1. Explain why the Chinese Remainder Theorem allows RSA decryption to be done 4 times faster.

2. Show how to find the plaintext x from its ciphertext $x^e \pmod{n}$ if the Top/Down oracle is correct 99% of the time.

3. Formally prove that when R is sufficiently large ($|Rn| > |m^2| + 100$), any algorithm for computing X from a sampled $x^2 + Rn$ (i.e., R is chosen at random) is equivalent to an algorithm for computing x from $x^2 \pmod{n}$.

Public Key Cryptography

Exercise 5 - due May 21

May 7, 2007