŷs of Ŷ is a scheme of locally finite type

over k̃ which coincides with Ys = Y ×X Xs. There is a canonical morphism

of locally ringed spaces Ŷ → Y and, for any closed point y ∈ Ŷs = Ys, this
morphism induces an isomorphism of completions of local rings ÔY,y→̃Ô̂Y,y.

In particular, if the scheme Y is regular, then so is the formal scheme Ŷ. To

establish properties of the functor Y �→ Ŷη, we describe Ŷη in terms of another

k-analytic space closely related to it.

Recall (see [Ber6, §1]) that the k-analytic space Xη is a union of an increasing

sequence of affinoid subdomains V1 ⊂ V2 ⊂ · · · such that Vi = M(AVi) is a

Weierstrass subdomain of Vi+1 and lies in the topological interior of Vi+1 in Xη.

Any scheme Y of locally finite type over Xη = Spec(A⊗k◦ k) defines a sequence

of schemes Yi = Y ⊗Xη Vi, where Vi = Spec(AVi ). By [Ber2, §2.6], one can

associate with each Yi a k-analytic space Yan
i . It is easy to see that the canonical

morphism Yan
i → Yan

i+1 identifies Yan
i with a closed analytic domain in Yan

i+1. We

can therefore glue all of them and get a k-analytic space Yan =
⋃∞
i=1 Yan

i . For

example, X an
η = Xη.

The properties of the functor Y �→ Yan, established in [Ber2, §2.6] in the

particular case when X is locally finitely presented (and the valuation on k

is not necessarily discrete) are easily extended to our case. We only mention

that there is a canonical surjective and flat morphism of locally ringed spaces

Yan → Y, and that a morphism ϕ : Z → Y between schemes of locally finite type

over Xη is surjective (resp. separated; resp. proper; resp. finite; resp. a closed

immersion; resp. étale; resp. smooth) if and only if the morphism of k-analytic

spaces ϕan : Zan → Yan possesses the corresponding property. In particular, the

above morphism Yan → Y gives rise to a morphism between the corresponding
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étale sites. (The particular case of this morphism for Y = Spec(A ⊗k◦ k) was
used in the definition of an X-constructible sheaf.)

Suppose now that Y is a scheme of locally finite type overX . If Y= Spec(B) is

affine, then Yan
η coincides with the set of all multiplicative semi-norms

| | : B → R+ which extend the valuation on k, take values at most one at

all elements of A, and are strictly less than one at all elements of an ideal of

definition of X. The k-analytic space Ŷη coincides with the subset of the latter

which consists of the multiplicative seminorms that take values at most one at

all elements of B. In general, there is a canonical morphism Ŷη → Yan
η which, in

the case when Y is separated, identifies Ŷη with a closed analytic subdomain of

Yan
η . If Y is proper over X , then Ŷη→̃Yan

η (it is a particular case of (ii) below).

Lemma 3.2.2: Let ϕ : Z → Y be a morphism between schemes of locally finite

type over X , and let ϕan
η and ϕ̂η be the induced morphisms Zan

η → Yan
η and

Ẑη → Ŷη, respectively. Then
(i) if ϕ is of finite type, ϕ̂η is a compact map;

(ii) if ϕ is proper, the following commutative diagram is cartesian

Zan
η

ϕan
η �� Yan

η

Ẑη

��

ϕ̂η �� Ŷη

��

(iii) if ϕ is proper surjective, ϕ̂η is a compact surjective map.

Proof. (i) It suffices to consider the case when Y = Spec(B) and Z = Spec(C)

are affine. In this case B is isomorphic to a quotient of the ring of polynomials

A[T1, . . . , Tn] by an ideal. It follows that Ẑ is a Zariski closed formal subscheme

of the direct product of Ŷ and the n-dimensional formal affine space An =

Spf(k◦{T1, . . . , Tn}) and, therefore, Ẑη is a closed analytic subspace of the

direct product of Ŷη and the n-dimensional closed unit polydisc. This implies

that the map ϕ̂η is compact.

(ii) and (iii) follow from the valuative criterion of properness and the above

description of the spaces Ŷη and Ẑη.

Corollary 3.2.3: Let Y be a scheme of finite type over X . If {Yi
ϕi→ Y}i∈I is

a covering in the alteration topology of Y, then Ŷη =
⋃
i∈I ϕ̂i,η(Ŷi,η).
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Proof. If it is a proper surjective and maximally finitely dominant morphism

Z → Y, the required property follows from Lemma 3.2.2(iii). If it is a cov-

ering in the Zariski topology of Y, it gives rise to a Zariski topology covering

{Ŷi
ϕ̂i→ Ŷ}i∈I of the special formal scheme Ŷ, and the required property follows

from [Ber6, 2.1(ii)].

Theorem 3.2.4: Let A be a special k◦-algebra, and let X be a scheme of finite

type over A flat over k◦. Suppose that the residue field k̃ is perfect. Then there

exists a finite covering {Xi
ϕi→ X}i∈I in the alteration topology of X such that,

for every i ∈ I, X̂i is isomorphic to a formal scheme of the form Ŷ/Z , where Y
is a strictly semi-stable scheme over k′◦ for a finite extension k′ of k and Z is a

union of irreducible components of Ys.

First of all, notice that Theorem 3.2.4 implies Theorem 3.2.1. Indeed, in

order to prove the latter we may assume that X = Spf(A) is affine. Replacing

A by the quotient by its k◦-torsion (which does not change Xη), we may assume

that X is flat over k◦. Then the required fact follows from Theorem 3.2.4 and

Corollary 3.2.3 applied to the affine scheme X = Spec(A).

Proof. Step 1. Since the statement is local in the alteration topology of the

affine scheme X , we can replace X by an open affine subscheme of a blow-up of

X , and so we may assume that the closed subscheme Xs is a Cartier divisor in

X . We now apply Theorem 2.1.3 to the pair (X , X̃ ). It follows that there is a

finite covering {Xi
ϕi→ X}i∈I in the alteration topology of X such that, for every

i ∈ I, Xi is an affine k◦i -snc scheme, where ki is a finite extension of k. Replacing

X by any of the affine schemes Xi and the field k by ki, we may assume that

X = Spec(B) is an k◦-snc scheme. Replacing Xs by its support, we may assume

that it is reduced and a union of irreducible components of X̃ . Notice that if U
is an open subset of X which has empty intersection with Xs, then Û is empty,

and so it trivially possesses the required property. Thus, it suffices to find a

required covering in the alteration topology of an open neighborhood in X of

every closed point x ∈ Xs. Shrinking X , we may assume that x lies in the

intersection of all irreducible components Z1, . . . ,Zn of X̃ .
Step 2. Let t1, . . . , td be a regular system of parameters of OX ,x such that

each ti for 1 ≤ i ≤ n ≤ d defines Zi in an open neighborhood of x. Shrinking

X , we may assume that t1, . . . , td ∈ B and, multiplying t1 by an invertible

element of B, we may assume that π = t1 · · · tn is a uniformizing element
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of k◦. Suppose also that the irreducible components of Xs are Z1, . . . ,Zm
with 1 ≤ m ≤ n. Then the elements tm+1, . . . , tn define the other irreducible

components of X̃ , and the element t1 · · · tm generates the ideal b that defines

the reduced closed subscheme Xs. The formal completion of X is the affine

formal scheme X̂ = Spf(B̂), where B̂ is the b-adic completion of B. We set

X ′ = Spec(B′) for B′ = k◦[T1, . . . , Td]/(T1 · · ·Tn − π) and denote by b′ the
ideal of B′ generated by the element T1 · · ·Tm and by B̂′ the b′-adic completion

of B′. We claim that one can shrink X so that the morphism of special formal

schemes X̂ → X̂ ′ that corresponds to the homomorphism B′ → B : Ti �→ ti is

étale.

Lemma 3.2.5: Let X = Spec(A) be a reduced affine scheme of finite type

over a perfect field K, and x a closed point of X . Suppose there are ele-

ments t1, . . . , td ∈ A such that t1 · · · tm = 0 with 1 ≤ m ≤ d and, for every

1 ≤ i ≤ m, the elements t1, . . . , ti−1, ti+1, . . . , td form a regular system of pa-

rameters of the closed subscheme Xi = Spec(A/(ti)) at x. Then the morphism

X → X ′ = Spec(A′) induced by the homomorphism

A′ = K[T1, . . . , Td]/(T1 · · ·Tm)→ A : Ti �→ ti

is étale at x.

Proof. Let x′ be the image of x in X ′. Since the morphism considered is of finite

type, it suffices to show that the induced homomorphism between completions

of local rings ÔX ′,x′ → ÔX ,x is étale. The assumptions (that include perfectness

of K) imply that the closed subscheme Y = Spec(A/(t1, . . . , tm)) is smooth at

x and, therefore, the complete local ring B = ÔY,x = ÔX ,x/(t1, . . . , tm) is

formally smooth over K. It follows that the canonical surjection ÔX ,x → B has

a section B → ÔX ,x. We claim that the induced homomorphism

α : C = B[[T1, . . . , Tm]]/(T1 · · ·Tm)→ ÔX ,x : Ti �→ ti

is a bijection. Indeed, since the schemes Xi are smooth at the point x, α

induces bijections C/(Ti)→̃ÔX ,x/(ti) and, since C embeds in the direct prod-

uct of Ci’s, α is injective. That it is surjective follows from [Bou, Ch. III,

§2, n◦ 11, Prop. 14]. Since Y is smooth at x, the canonical homomorphism

K[[Tm+1, . . . , Td]] → B is étale. This implies étaleness of the homomorphism

ÔX ′,x′ → ÔX ,x.
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By Lemma 3.2.5, we can shrink X and assume that the induced morphism

Xs → X ′
s = Spec(k̃[T1, . . . , Td]/(T1 · · ·Tm)) is étale. By [Ber6, 2.1(i)], there

exists an étale morphism Y = Spf(C) → X̂ ′ with Ys→̃Xs over X ′
s. Since

C is formally étale over B̂′, the latter isomorphism is induced by a unique

homomorphism C → B̂ over B̂′ ([EGAIV, Ch. 0, 19.3.10]). From [Bou, Ch. III,

§2, n◦ 11, Prop. 14] it follows that the homomorphism C → B̂ is surjective.

Since both rings are regular of the same dimension, we get C→̃B̂, and the

claim follows.

Step 3. For a special k◦-algebra D, let Ds denote its quotient by the Ja-

cobson radical (which coincides with the maximal ideal of definition of D, see

[Ber6, §1]) and, for an element f ∈ D and a polynomial P ∈ D[S], let fs

and Ps denote their images in Ds and Ds[S], respectively. By the local de-

scription of étale morphisms of schemes, we can shrink X and assume that

B̂s = (Ĉs)fs , where C = B′[S]/(P ) for a monic polynomial P ∈ B′[S], Ĉ is

the b′C-adic completion of C, and an element f ∈ C is such that the image

of the derivative P ′ is invertible in (Ĉs)fs . Then B̂ = Ĉ{f}, i.e., B̂ coin-

cides with the b′Cf -adic completion of Cf . By the construction, the morphism

Y = Spec(Cf ) → X ′ = Spec(B′) is étale at the point x. We can therefore

shrink X and Y so that Xs = Spec(Cf/b
′Cf ) and Y is étale over X ′. In partic-

ular, Y is strictly semi-stable over k◦. Thus, if Z is the union of the irreducible

components of Ys = Spec(Cf/(π)) which are the preimages of the irreducible

components of X ′
s = Spec(B′/(π)) defined by the elements T1, . . . , Tm, we get

X̂ = Ŷ/Z .

Remark 3.2.6: In what follows, we use a consequence of Theorem 3.2.1 which

tells that in its situation there exists a morphism of finite type Y → X such

that the map Yη → Xη is surjective and Y is locally algebraic in the sense

that locally in the étale topology it is isomorphic to a formal scheme of the form

X̂/Y , where X is a scheme of finite type over k◦ and Y is a subscheme of Xs.

3.3. Simplicial formal schemes. Let k be a non-Archimedean field with

nontrivial discrete valuation, and let X• be a simplicial object in the category

of special formal schemes over k◦ (for brevity, it will be called a simplicial formal

scheme over k◦). Its generic fiber is the simplicial object X•,η of the category

of paracompact strictly k-analytic spaces, and its closed fiber is the simplicial

object X•,s of the category of schemes of locally finite type over k̃.



Vol. 210, 2015 VANISHING CYCLES OF FORMAL SCHEMES 185

The nearby cycles and vanishing cycles functors Θ : (X•,η)˜́et → (X•,s)˜́et
and Ψη : (X•,η)˜́et → (X•,s)˜́et extend the corresponding functors from [Ber6]

componentwise. Namely, if F • = (Fn)n≥0 is an étale sheaf on X•,η, then

Θ(F •)n = Θ(Fn) and Ψη(F
•)n = Ψη(F

n).

If F ·,• is a complex of étale abelian sheaves on X•,η and F ·,• → G·,• is a reso-

lution by flabby sheaves, then RΘ(F ·,•) = Θ(G·,•) and RΨη(F
·,•) = Ψη(G

·,•)
and, in particular, RΘ(F ·,•)n = RΘ(F ·,n) and RΨη(F ·,•)n = RΨη(F

·,n). The

following statement follows straightforwardly from [Ber6, 2.3(ii)].

Proposition 3.3.1: Given a morphism ϕ : Y• → X• of simplicial formal

schemes, one has

RΘ(Rϕη∗F
·,•
)→̃Rϕs∗(RΘF

·,•
) and RΨη(Rϕη∗F

·,•
)→̃Rϕs∗(RΨηF

·,•
)

for all F
·,• ∈ D+(Y•,η,Z).

Proposition 3.3.2: Let a : X• → S be an augmented simplicial formal scheme

over k◦ such that X•,η → Sη is a hypercovering in the étale topology of universal

Z/dZ-cohomological descent for d ≥ 1 prime to char(k̃). Then for any étale

Z/dZ-module F on Sη, there are canonical isomorphisms

RΘ(F )→̃Ras∗(RΘ(a∗ηF )) and RΨη(F )→̃Ras∗(RΨη(a∗ηF )).

Proof. The assumption implies that F→̃Raη∗(a∗ηF ). By Example 1.2.1(vi),

one has Raη∗ = sRa•η∗ and Ras∗ = sRa•s∗. Since the functor RΨη on simpli-

cial formal schemes is calculated componentwise and, by Example 1.2.1(v), the

functor preserves quasi-isomorphisms, one has RΨη(sG
·,•)→̃sRΨη(G

·,•) for all
complexes of Z/dZ-modules G·,• on the constant simplicial formal scheme S• ;

Proposition 3.3.1 applied to the morphism a• : X• → S• implies that

RΨη(F )→̃sRΨη(Ra•η∗(a∗ηF ))→̃sRa•s∗(RΨη(a∗ηF ))→̃Ras∗(RΨη(a∗ηF )).

The same reasoning is applicable to the nearby cycles functor Θ.

We say that an augmented simplicial formal scheme a : Y• → X over k◦

is locally algebraic (resp. strictly semi-stable) if each Yn is locally alge-

braic (resp. is a disjoint union of special formal schemes of the form X̂/Y , where
X is a strictly semi-stable scheme over k′◦ for a finite extension k′ of k and

Y is a union of irreducible components of Xs). Furthermore, we say that an
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augmented simplicial formal scheme a : Y• → X over k◦ is a compact hy-

percovering of X if all of the morphisms Yn → X are of finite type and the

augmented k-analytic space Y•,η → Xη is a compact hypercovering of Xη. The

uniformization Theorem 3.2.1 implies that, if the field k̃ is perfect, then every

special formal scheme over k◦ admits a strictly semi-stable (and, in particular,

locally algebraic) compact hypercovering.

3.4. Proof of Theorems 3.1.1 and 3.1.5. First of all, we notice that The-

orem 3.1.5 holds if the residue field K̃ is purely inseparable over k̃. Indeed,

this follows from the facts that the categories of schemes étale over Xs and

over XsK are equivalent, the sheaf RqΨη(F ) is associated with the presheaf

Ys �→ Hq(Yη, F ) ([Ber6, 2.2(ii)]), and the étale cohomology groups are invari-

ant under algebraically closed extensions of the ground field ([Ber2, 7.6.1]).

Furthermore, if the field k̃ is not perfect, let k′ be a subfield of ks which is

maximal with respect to the properties that k̃′ is purely inseparable over k̃ and

|k′| = |k|. Then the field k̃′ is perfect. (Indeed, if this is not so, then for an

element α ∈ k′◦ whose residue is not contained in (k̃′)p the extension k′′ of k′

generated by a root of the polynomial T p + πT − α, where p = char(k̃) and

π is a nonzero element of k′◦◦, is a separable extension of k′ for which k̃′′ is
purely inseparable over k̃′ and |k′′| = |k′|.) By the above remark, in order to

prove Theorem 3.1.1(i) and Theorem 3.1.5, we can replace the field k by the

completion of k′, and so we may assume that the residue field k̃ is perfect.

Since the statements are local with respect to X, we may always assume

that X = Spf(A) is affine. We set X = Spec(A) and Xη = Spec(A), where
A = A⊗k◦ k.

Case 1: The sheaf F is constant, i.e., F = ΛXη
for a finite abelian group

Λ of order prime to char(k̃). Let a : Y• → X be a locally algebraic compact

hypercovering.

Theorem 3.1.1: By [Ber6, 3.1] and [SGA4 1
2 , Th. finitude, 3.2 (resp. 3.11)],

the cohomology sheaves of the complexes RΨη(ΛYn,η
) (resp. RΘ(ΛYn,η

)) for all

n ≥ 0 are constructible. Deligne’s finiteness theorem [SGA4 1
2 , Th. finitude, 1.1]

then implies that the cohomology sheaves of the complexes Rans∗(RΨη(ΛYn,η
))

(resp. Rans∗(RΘ(ΛYn,η
))) for all n ≥ 0 are constructible, and constructibility

of the sheaves RqΨη(ΛXη
) (resp. RqΘ(ΛXη

)) follows from Proposition 3.3.2.
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Theorem 3.1.5: By Proposition 3.3.2, one has

RΨη(ΛXη
) = Ras∗(RΨη(ΛY•,η

))

and

RΨηK (ΛXηK
) = RasK∗(RΨηK (ΛY•,ηK

)).

Since the formation of vanishing cycles sheaves of schemes is compatible with

the changes of henselian discrete valuation rings [SGA4 1
2 , Th. finitude, 3.7], we

have

g∗•(RΨη(ΛY•,η
))→̃RΨηK (ΛY•,ηK

),

and the required statement follows from the fact that the morphism of schemes

Spec(K̃a)→ Spec(k̃a) is universally acyclic.

Case 2: F is the pullback of a sheaf of the form f∗(ΛY), where f is a

finite morphism Y = Spec(B) → Xη with integral B. We claim that the ho-

momorphism A → B is induced by a homomorphism of special k◦-algebras
A → B with B = B ⊗k◦ k for a special k◦-algebra B. Indeed, the image

f(Y) is a Zariski closed subset of Xη. Let Z be the schematic closure of f(Y)
in X . Then Z = Spec(C) for a quotient C of A by a prime ideal. The

canonical homomorphism C = C ⊗k◦ k → B is injective and finite. Since

the special k◦-algebra C is excellent, it is a Japanese ring. It follows that

the integral closure B of C in B is finite over C and, in particular, B is a

special k◦-algebra, and the claim follows. Thus, the morphism f is induced

by the finite morphism of special formal schemes h : Y = Spf(B) → X,

and one has F = hη∗(ΛYη
). By [Ber6, Corollary 2.3(ii)], it follows that

RΘ(F ) = hs∗(RΘ(ΛYη
)) and RΨη(F ) = hs∗(RΨη(ΛYη

)) and, by the previ-

ous case, the sheaves RqΘ(F ) and RqΨη(F ) are constructible (Theorem 3.1.1).

For the same reason, one has RΨηK (FK) = hsK∗(RΨηK (ΛYηK

)) and, by the

previous case, g′∗(RΨη(ΛYη
))→̃RΨηK (ΛYηK

). Again, since the morphism

Spec(K̃a)→ Spec(k̃a) is universally acyclic, we get g∗(RΨη(F ))→̃RΨηK (FK),

where FK is the pullback of F to XηK (Theorem 3.1.5).

Case 3: F is arbitrary. Shrinking X, we may assume that F is the pullback

of an abelian constructible sheaf F on Xη. By [SGA4, Exp. IX, 2.14(ii)], one

can find a finite family of finite morphisms {Yi
pi→ Xη}i∈I and a monomorphism

F →
⊕

i∈I pi∗(Gi), where Gi is an abelian constant sheaf on Yi = Spec(Bi).
Replacing each Yi by its family of irreducible components provided with the
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reduced structure, we may assume that all Yi’s are integral (in order to use

Case 2). In this way we get a long exact sequence 0→ F → F0 → F1 → · · · of
constructible sheaves on Xη such that, for every n ≥ 0, the nearby cycles sheaves

RqΘ(Fn) and vanishing cycles sheaves RqΨη(Fn) of the pullback Fn of Fn to Xη

are constructible, and the latter are preserved by extensions of the ground field.

The statements of Theorems 3.1.1 and 3.1.5 are now easily obtained from the

spectral sequence that relates the nearby cycles and vanishing cycles sheaves of

F and FK with those of Fn’s and (Fn)K ’s, respectively.

3.5. Proof of Theorem 3.1.6. As in [Ber6, §2], we fix a functor Ys �→ Y

from the category of schemes étale over Xs to the category of formal schemes

étale over X⊗̂k◦(ka)◦. Suppose Ys is quasicompact. Then Y = Y′⊗̂K◦(ka)◦

for a finite (unramified) extension K of k in ka and a special formal scheme Y′

over K◦ étale over XK .

Lemma 3.5.1: In the above situation, let F be an étale sheaf on Xη. Then

(i) there is a canonical bijection lim−→F (Y′
ηK′ )→̃Ψ′

η(F )(Ys), where the in-

ductive limit is taken over finite extensions K ′ of K in ka;

(ii) if F is abelian soft, then the sheaf Ψ′
η(F ) is flabby;

(iii) if F is abelian, RqΨ′
η(F ) is associated to the presheaf

Ys �→ lim−→Hq(Y′
ηK′ , F )

on the family of quasicompact Ys.

Proof. (i) Let F̃ (Ys) denote the set on the left-hand side. By the construction,

Ψ′
η(F ) is the sheaf associated to the presheaf Ys �→ F̃ (Ys). Hence it suffices

to show that the latter is a sheaf on the family of quasicompact Ys. Given an

étale covering {Yi,s → Ys}i∈I , we have to verify that the following sequence of

sets is exact,

F̃ (Ys) −→
∏
i

F̃ (Yi,s)
−→−→

∏
i,j

F̃ (Yi,s ×Ys
Yj,s).

Since Ys is quasicompact, we may assume that the covering is finite and all

Yi,s are also quasicompact. We can therefore find a finite extension K of k in

ka such that Y and all Yi come from special formal schemes Y′ and Y′
i over

K◦. By [Ber3, Theorem 3.3(i)], for every finite extension K ′ of K in ka there
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is an exact sequence

F (Y′
ηK′ ) −→

∏
i

F (Y′
i,ηK′ )

−→−→
∏
i,j

F ((Y′
i×Y′Y

′
j)ηK′ ).

Since the set I is finite, exactness of the required sequence follows.

(ii) It suffices to verify that the Čech cohomology groups of the sheaf Ψ′
η(F )

associated to an étale covering of Ys (which is étale over Xs) are trivial. For

this we may assume that all of the schemes from the covering are quasicompact.

We then can use (i) and the reasoning from the proof of the similar statement

[Ber3, 4.1(iii)].

The statement (iii) is now easy.

Corollary 3.5.2: (i) For an étale morphismY→ X and an étale abelian sheaf

F on Xη, the natural arrow RΨ′
η(F )

∣∣
Ys

→ RΨ′
η(F

∣∣
Yη

) is an isomorphism.

(ii) For a morphism ϕ : Y → X and an étale abelian sheaf F · ∈ D+(Yη,Z),

there is a canonical isomorphism RΨ′
η(Rϕη∗(F

·))→̃Rϕs∗(RΨ′
η(F

·)).

For an étale abelian sheaf F on a k-analytic space X , we set

′Hq(X,F ) = lim−→Hq(X⊗̂kK,F ),

where the inductive limit is taken over finite extensions of k in ka. It is a discrete

G-module which corresponds to the high direct imageRqf∗(F ) of F with respect

to the canonical morphism f : X → M(k). Applying Corollary 3.5.2(ii) and

Lemma 3.5.1(iii) to the canonical morphism X→ Spf(k◦) for quasicompact X,

we get for an étale abelian sheaf F on Xη a spectral sequence

Ep,q2 = Hp(Xs, R
qΨ′

η(F )) =⇒ ′Hp+q(Xη, F ).

By [Ber6, 2.3(ii)], there is a similar spectral sequence for the functor Ψη that

converges to the groupsHp+q(Xη, F ). Thus, the statement (ii) of Theorem 3.1.6

implies (i).

We also notice that the functor Ψ′
η extends to simplicial formal schemes as in

§3.3 and, due to the above results, the analogs of Propositions 3.3.1 and 3.3.2 are

valid for it as well. Therefore the reasoning from the proof of Theorems 3.1.1 and

3.1.4 can be used here if we verify the required statement (ii) in the particular

case when the sheaf F is constant and X is of the form X̂/Y , where X is a scheme

of finite type over k◦ and Y is a subscheme of Xs. We may even assume that

F = Fan, where F is an abelian constructible sheaf on Xη with torsion orders

prime to char(k̃). By the comparison theorem [Ber6, 3.1], there are canonical
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isomorphisms (RΘK(FK))
∣∣
Y

˜K

→̃RΘK(FK) for all finite extensions K of k in ka,

where FK is the pullback of F on XηK . Since lim−→ i
∗
K(RΘK(FK))→̃RΨη(F) and,

by the same comparison theorem, (RΨη(F))
∣∣
Ys
→̃RΨη(F ), we get the required

isomorphism RΨ′
η(F )→̃RΨη(F ).

Remark 3.5.3: The assumption on perfectness of the residue field k̃ is used in

order to apply the uniformization Theorem 3.2.1 which reduces the situation

to the case when X is locally algebraic and F comes from constructible sheaves

on the corresponding schemes (e.g., F = ΛXη
, where Λ is a finite G-module of

order prime to char(k̃)). In that case, perfectness of k̃ is not necessary, and it

is very likely this assumption is not necessary at all.
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entifiques. Publications Mathématiques 20 (1964), 25 (1965), 28 (1966), 32 (1967).



Vol. 210, 2015 VANISHING CYCLES OF FORMAL SCHEMES 191
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