
COMMENTARIES TO ARNOL′D PROBLEMS

SERGEI YAKOVENKO

1. Infinitesimal Hilbert 16th problem

Problem 1978-6. Relaxed Hilbert 16th problem.

Problem 1979-16. Study the number of zeros of the integral I(h) =
∮

γh
(P dx +

Qdy), where γh is a closed curve from the (continuous) family of periodic orbits of
a polynomial vector field [e.g., γh = {x, y H(x, y) = h}, say, for H = y2 + x3 − x]
— an infinitesimal version of the Hilbert 16th problem on cycles. What can be the
maximal number of roots of I(h) when I(h) is not identically zero?

Problem 1980-1. I(h) =
∮

H=h
(P dx + Qdy). Place an upper bound for the

number of zeros of I.

Problem 1983-11. Is that true that the integrals I(h) =
∮

H=h
(P dx + Qdy) with

varying polynomials P,Q form a Chebyshev system (or, at worst, the number of
zeros is not too much bigger)? Here, for instance, H is a cubic polynomial y2+x3−x.
A similar question about perturbations of other integrable polynomial systems of
the Lotka–Volterra type [where H = xαyβzγ , z = 1−x−y, with the corresponding
(non-polynomial) P,Q].

Problem 1989-17. How many limit cycles can be born by a polynomial pertur-
bation of degree n of an integrable polynomial system of degree n?

The problem reduces to investigation of the number of zeros of the integral

I(h) =
∮

P dx + Qdy

M

along ovals H = h of the system ẋ = X(x, y), ẏ = Y (x, y) with the integrating
factor M , where X, Y, P,Q are polynomials of degree n. It is not solved even for
n = 2 and even when M = 1 and H is a polynomial. When M = 1 and H,P,Q are
polynomials of a fixed degree, there exists a uniform upper bound for the number of
zeros (A. N. Varchenko, A. G. Khovanskĭı), but it is non-effective.

Problem 1990-24. How large can be the number of isolated zeros of the complete
Abelian integral

I(h) =
∮

γh

(P dx + Qdy)

where γh is a closed component of the level curve {(x, y) H(x, y) = h}, if P,Q,H
are polynomials of given degrees?
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Problem 1990-25. Let g be a natural number ≥ 2 and U(x) a fixed polynomial
of degree 2g + 2. Consider the family of hyperelliptic integrals of the first kind,

I(h) =
∮

γh

P (x)
y

dx,

where γh is a closed component of the level curve {(x, y) y2 + U(x) = h}, and P (x)
an arbitrary polynomial of degree ≤ g. Is this family of integrals a Chebyshev one
(i.e., is it true that for any P the number of isolated zeros of the function I is at
most g − 1)?

Problem 1994-51. Infinitesimal version of the Hilbert 16th problem. Assume
that a polynomial vector field on the plane admits a first integral whose level curves
are cycles (filling at least some annulus on the plane). Consider small polynomial
perturbations (of prescribed degree) of this vector field. Location of the limit cycles
[appearing in this perturbation] are given in the first approximation by zeros of a
certain integral (found by Poincaré) along non-perturbed closed curves (which are
the level curves of the first integral).

Is the number of zeros of the Poincaré integral bounded (by a constant depending
only on the degree of the perturbation)?

Problem 1994-52. A particular case of the previous problem: consider the com-
plete Abelian integral

I(h) =
∮

(P dx + Qdy)

along an oval of an algebraic curve H(x, y) = h. The polynomials P (x, y) and
Q(x, y) describe a polynomial perturbation of the Hamiltonian vector field, and
I(h) is the Poincaré integral.

Find an upper bound for the number of isolated real zeros of the function I for
all polynomials P,Q of the given degree.

Comments. The problem on zeros of Poincaré integrals, known also as the infin-
itesimal Hilbert 16th problem, is one of the most recurring in the Arnol’d’s lists.
It was published in [1], reappeared in the list [3] and rather recently the expanded
formulation was again given in [4]. Two very closely related problems, 1979-26
and 1980-3 which could well be included in the list, are singled out because they
are essentially solved.

Origins, preliminary remarks. The problems on zeros of the Poincaré integral

I = I(h; H,ω) =
∮

γh

M−1ω,

γh ⊆ {H = h}, ω = P (x, y) dx + Q(x, y) dy,

(1)

for the polynomial perturbation

M dH + εω = 0, (2)

in particular, complete Abelian integrals corresponding to M = 1 and a polynomial
H, appeared as an attempt to find an amenable relaxation of the Hilbert problem
on limit cycles.

As a function of h, I(h) is the first variation of the Poincaré return map with
respect to the small parameter ε, at ε = 0. Thus the problem on zeros of integrals of
the form (1) becomes a localized (better to say, linearized or infinitesimal) version
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of the Hilbert 16th problem on the number of limit cycles of planar polynomial
vector fields, for systems infinitesimally close to integrable ones.

Probably, the question was also inspired by the works by I. Petrovskĭı and E. Lan-
dis [32, 33, 34] who tried to reduce the Hilbert 16th problem stated in full generality,
to perturbations of integrable systems.

It should be stressed that vanishing of the Poincaré integral is only a necessary
condition for appearance of limit cycles, and it works only for limit cycles born out
of nonsingular level curves of the first integral. Description of limit cycles born from
separatrix polygons (carrying singular points of the non-perturbed vector field) is a
considerably more delicate subject, which admits a satisfactory solution only in the
simplest case of a separatrix loop carrying one nondegenerate saddle (R. Roussarie
[36, 37]).

Besides, identical vanishing of the Poincaré integral (1) does not mean in general
that the family (2) consists of integrable systems only: higher variations in ε may
still be nonzero and it is their zeros that will determine the number and location
of limit cycles born in the perturbation. However, for Abelian integrals this is
impossible: in [15] Yu. Ilyashenko proved that for a sufficiently generic polynomial
Hamiltonian H the integral of a form of degree deg ω = max(deg P, deg Q) + 1
no greater than deg H vanishes identically if and only if ω itself is exact on R2.
Clearly, in this case the system is Hamiltonian for all ε. This result, generalized by
L. Gavrilov [9] for higher degree forms and by I. Pushkar′[35] for higher dimensions,
provides an effective criterion for nontriviality of the perturbation (2). Everywhere
below only isolated zeros of the Abelian integrals are counted.

From the very beginning it should be said that general results for perturbations
of conservative non-Hamiltonian systems are practically absent, with few exceptions
concerning perturbed Lotka–Volterra systems. Therefore we will mostly discuss the
problem on zeros of Abelian integrals with H ∈ R[x, y] and M ≡ 1.

Brief history. The first nontrivial case (for H quadratic the Abelian integrals are
rational functions of h) corresponds to cubic Hamiltonians. R. Bogdanov studied
the complete elliptic integral

I(h) =
∮
{H=h}

(a + bx)y dx, H(x, y) = 1
2y2 + 1

3x3 − x (3)

and proved that it has at most one real isolated zero [6]. This problem appeared in
connection with construction of the versal deformation of what is known today as
the cuspidal singularity of Bogdanov–Takens [5]. Later, in [16] Ilyashenko suggested
another proof of the same result, based on the complexification of the Abelian
integral as a function of t ∈ C ramified over the collection of critical values of the
complexified Hamiltonian H(x, y) ∈ C[x, y]. Since then, complexification became a
primary tool in investigation of complete Abelian integrals.

Shortly after that a number of different particular cases of elliptic integrals was
studied, but the major breakthrough occurred in the works by G. Petrov. He proved
that for the standard elliptic Hamiltonian as in (3), integrals of all polynomial
forms of arbitrarily high degree form a nonoscillating, or Chebyshev family: the
maximal number of real isolated zeros is by one less than the dimension of this
family considered as a linear space over R [30]. Later Petrov proved that the same
non-oscillatory property holds also for complex isolated zeros counted in a slit plane
[31]. The proofs rely substantially on the fact that the elliptic integrals

∮
y dx
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and
∮

xy dx satisfy an explicitly written system of Picard–Fuchs linear ordinary
differential equations with rational coefficients, so that their ratio satisfies a Riccati
equation. On the other hand, these two integrals generate the space of all Abelian
integrals over the ring of polynomial functions of h. The results of Petrov settle
the particular question raised in 1979-16 and give an affirmative answer in the
problem 1983-11 in the part related to the elliptic integrals.

Earlier, simultaneously and independently, A. Khovanskĭı [17] and A. Varchenko
[38] proved the general finiteness result: for any combination of degrees n and d, the
number of isolated zeros of all Abelian integrals of forms of degree ≤ d over the level
curves of Hamiltonians of degree ≤ n is uniformly bounded by a constant C(n, d)
depending only on n and d. Their proofs, however, gave no idea of how to estimate
the constant C(n, d): its mere existence is ultimately derived from compactness
arguments.

This result remains until nowadays the only general assertion valid for all Hamil-
tonians and all forms without restriction. Since it was achieved, the accents were
shifted to computability of the bounds.

Digression: fewnomials theory and Pfaffian manifolds. The proof of Khovanskĭı–
Varchenko theorem is based on a beautiful geometric theory of Pfaffian manifolds,
developed by Askol′d Khovanskĭı. The central idea behind this theory can be
described roughly as follows: a real affine variety defined by a mixture of algebraic
and Pfaffian equations, shares many properties of real algebraic varieties provided
that it “looks like an algebraic variety” topologically. A simplest example is that of
integral trajectories of planar polynomial vector fields. If these trajectories are not
spirals (they should subdivide the real plane into two parts, in particular, being
limit cycles), then the number of isolated intersections of these trajectories, say,
with straight lines is explicitly bounded in terms of the degree of the planar vector
field. This observation immediately allows to solve the problem 1976-2.

The constructions in the Pfaffian manifolds theory, especially the Pfaffian elim-
ination, are explicit and efficient. Geometrically they could be described as a mul-
tidimensional generalization of the Rolle theorem on alternation between roots of
a smooth function of one real variable, and roots of its derivative.

One of the most spectacular achievements of this theory is an upper bound for
the number of isolated solutions of a system of algebraic equations, given not in
terms of the degrees of this equation like in the Bézout theorem, but rather through
the number of different monomial terms occurring in the equations, uniformly over
all degrees. This explains the alternative code name “fewnomials theory” used to
designate the entire toolkit. A typical fewnomials theory result is described in the
problem 1979-22.

Applications of the Pfaffian manifolds theory can sometimes be very unexpected.
Thus, if the resonant Poincaré–Dulac formal normal form [2] for all singular saddle
points of an analytic planar vector field is convergent, then any polycycle carrying
only these points cannot accumulate near itself an infinite number of limit cycles
of this field. This particular case of the finiteness theorem (see commentary to the
problem 1981-16) was discovered by R. Moussu and C. Roche in [21]. Their key
argument is integrability of the resonant normal form which in turn implies the
fact that the Poincaré map can be described by a mixture of Pfaffian and analytic
equations.
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This theory, together with its numerous ramifications, is exposed in the book
[1]. The revised Russian edition [19] contains new applications to Hardy fields,
complexity problems, Tarski problem etc.

Recent achievements: low degree cases. Despite their diversity, recent results re-
lated to the infinitesimal Hilbert 16th problem can be organized into several clus-
ters.

The most abundant group of results deals with particular cubic or quartic Hamil-
tonians and special choices of low degree (usually the same) perturbation forms. If
the number of essential parameters is small enough, sometimes bifurcation diagrams
of zeros can be constructed. Usually problems of this type appear in connection with
bifurcations of limit cycles in families of vector fields exhibiting certain resonances.
Though it is impossible to mention all results, probably the most spectacular single
recent achievement in this direction is due to L. Gavrilov [10], see problem 1979-
26. Gavrilov proved that for a real cubic Hamiltonian with 4 distinct (complex)
critical values, the number of zeros of any integral of a quadratic 1-form can be at
most 2.

The advantage of cubic Hamiltonians is that their level curves are elliptic, thus
the corresponding integrals can be in some sense reduced to elliptic integrals.
The Picard–Fuchs system satisfied by these integrals, admits as a factor the 2-
dimensional linear system reducible to a Riccati equation similar to that from [30].
Zeros of functions obtained as rational combinations of solutions of a Riccati equat-
ion, can be produced using the “fewnomials” technique introduced by Khovanskĭı
[18]. This idea after an appropriate (rather sophisticated) elaboration allowed to
prove that for any cubic Hamiltonian and any polynomial form of degree deg ω ≤ d
the number of isolated zeros can be at most 5d + 10 (Horozov and Iliev [11]).

In the same paper it is shown that a generic cubic Hamiltonian admits a quartic
1-form ω yielding 5 isolated zeros to the integral (2). This gives a generally negative
answer to the question raised in problem 1983-11, whether Abelian integrals are
always non-oscillating (as was the case in the standard elliptic case). Yet the
conjecture from 1990-25 about non-oscillation of hyperelliptic integrals, remains
open.

Note added in proof. In February 2002 Chengzhi Li and Zenghua Zhang announced
a complete solution of the infinitesimal Hilbert problem for the quadratic case
(deg H = 3, deg ω = 2). They showed that the genericity condition appearing in
the Gavrilov theorem [10] is in fact obsolete. For more details see problem 1979-26.

Asymptotic bounds. The role played by the Hamiltonian H and the polynomial 1-
form ω is clearly unequal. Ignoring the origins of the infinitesimal Hilbert problem,
one may further relax it by freezing the Hamiltonian and investigating how the
bound on the number of zeros may depend on the form. This suggestion is tacitly
made in formulations of the problems 1994-51, 1994-52.

First results in this direction were obtained by Yu. Ilyashenko, D. Novikov and
S. Yakovenko. Assuming that the Hamiltonian is generic, they proved in [13, 24, 25]
that as deg ω = d →∞, the number of isolated zeros may grow at most as O(exp cd),
where c = c(H) is a constant depending only on H. The demonstration leaves a
theoretical opportunity to compute c(H) in terms of the monodromy group of
H and a geometry of its critical values, but the result of the computation must
necessarily explode as some of the critical values of H approach each other. The
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key idea behind the proof is to exploit the irreducibility of the monodromy group
of the Picard–Fuchs equation in the complex domain.

An asymptotically accurate answer was obtained by Petrov and Khovanskĭı in
1996. They proved that the number of isolated zeros can grow at most as K1(n) d+
K0(H), where K1(n) is an explicit constant depending only on the degree n = deg H
while K0(H) is independent of ω but depends on H. Apparently, one can prove
that this constant is uniformly bounded over all Hamiltonians of degree n by some
K0(n), but the bound K0(n) is absolutely non-efficacious exactly as the Varchenko–
Khovanskĭı bound C(n, d) mentioned above. Though the proof is not yet formally
published, some of its ingredients were already incorporated in other constructions
[27, 39].

This result to a certain extent answers the question as it is formulated in problem
1994-52. Though the constant K1(n) is bigger than 1, still the relative excessive-
ness of this upper estimate over the lower estimate guaranteed by the dimensional-
ity arguments, is bounded uniformly over all forms of all degrees (for fixed deg H),
partially corroborating thus the conjecture that appeared in the earlier problem
1983-11.

Algorithmically constructive bounds. The fewnomials theory applies to functions
defined by planar polynomial differential equations, such as the Riccati equation
mentioned above, describing their zeros in terms of the degrees of the defining
equations.

There is no such “fewnomials theory” for polynomial vector fields in Rn or Cn

with n > 2 [23]. However, one may compute an explicit upper bound on the num-
ber of isolated intersections between integral trajectories of a polynomial vector
field and an arbitrary algebraic hypersurface in the n-space, not solving the equat-
ions. The answer depends (polynomially) on the magnitude of coefficients of the
vector field, as well as on its degree and dimension (as a tower function, i.e., an
iterated exponent). This result (the “meandering theorem”), obtained by Novikov
and Yakovenko [26, 28], can be applied to Picard–Fuchs systems of linear ordinary
differential equations with rational coefficients, satisfied by Abelian integrals.

A precondition for such application is an explicit knowledge of the magnitude
of the coefficients of the system. An explicit derivation of Picard–Fuchs equations
allowing to bound their coefficients, was achieved in [29], see also [22].

The construction in the hyperelliptic case has an especially transparent form.
Application of the meandering theorem in this case allows to place an explicitly
computable upper bound in the form of a tower function (iterated exponent) of
n, on the number of zeros of hyperelliptic integrals, under the additional technical
assumption that all critical values of the potential are real (Novikov and Yakovenko
[27]).

Actually, the result on zeros of hyperelliptic integrals is obtained as a particu-
lar case of the following general principle. A collection of (analytic multivalued)
functions f1(t), . . . , fn(t) on the Riemann sphere, satisfying a Fuchsian system of
linear equations, behaves algebraically-like if the monodromy group of this system
possesses certain spectral properties. The quasialgebraicity property mentioned
above means that the question on the number of (complex isolated) zeros of any
function f from the differential Picard–Vessiot extension field C(f1, . . . , fn) can be
explicitly answered in terms of complexity of f in this field. See [39] for the exact
formulations and discussion.
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Restricted problems. Various approaches to obtaining asymptotic or algorithmic
bounds on the number of zeros of Abelian integrals, are based on different properties
of Abelian integrals (usually in the complex domain). For instance, the exponential
asymptotic bounds from [13] is based on irreducibility of the monodromy group
of the Abelian integrals, whereas the key results from [39] are valid for any com-
plex analytic functions satisfying Fuchsian systems of differential equations with
bounded residue matrices.

These methods, though not giving a complete answer for the problem in full
generality, sometimes allow for explicit upper bounds for almost all Hamiltonians,
except for a proper semialgebraic subset of zero measure. As a rule, the estimates
explode to infinity when approaching this exceptional “bad” subsets, while the num-
ber of zeros remains in fact bounded by the Varchenko–Khovanskĭı theorem. Yet
the explicit nature of the estimates for a “large” portion of Hamiltonians is of ob-
vious interest. Following Yu. Ilyashenko, we call such problems restricted versions
of the infinitesimal Hilbert problem. Expanding the meaning of the “restricted-
ness”, one can include in this class also majorizing the number of isolated zeros of
Abelian integrals in some specific domains (e.g., on a specified distance from the
set of critical values of H).

In this restricted sense the infinitesimal Hilbert problem is in principle solved in
[29]: for any H with a properly normalized principal homogeneous part and any
ε > 0 one can place an explicit upper bound for the number of isolated zeros of all
Abelian integrals, at least ε-distant from the critical values of H (the bound depends
on H and ε). Moreover, for all Hamiltonians with the principal homogeneous
part normalized as above, and pairwise distant critical values, the number of all
isolated zeros of all integrals can be bounded uniformly in terms of n, d and the
(inverse) minimal distance between the critical values. The bounds are given by
tower functions of height 4.

Very recently A. Glutsuk and Yu. Ilyashenko achieved considerable progress to-
wards solving the restricted infinitesimal problem for the particular class of Hamil-
tonians of the form H(x, y) = p(x) + q(y) with two monic polynomials of the same
degree deg p = deg q = n + 1. Using different ideas partly stemming from [14, 13],
they obtain in [12] an explicit upper bound for the number of isolated zeros, grow-
ing as exp(2435n4), provided that all n2 critical points of H are in the disk of of
radius 2 but at lest 1/n2-distant from each other.

Non-Hamiltonian case. As was already remarked, the case of general Poincaré in-
tegrals with nontrivial integrating factors is much more complicate. To begin with,
merely a classification of integrable polynomial systems is very complicated. While
all center conditions in the quadratic case are known since the work by Dulac [7],
the analogous problem for cubic systems is not solved. Thus, as suggested in the
problem 1983-11, one should begin with a certain typical (or simplest) class of
integrable systems. A natural candidate is the class of Darboux integrable systems
M dH = 0, where H(x, y) = Fα1

1 · · ·Fαn
n is the first integral, the product of poly-

nomials Fi ∈ R[x, y] in real powers αi ∈ R, and M = F1 · · ·FnH−1 is the nontrivial
integrating factor. The famous Lotka–Volterra system corresponds to three linear
terms F1 = x, F2 = y and F3 = 1− x− y and seems to be one of the two simplest
examples (the other one is a product of two terms with F1 linear and F2 quadratic).

It is much more difficult to describe the analytic continuation of the Poincaré
integrals, since the “level curves” H = h after complexification will not be affine



8 SERGEI YAKOVENKO

Riemann surfaces continuously depending on h, but rather essentially noncompact
leaves of the holomorphic foliation {M dH = 0} with singularities on CP 2. This
makes it very difficult (if possible at all) to apply complex analytic methods that
were the main tools of research in the Hamiltonian case. As a consequence, there
is not possible to write a finite-dimensional system of Picard–Fuchs equations (an
infinite system was derived for the Darbouxian case by H. Żo la̧dek in [8]).

Concerning the particular low-degree cases, one should mention the paper by
Żo la̧dek [40], see problem 1980-3. In most other results concerning specific per-
turbations of the Lotka–Volterra system, usually monotonicity of some ratios of
“monomial” Poincaré integrals is obtained by using very specific methods that do
not admit generalizations for the general Darbouxian case or perturbations of higher
than second degree. This monotonicity implies uniqueness of zero of the correspond-
ing “binomial” linear combination of integrals. A useful tool for establishing such
monotonicity for systems with the first integral of the form H(x, y) = Φ(x) + Ψ(y)
was discovered by Chengzhi Li and Zhifen Zhang [20]: despite its seemingly artificial
form, it proves to be working in many independently arising particular cases.
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[39] S. Yakovenko, Quantitative theory of ordinary differential equations and tangential Hilbert

16th problem, ArXiv Preprint math.DS/0104140 (2001), lecture notes of the course delivered

on the Workshop ”Asymptotic series, differential algebra and finiteness theorems” (Montreal,
2000).

[40] H. Żo la̧dek, Quadratic systems with center and their perturbations, J. Differential Equations
109 (1994), no. 2, 223–273. MR 95b:34047

2. Hilbert 16th problem and ramifications

Problem 1958-3. Find a multidimensional version of the Hilbert conjecture on
the number of limit cycles. For instance, interesting is the number of integral curves
connecting two algebraic or invariant manifolds and sufficiently “monotone”.

Comments. This question reappeared with some modification in [1], see also [2, 3],
in connection with the problems on complexity of dynamical intersections.

In one of the formulations it is suggested to estimate the number of intersections
between a fixed variety Y and the saturation of another variety X by trajectories
of length ≤ N of a polynomial vector field in Rn, with dim X + dim Y = n− 1.

This problem was solved for dim X = 0, when it reduces to the question on the
number of intersections between an integral curve of a polynomial vector field, and
an algebraic hypersurface. The bound, obtained by D. Novikov and S. Yakovenko
[4, 5], depends polynomially on the magnitude of the coefficients and the “size” of
the integral curve, while the power exponent is a computable but enormously fast
growing function of the dimension n and the degree of the field.

This result also holds in the complex space and can be applied to Picard–Fuchs
equations for Abelian integrals. This yields some explicit bounds for the infinitesi-
mal Hilbert problem, see the comments to problem 1978-6 e.a.
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Problem 1971-9. Generalize the Hilbert problem on limit cycles for discrete time
systems.

Comments. One of the possible variants is the dynamics of intersections discussed
in the problem 1988-6 (commentary), see also 1988-7, 1989-2, 1990-1, 1990-
20, 1990-21, 1992-12—1992-14, 1994-45—1994-50, where mostly the case of
generic smooth maps is considered [1, 2, 3].

Yet it is the algebraicity of the discrete time dynamical system that should also
play an important role. The straightforward generalization, “estimate the number
of periodic points of period n in terms of the degree and n”, is trivial: the union of
all n-periodic orbits is an algebraic subvariety for any finite n, and its complexity
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can be easily estimated. For instance, if this set is discrete, than the number of its
points grows exponentially in n by virtue of the Bézout theorem.

It is the nonalgebraicity of solutions (limit cycles) of planar polynomial vector
fields, that makes them so difficult to track. Thus a “proper” Hilbert-type question
for discrete time systems should involve infinite aperiodic orbits of polynomial maps.
In particular, one might try to begin by estimating “nonalgebraicity” of infinite
orbits. To do this, a numeric measure for this is to be introduced and bounded
from above in terms of the degree of the polynomial map.

One such characteristics can be easily described. What can be the maximal
time during which an orbit may stay on a given algebraic subvariety, without being
forced to stay on it forever? This question is a discrete time analog of the question
on the maximal order of tangency between trajectories of a polynomial vector field
and an algebraic hypersurface, the problem posed by J.-J. Risler in connection with
control problems [4].

The discrete time problem was solved by D. Novikov and S. Yakovenko in [5] for
dimension-preserving polynomial maps. The continuous time problem was solved
by A. Gabrielov and A. Khovanskĭı [6] who gave an exponential bound for the
maximal order of tangency.
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Problem 1976-37. Can a planar vector field defined by two quadratic polynomi-
als, have more than 3 limit cycles?

Comments. The question is apparently motivated by Bautin’s famous result [1]
asserting that in a quadratic perturbation of the linear center (the Hamiltonian
linear vector field corresponding to the Hamiltonian H(x, y) = x2 + y2) no more
than 3 limit cycles can be born. The original proof was obtained by somewhat
mysterious calculations. Simplified proofs were obtained in [3] and [4].

It was long believed that this result implies that quadratic vector fields cannot
have more than 3 limit cycles. In 1980 Shi Song Ling [2] constructed a coun-
terexample with 4 limit cycles by explicitly perturbing a quadratic system with
an ultra-ultra-weak focus at the origin (generating three small limit cycles in the
perturbation) and one more “large” limit cycle far away.
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Problem 1979-26. Let P,Q in the system ẋ = P (x, y), ẏ = Q(x, y) — polynomials
of the second degree, and H(x, y) a first integral of this system (not necessarily a
polynomial one). How many limit cycles can be born from components of level
curves of H by small variations of P,Q leaving them quadratic polynomials?

Comments. The problem was published in [1].
For perturbations of a generic Hamiltonian system with a real cubic polynomial

H, the problem was solved by L. Gavrilov [2]. He proved that for any real cubic
Hamiltonian with four distinct critical values, and any cubic differential form ω the
number of limit cycles born in the corresponding quadratic perturbation (2) is at
most 2. This technically involved theorem incorporates previously obtained results
by E. Horozov and I. Iliev [3]. Gavrilov theorem solves the problem 1979-26 for
perturbations of Hamiltonian quadratic systems, as well as other numerous results.

The central moment is a theorem on zeros of the corresponding Abelian integrals,
see commentaries to the problem 1978-6 e.a.

Note added in proof. In February 2002 the infinitesimal Hilbert problem for the
quadratic case was finally settled: the number of isolated zeros of any Abelian
integral of a real quadratic polynomial 1-form over closed level curves of a real
cubic Hamiltonian is at most 2. This result was achieved in a series of case study
works treating the degenerate cases not covered by the Gavrilov theorem (actually,
some of these results chronologically preceded [2]). Namely, when one of the critical
points of H escapes to infinity, the bound was obtained in [5, 6]. The case of two
coinciding critical values attained at two distinct critical points (in this case the
Hamiltonian system exhibits a heteroclinic loop) was covered in [7]. The final blow
was dealt in [4] by Chengzhi Li and Zenghua Zhang who announced the solution
for the case of cubic Hamiltonians exhibiting a cuspidal singularity.

It is important to stress that in these degenerate cases a bound on the number
of zeros of Abelian integrals does not imply yet a bound on the number of limit
cycles. It may happen that the integral I(t) =

∮
H=t

ω vanishes identically, whereas
the system dH + εω = 0 for any ε 6= 0 is non-integrable.
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Problem 1979-27. Let P,Q in the system of differential equations ẋ = P (x, y),
Q̇(x, y), be power series starting from homogeneous polynomials Pn, Qn of degree
n. Is that true that for almost all pairs (Pn, Qn) the number of limit cycles born
from the origin by a small perturbation of the system, is bounded by a constant
depending only on n?

Problem 1983-16. Is it true that the number of limit cycles born from a singu-
lar point of an analytic system, is bounded (except for systems forming a set of
codimension infinity, integrable)?

Comments. These two problems can be considered as an initial step in an attempt
to relax the Hilbert 16th problem by localizing it on a neighborhood of singular
point (another type of localization, with respect to parameters, leads to the problem
on zeros of Poincaré integrals, see problem 1979-16 and its follow-up).

Yet it turned out that, besides limit cycles born from centers with nonzero linear
part (Andronov–Hopf) and cuspidal points (Bogdanov, [1]), there were only a few
results, some of them incomplete. Perhaps, the main reason is that all difficulties
characteristic of global problems, reappear in the local problem after a suitable
blow-up procedure.

Considerably better is the situation with other types of polycycles (graphics,
separatrix polygons) which can also generate limit cycles by small perturbations.
(One singular point, degenerate or not, is a particular case of a polycycle). Cyclicity
of a polycycle is the number of limit cycles that can be born this way.

The known results can be arranged according to the number and the types of
singular points on the polycycle, that is, ultimately, according to the codimension of
occurrence of polycycles in generic families of planar vector fields. For all polycycles
of small codimension 1 and 2 the cyclicity is known. The list of polycycles of
cyclicity 3, the Kotova Zoo, is composed and for many beasts from this zoo the
cyclicity is known or at least estimated from above. These and other results can be
found with appropriate references in the book [2].

Results of general nature are scarce. It is known that cyclicity of a generic
polycycle of any finite codimension n, carrying only elementary singularities (with
non-nilpotent linear parts), is finite and bounded by an algorithmically computable
function E(n). This result by Ilyashenko and Yakovenko [3] was recently improved
by V. Kaloshin, who simplified some parts of the construction and achieved the
transparency that allowed him to prove that E(n) ≤ 225n2

[4, 6, 5]. To get rid of the
elementariness assumption, a parametric desingularization procedure is required.
There were attempts to construct such theory (Roussarie–Denkowska, Trifonov),
but all failed to reach the level of applicability required for further progress in this
direction: even for bifurcations of a cuspidal loop, an upper bound the number
of limit cycles is proved only modulo an assertion on monotonicity of a certain
transcendental function [7].
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Problem 1980-2. The boundary value problem for ẋ = P (x, eit), x(2π) = x(0):
the number of solutions.

Problem 1984-16. Study the equation dy
dx = f(x, y), where x, y are angular co-

ordinates on the circle and f a trigonometric polynomial. How many cycles can it
have for a given Newton polygon?

Comments. This is one more attempt to relax the Hilbert problem on limit cycles,
this time modifying the class of admissible differential equations. The answer for
the trigonometric problem as it is stated, is known only for deg f = 1, where it is
shown that at most 2 limit cycles can occur [1]. For deg f = 2 at least 6 cycles are
possible (ibid.).

The “polynomial” periodic problem 1980-2 is somewhat better understood. The
differential equation of the form ẋ = P (x, t) with the monic polynomial P = xd +∑d−1

0 ak(t) xk and arbitrary dependence on t, the so called Abel equation, was
studied in [3]. For d = degx P ≤ 3 there can be at most d solutions with x(0) = x(1),
while for d ≥ 4 the number of cycles can be arbitrary, depending on the coefficients
of the polynomial f [6, 4, 5].

Very recently Yu. Ilyashenko constructed an upper bound for the number of limit
cycles of the periodic Abel equation (as in the initial formulation) in terms of the
magnitude of the coefficients, C = maxk maxt |ak(t)|. In [2] he proved that the
number of cycles can be majorized by an explicit expression double exponential
in C. Results of similar nature were also obtained for limit cycles of the Liénard
equation.

A different approach to studying the cubic Abel equation

y′ = p(x)y2 + q(x)y3, p(x), q(x) ∈ R[x], (4)

with polynomial p(x), q(x) was suggested recently by J.-P. Françoise, Y. Yomdin
and coauthors. Very roughly, the idea is to solve this equation in formal series and
study the algebra and geometry of coefficients of these series.

For instance, the growth of coefficients of a converging series
∑

k≥0 akyk, closely
related to the growth rate of the sum of this series, is responsible for the distri-
bution of its zeros. If the coefficients are themselves polynomials in the additional
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parameter(s), then uniform bounds on the number of zeros can be derived from
analysis of the ascending chain of Bautin ideals Ik = 〈a0, a1, . . . , ak〉 and the (infi-
nite) descending chain of ideals Jk = 〈ak+1, ak+2, . . . 〉 [9, 10].

In application to the cubic Abel equation (4), consider the “Green function”
G(x, y), defined as the value at the moment of time x of the solution of this equation,
defined by the initial condition y(0) = y. The expansion of this function G(x, y) =
y +

∑
k≥2 ak(x) yk has polynomial coefficients ak ∈ R[x], and the recurrent rule

for ak can be easily written. The questions on zeros of the function G contain
in a nutshell many difficulties characteristic for the Hilbert problem. The number
of isolated roots of G(1, y) will be an equivalent of the problem on limit cycles.
Determination of the points x = b for which G(b, y) ≡ y is the “Poincaré center
problem” for the Abel equation. In this case we say that the points x = 0 and
x = b are conjugated along the equation (4).

One can easily construct examples of Abel equations with conjugated points as
follows: starting from an arbitrary Abel equation, make a many-to-one polynomial
change of the independent variable x = x(t). The result will be a “foldable” Abel
equation with all points of each preimage t−1(b) conjugated with each other for
any choice of b. The conjecture is that this is the only possibility for appearance
of conjugated points. In the language of composition algebra of coefficients, this
is tantamount to existence of a non-trivial compositional common factor for the
primitives P =

∫
p and Q =

∫
q [8].

One can also formulate an infinitesimal version of this problem. If q(x) ≡ 0,
then the equation (4) becomes integrable and the conjugate points occur only at
the roots of P (x). Adding a small perturbation εq(x)y3 to this integrable equation
makes the Green function G(x, y) depending on ε, and the first variation in ε, the
“Poincaré integral” F (x, y) = d

dε

∣∣
ε=0

G(x, y) (cf. with the problem 1978-6 e.a.),
can be reduced to the integral

F (x, y) =
∫ x

0

q(t) dt

1− yp(t)
=

∞∑
k=0

mk(x) yk, mk(x) =
∫ x

0

P k(t)q(t) dt. (5)

The coefficients mk(x) are the moments of q with respect to the weight P (x), and
their common zeros determine the “infinitesimally conjugate” points. As before,
zeros of a compositional common factor of P and Q are common zeros of all the
moments mk, the problem is to describe the other such roots.

Returning to the initial problem involving the Abel equation (4) with trigono-
metric polynomials p, q ∈ C[exp ix], it is proved that this equation is a center (i.e.,
all trajectories are 2π-periodic) when all 2-dimensional moments

∫ 2π

0
P kQldP (t)

are zeros [7]. This assertion is wrong for arbitrary trigonometric functions. The
reason behind this fact is that the moments can be computed as periods of poly-
nomial 1-forms on a certain naturally arising algebraic curve, and the assertion is
valid if this curve is rational.
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[5] A. A. Panov, Variety of Poincaré mappings for cubic equations with variable coefficients,
Funktsional. Anal. i Prilozhen. 33 (1999), no. 4, 84–88. MR 2001f:34076

[6] S. Shahshahani, Periodic solutions of polynomial first order differential equations, Nonlinear

Anal. 5 (1981), no. 2, 157–165. MR 82d:34052
[7] M. Blinov and Y. Yomdin, Center and composition conditions for Abel differential equation,

and rational curves, Qual. Theory Dyn. Syst. 2 (2001), no. 1, 111–127. MR 1 844 981

[8] M. Briskin, J.-P. Francoise, and Y. Yomdin, Center conditions, compositions of polynomials
and moments on algebraic curves, Ergodic Theory Dynam. Systems 19 (1999), no. 5, 1201–

1220. MR 2000k:34051

[9] J.-P. Francoise and Y. Yomdin, Bernstein inequalities and applications to analytic geometry
and differential equations, J. Funct. Anal. 146 (1997), no. 1, 185–205. MR 98h:34009c

[10] Y. Yomdin, Global finiteness properties of analytic families and algebra of their Taylor co-
efficients, The Arnoldfest (Toronto, ON, 1997), Amer. Math. Soc., Providence, RI, 1999,

pp. 527–555. MR 2001i:34060

Problem 1980-3. The number of limit cycles born in the “Lotka–Volterra” system{
ẋ = x (α + βx + γy + · · · ),
ẏ = y (δ + εx + ζy + · · · ),

near α = δ = 0. In particular, integrals along xpyqzr = h, z = 1− x− y.

Comments. This problem is a particular low-degree case of the general infinites-
imal Hilbert problem, see the commentary to problem 1978-6 e.a.

The question about the number of limit cycles born from the quadratic Lotka–
Volterra system was answered by H. Żo la̧dek [1]. He proved using tremendously
heavy and absolutely mysterious computations that in the quadratic perturbation
of the Lotka–Volterra system the corresponding Poincaré integral may have at most
2 isolated zeros.

References
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Problem 1981-16. Is that true that a polynomial vector field on the plane has
only finitely many limit cycles? H. Dulac committed an error.

Comments. The assertion now commonly referred to as the Dulac conjecture or
Dulac problem, was solved independently and by two completely different methods
by Yu. Ilyashenko [1] and J. Ecalle [2]. In both cases the affirmative answer is
derived from the nonaccumulation theorem asserting that limit cycles of an analytic
vector field on the plane cannot accumulate to a polycycle, a separatrix polygon
formed by one or more singular points of the vector field and arcs connecting these
points.

Each proof is extremely involved and occupies an entire book. Ilyashenko’s
publication was preceded by several articles [3, 4, 5, 6] proving the nonaccumulation
theorem for special classes of polycycles and containing in a nutshell the basic
ingredients of the general proof.

The finiteness theorem is widely considered as an absolute peak achievement in
all activity concerning the Hilbert 16th problem.
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3. Miscellaneous problems

Problem 1976-2. Let there be given two vector fields of degrees n and m on the
plane. Can one estimate from above the number of intersections between their limit
cycles in terms of n and m (find a sharp bound)?

Comments. This result appears in the book by Khovanskĭı [1, p. 26] under the
name Bezout theorem for P-curves: the number of isolated intersections can be at
most (n + m)(2n + m) + n + 1. Somewhat strangely, the bound is asymmetric. It
is not known, whether the bound is sharp.
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Problem 1979-22. Estimate the number of ovals of a curve with a fewnomial
equation, through the number of its terms.

Comments. This problem was first posed in [1] and solved in [2] (Theorems 4 and
5, chapter 2).
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Problem 1984-7. Construct a theory of versal deformations of Fuchsian systems.
Is it true that regular singularities are isomonodromic limits of (confluent) Fuchsian
points? Which matrices from the monodromy group converge to the Stokes matrices
in the irregular case?

Comments. Relegated to A. Glutsuk who solved a very closely related problem.

Problem 1984-10. Describe variational and symplectic properties of Picard–
Fuchs equations (the Gauss–Manin connexion). Aren’t they the Euler equations
for an appropriate group?

Problem 1985-12. Are the Picard–Fuchs equations Hamiltonian with respect
to some natural symplectic structure, and do they possess a positive Lagrangian
responsible for some kind of non-oscillatory behavior?
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Comments. The problem reappeared recently in [1].
The question was motivated by Arnol’d’s “Lagrangian Sturm theorem” [2] de-

scribing moments of non-transversality between Lagrangian planes moving by virtue
of a linear Hamiltonian system with quadratic (nonautonomous) Hamiltonian, and
a frozen (fixed) Lagrangian plane.

In [3] A. Givental proved that the system Picard–Fuchs equations for hyper-
elliptic Abelian integrals are Hamiltonian. More precisely, integrals of the forms
(x2g−k/y) dx, k = 1, . . . , 2g, over the level curves {H(x, y) = t} of the Hamiltonian
H(x, y) = y2 + x2g+1 + λ1x

2g−1 + · · · + λ2g−1x, satisfy a linear system which is
Hamiltonian with respect to the symplectic form obtained from the intersection
form.

The corresponding Hamiltonian is positive for those values of t for which the
real level curve {H = t} possesses the maximal number g + 1 of components. By
the above Arnol’d theorem, this means that certain determinants involving the
hyperelliptic integrals, are non-oscillating on such intervals of t. This does not
imply, however, any information on zeros of the integrals themselves.

In [4] it is shown that the Picard–Fuchs system for hyperelliptic integrals has
a hypergeometric form, (tE + A)İ = BI with A,B constant matrices depending
on H (and I is the column vector of hyperelliptic integrals). This is true also for
Abelian integrals associated with a generic bivariate Hamiltonian H, if I consists of
integrals of all cohomologically independent monomial 1-forms of degree ≤ 2 deg H
(ibid.).
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