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Im Anshuß . . . die Frage nach der Maximalzahl und Lage der
Poincaréschen Grenzzyklen für eine Differentialgleichung erster
Ordnung und erster Grades von der Form:

dy

dx
=

Y

X

wo X , Y ganze rationale Funktionen n-ten Grades in x , y
sind.

David Hilbert, Mathematische Probleme, 1900

Two principal subjects of this Volume are bifurcations of limit cycles of pla-
nar vector fields and desingularization of singular points, both for individual
vector fields and for analytic families of the latter. These subjects are closely
related to the second part of the Hilbert Sixteenth Problem. The goal of this
introductory paper is to introduce the general context and outline connections
between the various results obtained in the five research papers constituting
this Volume. We had no intention, however, to give a complete survey of the
area: the recent collection of lecture notes [S] covers a broader field and gives
a panorama of the current state. Among the notes in [S] the papers [I2], [D2],
[R3] and [Rs] are the most close in scope to the subjects treated below.

In this introduction we refer to the papers constituting the Volume, as
Paper 1, . . . ,Paper 5.

§1. The Hilbert problem and finiteness theorems
for limit cycles of polynomial vector fields

The shortest (the original) way of formulating this problem is to ask what is
the number and position of Poincaré limit cycles (isolated periodic solutions)
for a polynomial differential equation dy/dx = P (x , y)/Q(x , y) , where P

and Q are polynomials of degree n .

1.1. Different forms of the Hilbert’s question. The formulation
given by Hilbert admits several specifications, described in the following three
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subsections; the connections between them are schematically shown on Table 1
(the statements of other problems will appear later).

Recall that a limit cycle of the differential equation

dy

dx
=

Pn(x , y)
Qn(x , y)

, Pn , Qn ∈ R[x , y] , deg Pn , Qn � n (1)

is a periodic solution which has an annulus-like neighborhood free of other
periodic solutions on the (x , y)-plane.

Individual finiteness problem. Prove that a polynomial differential
equation (1) may have only a finite number of limit cycles.

This problem is known also as Dulac problem since the pioneering work of
Dulac (1923) who claimed to solve it, but gave an erroneous proof.

Existential Hilbert problem. Prove that for any finite n ∈ N the
number of limit cycles is uniformly bounded for all polynomial equations (1)
of degree � n .

If we denote

H(n) =

⎧⎨
⎩

the uniform upper bound for the number
of limit cycles occurring in polynomial
differential equations of degree � n

⎫⎬
⎭ (2)

then the existential problem consists in proving that

∀n ∈ N H(n) < ∞.

Constructive Hilbert problem. Give an upper estimate for H(n) or
suggest an algorithm for computing such an estimate.

The solution of this last problem would obviously imply the solution of
the previous ones (the individual and the existential versions). However, in
the next section we consider other statements which are not reduced to the
constructive Hilbert problem.

1.2. Nonaccumulation Theorem. Out of three forms of the Hilbert
problem, only the first one (the weakest) is proved. Two independent and
rather different proofs were given almost simultaneously by Yu. Ilyashenko
[I1] and J. Écalle [É]. The preliminary stages of both proofs include the
following preprocessing which was known already to Dulac.

Note that a polynomial differential equation makes sense also at infinity.
To make this statement precise, consider the line field on R

2 whose slope at
a point (x , y) is P (x , y)/Q(x , y) (we assume that the pair of polynomials
has no common factors, thus the points of indeterminacy are isolated; the
precise definition of a line field with singularities can be found in Paper 2).
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EQUATIONS 
POLYNOMIAL 

Individual 
finiteness

Existential 
problem

Constructive 
Hilbert problem

OF VECTOR FIELDS
ANALYTIC FAMILIES

Finite cyclicity

Individual
nonaccumulation

Existential
problem

Table 1. Relations between different versions of
the Hilbert problem: arrows stand for implications.

Then this line field extends analytically onto the projective compactification
RP 2 ⊃ R

2 : in a neighborhood of the infinite line RP 1 one can multiply the
vector field Pn ∂/∂x + Qn ∂/∂y by a meromorphic nonzero factor in such a
way that the resulting vector field, which spans the same line field, would
admit an analytic extension onto RP 1 with at most n + 1 singular points
on the infinite line.

To obtain an orientable phase space, one can consider the sphere S2 to-
gether with the canonical covering π : S2 → RP 2 ; the pullback of the line
field from RP 2 is a symmetrical line field on S2 with isolated singularities.
Note that both the sphere and the projective plane are compact.

Assume for a moment that a polynomial vector field possesses an infinite
number of limit cycles. By the Poincaré–Bendixson theorem, limit cycles of
any differential equation should be “nested” around singular points. Since a
polynomial differential equation may have only a finite number of such points,
then limit cycles must accumulate (in the sense of Hausdorff metric) to a
certain object which consists of some singular points and regular arcs (infinite
trajectories) connecting them. Modulo a certain terminological discord, such
objects are called polycycles. The precise definition follows.

Definition. A polycycle of a line field is a cyclycally ordered collection
of singular points p1 , p2 , . . . , pk (eventually with repetitions) and arcs (in-
tegral curves) connecting them in the specified order: the j th arc connects
pj with pj+1 for j = 1 , . . . , k .

A trivial example of a polycycle is a periodic solution of the differential
equation, without singular points and only one arc. Another case of polycycle
having no arcs and just one singular point, is also admissible but far from
being trivial.

The above arguments reduce the individual finiteness problem to the nonac-
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cumulation problem: prove that limit cycles cannot accumulate to a polycycle
of a polynomial differential equation. This problem is semilocal : its assertion
concerns a small neighborhood of a polycycle rather than the whole (x , y)-
plane. The following theorem proved by Ilyashenko and Écalle solves the
individual finiteness problem (the Dulac problem).

Nonaccumulation theorem. For any analytic vector field on a two-
dimensional real analytic manifold (surface), limit cycles cannot accumulate
to a polycycle.

Thus the nonaccumulation theorem is analytic rather than algebraic as-
sertion, and it implies the individual finiteness for some analytic differential
equations as well.

Corollary (individual finiteness theorem for analytic vector fields on the
sphere). An analytic vector field on the 2-dimensional sphere S2 may have
only a finite number of limit cycles.

1.3. Desingularization. The singular points occurring on a polycycle,
may be of any degree of degeneracy, for instance, the polycycle may consist
of just one very degenerate singular point. Nevertheless there is known a
procedure which allows for investigation of polycycles having only relatively
simple singularities, the elementary ones.

Definition. A singular point of a planar differential equation is elemen-
tary, if the linearization of the equation at this point at least one nonzero
characteristic number (the eigenvalue of the linearization matrix).

The simplest example of a non-elementary singularity is the cuspidal point ,
the singular point with the nonzero nilpotent linearization matrix. Lineariza-
tion of a vector field at the cuspidal point has the form ẋ = y , ẏ = 0 .

The procedure of simplification of singular points of a differential equation
is known under several names: desingularization, blowing-up, σ-process , res-
olution of singularities. In any case, the idea is to delete a singular point from
its small neighborhood and replace it by a one-dimensional curve, a projec-
tive line or a circle. For example, to make the polar blow-up of the origin, one
introduces polar coordinates,

(r , ϕ)
ρ→ (x , y) = (r cos ϕ , r sin ϕ) , r > 0 , 0 � ϕ < 2π.

The differential equation put into the polar coordinates admits an analytic
extension for (small) negative values of r and division by a factor of rν ,
where ν is determined by principal terms of the Taylor expansion of the
right hand sides at the origin. After such a division one may consider the
system in a narrow annulus −h < r < h , 0 � ϕ < 2π . The whole circle
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r = 0 is the preimage of what formerly was a singular point of the equation,
and singularities of the new field on this circle are in some sense simpler then
the original singularity at the point x = y = 0 on the (x , y)-plane. If
necessary, the procedure may be iterated (the new points are in turn blown
up) until all singularities become elementary. The possibility of blowing up
any singular point (satisfying the �Lojasiewicz condition in the smooth case or
isolated in the analytic category) into elementary singularities is the assertion
of Bendixsson–Seidenberg–Dumortier theorem, see [D1], [VdE].

The polar blow-up has some disadvantages. First, it involves trigonometric
functions and thus leads to the loss of algebraicity. Second, the points (r , ϕ)
and (−r , ϕ+π) correspond to the same point on (x , y)-plane, thus after the
resolution the number of singular points is doubled. There exists an algebraic
version, the σ-process , which operates with polynomial expressions and does
not produce twin singularities: from the geometrical point of view it amounts
to replacing the annulus around r = 0 by the Möbius band, the quotient
space of the annulus by the equivalence (r , ϕ) ∼ (−r , ϕ + π) . The central
circle becomes then the projective line. In more details these procedures are
explained in Paper 2 and Paper 3.

In any case, when proving the nonaccumulation theorem, one may con-
sider only elementary polycycles, that is polycycles carrying only elementary
singularities on some analytic 2-dimensional surface.

1.4. Analytic nature of the monodromy map. After this prepro-
cessing one has to study the Poincaré return map, or monodromy Δ around
the elementary polycycle which we denote by γ . This map is defined exactly
as in the case of a (nonsingular) periodic orbit: choose a small segment Σ
transversal to an arc of the polycycle and let Δ be the map of this segment
into itself along solutions of the equation provided that they never leave the
small neighborhood of γ . Unlike the case of a periodic orbit, the map Δ is
not analytic at the point p = γ ∩Σ and is defined usually only from one side
of p . The problem of investigating analytic properties of the map Δ is very
complicated (requires hundreds of pages in both known versions), and as a
result one comes to the conclusion that fixed points of the map Δ: Σ → Σ
cannot accumulate to p .

The analysis carried in [I1] is based on using functional cochains and su-
perexact asymptotic expansions. The main tool in [É] is the theory of resur-
gent functions and resummability. Both tools currently do not allow for any
generalization of the proof for the case of vector fields depending on parame-
ters.

§2. Analytic families of vector fields and cyclicity of polycycles
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2.1. Universal polynomial family. The natural way to look at all
polynomial equations (1) at once is to consider them as an analytic family of
line fields on the sphere; the parameters of this family are coefficients of the
polynomials P , Q . The parameter space thus introduced is the Euclidean
space with the deleted origin (since the case P = Q = 0 does not correspond
to a line field), but in fact the simultaneous multiplication of both P and Q

by a common factor λ ∈ R , λ 	= 0 , does not change the line field. Thus the
existential Hilbert problem becomes a particular case of the following global
conjecture.

Global finiteness conjecture. For any analytic family of line fields
on the two-dimensional sphere S

2 with a compact finite-dimensional param-
eter space B , the number of limit cycles for all fields is uniformly bounded
over all parameter values.

In what follows we refer to the family obtained by compactification of (1)
as the universal polynomial family of degree n .

2.2. Cyclicity. Suppose that the global finiteness conjecture is wrong
for a family of line fields α(ε) , ε ∈ B . Then, since it is known that each
individual field from the family has only a finite number of limit cycles (see
§1.2), there must exist an infinite sequence of parameter values εk ∈ B ,
k = 1 , 2 , . . . , such that the corresponding line fields have monotonously
increasing numbers of limit cycles. Since the base B is compact, without
loss of generality we may assume that the sequence εk converges to a certain
point ε∗ ∈ B . Next, since the sphere is compact, the cycles of α(εk) should
accumulate to a certain compact subset of the sphere, invariant by the field
α(ε∗) . Such sets were introduced by Françoise and Pugh [FP] under the name
of limit periodic sets . The precise definition looks as follows.

Definition. A subset γ∗ ⊂ S
2 is a limit periodic set for the family of

line fields α(ε) , ε ∈ B , at a point ε∗ if there exists a sequence of points
εk → ε∗ and the corresponding line fields αk = α(εk) have limit cycles γk

which converge to γ∗ in the sense of Hausdorff distance.
The structure of limit periodic sets admits a simple description.

Proposition [FP]. A limit periodic set either is either a polycycle, or
contains an arc of nonisolated singularities of the field α(ε∗) .

The following definition intoduces an important characteristics of a limit
periodic set occurring in a certain family of (line, vector) fields.

Definition. We say that a limit periodic set γ∗ occurring in a family of
line fields on the sphere for a certain parameter value ε∗ , has cyclicity � μ

if there exist neighborhoods U , V , S2 ⊇ U ⊃ γ , B ⊇ V � ε∗ such that for
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any ε ∈ V the field α(ε) has no more than μ limit cycles in U . In other
words, the polycycle generates no more than μ limit cycles after bifurcation
in the family α(·) .

The minimal such μ (if it exists) is called the cyclicity of the limit periodic
set, otherwise the cyclicity is said to be infinite.

Remark. The notions of limit periodic set and cyclicity are defined for
families rather then for individual line fields. Still if we have a polycycle
for an analytic individual line field α∗ , then cyclicity of such polycycle may
sometimes be estimated from above for any analytic family α(ε) unfolding
the field α∗ . In this case the term absolute cyclicity is used.

Returning back to the global finiteness conjecture, we see that the as-
sumption on the unboundedness of the number of limit cycles would lead to
contradiction if the following assertion were proved.

Finite cyclicity conjecture (Roussarie). Any limit periodic set occur-
ring in an analytic family of line fields on the sphere, has finite cyclicity in
this family.

The above parametric localization procedure can be formulated in the form
of an implication.

Theorem [R2], see also [Aea].

Finite cyclicity of any limit pe-
riodic set in a family of (vector,
line) fields on the sphere with a
compact parameter space

=⇒
Existence of a univer-
sal bound for the num-
ber of limit cycles oc-
curring in this family

2.3. Examples of cyclicity estimates. There are many different ex-
amples of limit periodic sets whose cyclicity is known to be finite or even
explicitly computed. For example, a hyperbolic periodic orbit (a trivial poly-
cycle) has absolute cyclicity 1 . The simplest nontrivial example of a polycycle
(with at least one arc and at least one singularity) is a separatrix loop of a hy-
perbolic saddle: continuations of stable and unstable invariant curves form a
closed loop. If the divergence of the vector field at the saddle point is different
from zero, then the loop has absolute cyclicity 1 (Andronov and Leontovich).
In those (and in many other cases) the results are valid even for smooth fam-
ilies, and they were in fact established in the classical bifurcation theory. In
§3 we give a brief summary of the cyclicity results given gratis by that theory
and its recent developments.

On the other hand, there are some results which establish finite (not ab-
solute) cyclicity for polycycles occurring in analytic families. In these results
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no nondegeneracy-type assumptions is made, so they may be applied to poly-
cycles with the identical monodromy.

The simplest case of a periodic orbit was studied in [FP]. The first really
nontrivial case of a separatrix loop of a nondegenerate saddle was analyzed
by Roussarie [R1] together with the closely related case of cuspidal singular
points.

But historically the first case of effective computation of cyclicity which
is not absolute, is due to Bautin [B]. Bautin studied bifurcations of limit
cycles from an elliptic singular point , i.e. the point at which the eigenvalues
are complex conjugate, σ ± iω , ω 	= 0 , in the universal family of quadratic
vector fields.

Bautin theorem. An elliptic singular point has cyclicity � 3 in the
universal polynomial family of degree 2 .

The original proof is very complicate and involves heavy computations. In
Paper 5 a new proof of this result is suggested. This proof follows to a certain
extent the original Bautin’s proof, but on the final steps instead of almost
incomprehensible manipulations with integrals, a simple geometric reasoning
based a hidden Z3-symmetry allows to arrive to the conclusion.

Remark. Recently yet another proof of this result was suggested by H. Zol-
a̧dek [Z]. That proof is based on some rotational symmetry of the problem.

2.4. Quadratic vector fields. Recently an intense attack was launched
by Dumortier, Roussarie and Rousseau [DRR] to solve the existential Hilbert
problem for the family of quadratic vector fields, that is to prove that

H(2) < ∞.

There was composed a list of 121 polycycles and degenerate limit periodic sets
which may occur after compactification. Out of this list, a substantial number
of cases has been analyzed. The principal difficulties in investigating all these
cases occur when a polycycle is identical (which means that from one side its
neighborhood is filled with closed periodic orbits), or when a limit periodic
set with nonisolated singularities occurs. The same applies to investigation
of other universal polynomial families, and it is not very likely that without
involving some essentially new ideas, the general existential Hilbert problem
could be solved.

Still there exists a natural way to change settings in the existential Hilbert
problem so that those pathologies would be ruled out. This reformulation is
known as the Hilbert–Arnold problem.
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§3. Generic smooth families of vector
fields and the Hilbert–Arnold problem

3.1. Generic smooth families of vector fields on the sphere.
There can be posed a question, why Hilbert had chosen polynomial families as
the subject for investigation concerning limit cycles. Perhaps, the reason was
that the universal polynomial family is the only constructive family of line
fields on the plane which extends to a family of line fields with singularities
on the sphere. Towards the second half of this century, the ideology changed
and typical smooth objects (vector fields and their families) became a legal
subject of consideration.

If we replace in the formulation of the existential Hilbert problem the uni-
versal family (1) by a generic family of vector fields on the 2-sphere S

2 , then
at least some of the difficulties mentioned at the end of the previous section
disappear.

Recall that for any subset B ⊆ Rn a function ϕ : B → R is said to be
smooth if it admits a C∞-smooth extension onto some open neighborhood U

of B .
Let B ⊂ Rn be a finite-dimensional compact. Then the space of C∞-

smooth families of vector fields v(·) : S2×B → TS2 admits the natural topol-
ogy, induced by the metric d(v1 , v2) =

∑
k 2−k‖v1 − v2‖k , where

‖v‖k = max
x∈S

2 , ε∈B ,
|α|+|β|=k

|Dα
xDβ

ε v(x , ε)|. (3)

Definition. We say that a generic n-parameter family of vector fields on
the sphere possesses a certain property P , if this property holds for a residual
subset of the total space of all n-parameter families.

The property is said to hold for a generic family (without indicating the
number of parameters n explicitly), if it holds for any generic n-parameter
family, whatever a finite number n is.

Proposition. In a generic family only isolated singularities occur, and
their multiplicity is bounded over any compact subset in the space of parame-
ters.

Corollary. Any limit periodic set occurring in a generic family, is a
polycycle.

In general, one may expect that generic families of vector fields in many
respects resemble analytic families, but this is an observation rather than a
formal claim. Still there are many reasons to believe that the following basic
conjecture holds.
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Hilbert–Arnold problem. Prove that in a generic family of vector
fields on the sphere S2 with a compact base B , the number of limit cycles is
uniformly bounded.

The Hilbert–Arnold problem was implicitly formulated in [AI] as a par-
ticular case of a conjecture stating that for generic n-parameter families of
vector fields on the sphere, only a finite number of local bifurcation diagrams
can be realized. In fact, the full conjecture as it was formulated in [AI], is
wrong: the counterexample is given in Paper 4 below. However, this example
does not disprove the Hilbert–Arnold conjecture.

For small n = 2 and 3 , that is, for few-parametric families of vector
fields, the Hilbert–Arnold problem admits investigation by case studies, see
§3.2, §3.3 for more information.

Remark. The topology generated by the family of norms ‖·‖k , is not the
only possible: for example, one may take into consideration only derivatives in
the x-variables and disregard those in the parameters ε . Other modifications
are also available. In fact, to supply the word generic in the formulation of
Hilbert–Arnold problem with a precise meaning, is a part of solution of the
problem.

The same localization technique which was used when reducing investiga-
tion of analytic families to the study of small neighborhoods of limit periodic
sets, works also for smooth families. The difference with the analytic case is
in the presence of the natural index n , the number of parameters. It turns
out that at least for small n , cyclicity of polycycles occurring in generic n-
parameter families, admits an upper estimate in terms of n .

Example. In a generic n-parameter family, the maximal multiplicity of
a limit cycle does not exceed n + 1 : for example, for a structurally stable
vector field only hyperbolic limit cycles occur, in codimension 1 may appear
semistable limit cycles of multiplicity 2 etc. Thus cyclicity of a trivial poly-
cycle (without singularities) in a generic n-parameter family, does not exceed
n + 1 . For some reasons we exclude trivial (poly)cycles without vertces from
consideration when giving the following definition.

Definition. The bifurcation number B(n) is the maximal cyclicity of
nontrivial polycycles occurring in generic n-parameter families.

The definition of the number B(n) does not depend on the choice of the
base of the family, but only on its dimension n .

Local Hilbert–Arnold problem (for n-parametric families). Prove
that for any finite n , the number B(n) is finite.

Solution of this problem would imply solution of the global Hilbert–Arnold
problem by virtue of the same compactness arguments as in §2.2.
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Constructive Hilbert–Arnold problem. Compute explicitly or give
an explicit upper estimate for the bifurcation number B(n) .

3.2. Hilbert–Arnold problem for few-parametric families. Bifur-
cations of limit cycles in generic few-parameter families of vector fields were
the subject of studies since late thirties. The information accumulated about
simplest bifurcations in generic one-parameter families, may be compressed
into a single equality.

Theorem B1 (Andronov–Leontovich, 1930s; Hopf, 1940s).

B(1) = 1.

This result summarizes results of investigation of three classical bifurca-
tions, separatrix loop of a saddle with nonzero divergence, saddle-node loop
and an elliptic point.

The next number in the series, B(2) , has longer history and the corre-
sponding equality summarizes numerous results.

Theorem B2 (Takens, Bogdanov, Leontovich–Cherkas, Mourtada, Gro-
zovskĭı, early 1970s–1993).

B(2) = 2.

The proof of this result involves consideration of bifurcations of 8 different
polycycles which may occur in generic two-parameter families. Out of this list,
four bifurcations were already studied by different authors before the problem
of computing B(2) was explicitly formulated, and the cyclicity found to be at
most 2 . Out of the four remaining cases, three are very simple and correspond
to cyclicity 1 , and the last case, the half-apple, was studied recently by a
graduate student T. Grozovskĭı. It consists of a polycycle with 2 singularities,
a nondegenerate saddle and a saddle-node, and its cyclicity does not exceed
2 .

The list of polycycles occurring in dimensions 2 and 3 is given in Paper 4.
A complete investigation of all polycycles occurring in codimension 3 , would
yield an upper estimate for the bifurcation number B(3) , though several cases
from this list seem to be very hard (for example, a loop carrying a degenerate
cuspidal point). At the same time it is clear that an attempt to obtain a sharp
upper estimate for B(4) by a similar case study, is hopeless.

3.3. Lips and other ensembles. Investigation of generic 3-parametric
families revealed some very simple still surprisig facts concerning bifurcation
of limit cycles in such families.

The definition of bifurcation numbers starts from the notion of a polycycle.
There might be an alternative approach. For any smooth family v(x , ε) ,
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x ∈ S
2 , ε ∈ B � R

n of vector fields on the 2-sphere one may define an
integer-valued counting function c(·) = cv(·) : B → Z+ ,

c(ε) = the number of limit cycles of the field v(· , ε) on S
2 .

This function is defined for all values of the parameter ε ∈ B and clearly
even for generic families there cannot be any natural bound for c in terms
of n = dim B , though for such families this function presumably has finite
values.

However, if we introduce the oscillation function o(·) = ov(·) constructed
for the family v as

o(ε) = osc c(ε) = lim
r→0+

(
sup

|ε′−ε|<r

c(ε′) − inf
|ε′−ε|<r

c(ε′)
)

� 0 ,

then it turns out that the function o(·) admits an upper estimate for all
generic 1- and 2-parametric families. Note that the oscillation function is
zero for a generic point ε ∈ B , since generic vector fields are structurally
stable.

Theorem. For a generic n-parameter family of smooth vector fields on the
sphere, the oscillation function does not exceed 2 if n = 1 , and is everywhere
less or equal to 3 for n = 2 .

The proof of this theorem is also obtained by studying separate cases:
now one has to take into account the possibility of simultaneous formation of
several polycycles and multiple limit cycles. It is clear that if two polycycles
are disjoint, then their simultaneous occurrence is an event of the codimension
equal to the sum of degeneracy codimensions of each polycycle independently,
and the oscillation function is equal to the sum of the terms corresponding to
bifurcations of each polycycle. In generic one-parameter families this is the
only possibility, and the upper bound equal to 2 appears because a semistable
(double) limit cycle may disappear or generate two close hyperbolic limit
cycles.

In codimension 2 , however, appear ensembles of polycycles, that is graphs
formed by several polycycles with a common singularity or an arc. Such en-
sembles may have degeneracy codimension strictly smaller than the sum of
codimensions of polycycles constituting them. On the other hand, different
polycycles constituting an ensemble, sometimes cannot simultaneously gen-
erate the maximal number of limit cycles, so that the total number of limit
cycles born from an ensemble is only a subadditive function.

Example. Consider an ensemble composed by two separatrix loops of the
same hyperbolic saddle point with a nonzero divergence. Then this ensemble
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is a union of three polycycles, two simple loops and the eight-shaped contour.
Each one of them has cyclicity 1 , but their union has cyclicity 2 in a generic
2-parametric family, since the simultaneous generation of limit cycles by all
three polycycles is impossible (D. Seregin, E. Malgina, in preparation).

In codimension 2 there are possible 9 different types of ensembles, (see Pa-

per 4), and their investigation yields the above theorem. One can express the
upper bound for the oscillation function o(·) in terms of bifurcation numbers
similar to the numbers B(n) .

Definition. The global bifurcation number C(n) is the upper bound for
the number of limit cycles which can be born from all polycycles which may
simultaneously occur in a generic n-parameter family of vector fields on the
sphere.

After introducing this number, an evident estimate holds for the oscillation
function,

ov(·) � C(n) for a generic n -parameter family v ,

and the above theorem can be formulated as folows:

C(1) = 2 , C(2) = 3.

One might expect that for generic 3-parameter families there also should
be such a universal bound, and a problem for estimating the number C(3)
should be the next in a row. But the counterexample below shows that it
is not the case: though for any generic 3-parameter family the function o(·)
is locally bounded, there cannot be an upper bound common for all generic
3-parameter families, as it was in the cases n = 1 , 2 . The reason for that is
a simultaneous occurrence of a continuum of polycycles for isolated values of
parameters in generic 3-parameter families of vector fields on the sphere.

The simplest example of a generic 3-parameter family of vector fields on the
2-sphere with a continuum of coexisting polycycles was found by A. Kotova
and baptized lips . Consider two saddle-nodes S± of multiplicity 2 (topo-
logically equivalent to the vector field x2 ∂/∂x± y ∂/∂y ); their simultaneous
occurrence is an event of codimension 2 . Suppose that the (uniquely defined)
trajectory emanating from S− and the (uniquely defined) trajectory which
tends to S+ are continuations of each other, together forming a heteroclinic
orbit η . This means an additional degeneracy of the field, thus the whole
picture may occur for isolated values of parameters in a generic 3-parameter
family.

Each saddle-node has a parabolic sector entirely filled by trajectories tend-
ing to (from) the singular point S− (resp., S+ ). Without increasing the
codimension, we may assume that there exists a trajectory χ0 passing through
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interiors of both saddle-nodes . If there is at least one such trajectory, then all
sufficiently close trajectories χs , s ∈ (R1 , 0) , also are bi-asymptotic to both
saddle-nodes, see Figure 1. Finally we obtain a continuum of polycycles

S+ → χs → S− → η → S+ , s ∈ (R1 , 0).

S S

χ

η- +

0

χ
s

Figure 1. Lips.

Bifurcations of lips in generic 3-parametric families are studied in Paper 4;
as a byproduct of this investigation, the generalized Legendre duality was
constructed.

Kotova theorem. For any natural N there exists a 3-parametric family
v(· , ε) of vector fields on the sphere, such that the oscillation function o(ε)
constructed for this family, takes a value > N at a certain point, and the
same is true for all sufficiently Ck-close three-parametric families of vector
fields, if k is large enough.

In other words,

C(3) = +∞.

Corollary (Kotova, Stanzo). For generic 3-parameter families of smooth
vector fields on the sphere, there exists an infinite number of pairwise locally
topologically nonequivalent bifurcation diagrams.

The bifurcation diagram for the lips is constructed in Paper 4 by V. Stanzo.
The lips are not the only possible “pathology” which may occur in generic

3-parametric families. For example, somewhere “between” the two saddle-
nodes, an arbitrary number of nondegenerate saddles may occur without ris-
ing the codimension of the whole picture. Those saddles may participate in
creation of polycycles with three singular points, and it is clear that any finite
number of such polycycles may coexist. For further details see Paper 4.

3.4. Elementary polycycles and their finite cyclicity in generic
families. The local Hilbert–Arnold problem was solved under an additional
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assumption that all singular points occurring on a polycycle, are elementary
(see the definition in §1.3).

Definition. The elementary bifurcation number E(n) is the maximal
cyclicity of a nontrivial elementary polycycle occurring in a (smooth) generic
n-parameter family.

The only nonelementary polycycle which may occur in a 2-generic family,
is a cuspidal point whose bifurcations were studied by Bogdanov and Takens,
and whose cyclicity was found to be 1 . Thus Theorems Bi , i = 1 , 2 , imply
that

E(1) = 1 , E(2) = 2.

However, the nature of the function n �→ E(n) is now understood much
better than that of B(·) .

Theorem (Ilyashenko and Yakovenko, 1992). For any n the elementary
bifurcation number E(n) is finite.

Moreover, the function n �→ E(n) admits a primitive recursive majorant.

Corollary. The global Hilbert–Arnold problem has a positive solution for
families of vector fields in which only elementary singularities occur : any
generic family of vector fields on the sphere with a compact finite-dimensional
base of parameters and with elementary singular points only, has a uniformly
bounded number of limit cycles.

Remark. A primitive recursive function is an integer function of a natural
argument n , which admits an algorithmically effective computation for any
specified value of the argument. The formal definition is given in Paper 1.
In fact, it is very likely that this majorant is elementary, that is, an explicit
expression could be written for it.

This theorem was announced in [IY1]. A complete demonstration of this
result is given in Paper 1. It consists of the four principal steps:

1. Ck-smooth normalization of the family near each elementary singular-
ity. The main tool for that is provided by the classification theorems from
[IY2]. The normal forms are polynomial and integrable. We perform an ex-
plicit integration of normal forms in the class of Pfaffian functions introduced
by A. Khovanskĭı [K] and show that the correspondence maps near each singu-
lar point in the normalized coordinates can be expressed through elementary
transcendental functions which satisfy some algebraic Pfaffian equations. The
degree and the total number of these equations can be estimated in terms of
n .

2. “Algebraization” of the system of equations obtained on the previous
step: the reduction procedure suggested in [K] allows for elimination of tran-
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scendental functions from the equations determining fixed points of the mon-
odromy map. After this elimination there appears a system of equations
having the form of a chain map, a composition of a polynomial map and a jet
extension of a generic smooth map.

3. Gabrielov-type finiteness conditions are established for a smooth map
F : Rk → Rk to have a uniformly bounded number of regular preimages
#F−1(y) when the point y varies over a compact subset of Rk . These con-
ditions are automatically satisfied if a map F is real analytic. We introduce
a topological complexity characteristics, the contiguity number , in terms of
which an upper estimate for the number of preimages can be expressed.

4. Thom–Boardmann-type construction allows to prove that the above
finiteness conditions can be expressed in terms of transversality of the jet
extension of F to some semialgebraic subsets of the jet space. Moreover, this
construction can be generalized to cover chain maps of the form P ◦ (j�F ) ,
where P is a polynomial, and j�F is the �-jet extension of a generic smooth
map. This is exactly the class of maps which appear after the Khovanskĭı
elimination procedure (step 2 above). The contiguity number of a chain map
is expressed through the integer data (degree of the polynomial P , order of
the jet � and dimension of the domain and target spaces).

Remark. Though the upper estimate obtained in the above theorem, is
not family-dependent (common for all n-parameter families), still the cyclicity
established is not absolute: we require the family considered as a map v : S

2×
(Rn , 0) → TS2 to be transversal to some algebraic stratified subset in an
appropriate jet space after the jet extension.

§4. Parametric desingularization

In §1.2 we explained the role of elementary singularities in proving the
nonaccumulation theorem. If something similar could be proved for families
rather than for individual vector (or line) fields, then the theorem on finite
cyclicity of generic elementary polycycles would imply the Hilbert–Arnold
problem in full generality. Unfortunately, such a straightforward policy does
not yield immediate results.

4.1. Two approaches to parametric desingularization. From the
point of analytic geometry, locally a family of (vector, line) fields may be
considered as a single (vector, line) field on the total space of the bundle
π : (R2 , 0)× (Rn , 0) → (Rn , 0) , π(x , y ; ε) = ε , tangent to the fibers of this
bundle. In this section we consider only the case of analytic families.

Isolated singular points occurring in the family of vector fields in such
settings correspond to an analytic at most n-dimensional set which intersects
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the fibers of the bundle π by discrete subsets.
One approach to parametric desingularization, suggested by Z. Denkowska

and R. Roussarie [DR], was applied to investigation of families of vector fields
which have nonelementary singularity occurring for isolated values of the pa-
rameter ε (a typical example is an unfolding of a cuspidal point), which we
assumed to be the origin x = y = 0 , ε = 0 . The idea is to blow-up the
origin in the total space of the bundle, deleting it and pasting in an (n + 1)-
dimensional sphere instead. One of the possible ways to do this is to consider
a quasihomogeneous mapping

σ : S
n+1 × (R1

+ , 0) → (R2 , 0) × (Rn , 0) ,

(x , y , ε1 , . . . , εn ; r) σ�→ (x rν1 , y rν2 , ε1 rμ1 , . . . , εn rμn )
(4)

with the weights νi , μj chosen in an appropriate way.
After such a procedure the total space becomes not a bundle but rather

a singular “foliation”, whose fibers have different dimensions; the fiber over
a nonzero value of ε is still two-dimensional, while the fiber over ε = 0 is
diffeomorphic to the sphere Sn+1 . The investigation of the pullback of the
original family onto a neighborhood of the pasted in sphere proceeds further
in different charts which play different role.

We do not intend to expose the procedure in full details, referring the reader
to the papers [DR], [R3].

The other approach suggested by S. Trifonov is explained in Paper 2. The
main idea is to blow up not just one point in the total space, but rather the
entire singular locus , the set of all singular points for all fields in the family.
A brief explanation of this approach is given in the next section.

4.2. Desingularization after Trifonov. Suppose that in an analytic
family of vector fields a singular point depends analytically on the parameters
(like in the case when the singularity is nondegenerate). Then without loss of
generality one may assume that locally the singularity remains at the origin
x = y = 0 for all values of the parameters ε ∈ (Rn , 0) . Thus we consider
a line field on the total space (R2 , 0) × (Rn , 0) , parallel to the vertical
direction (the second factor), with singular points on the horizontal plane
{x = y = 0} ⊂ (Rn+2 , 0) .

Then the mapping

σ : S
1 × (R1

+ , 0) × (Rn , 0) → (R2 , 0) × (Rn , 0) ,

σ(cos θ , sin θ ; ε) = (r cos θ , r sin θ ; ε)

which in fact is a trivial suspension of the standard polar blow-up, performs
a simultaneous blow-up of the singularity at x = y = 0 for all vector fields
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from the family. In a similar way the algebraic σ-process can be applied to
all vector fields of the complexified family: as a result, we obtain a new total
space which is obtained from the original one by deleting the plane x = y = 0
and pasting in the cylinder CP 1 × (Cn , 0) .

The real problems begin when the singularity looses its analytic dependence
on the parameters. In this case the two basic additional arguments are used.

First, one should consider not all singularities, but only the essential ones.
To explain the term, note that in analytic families for some exceptional values
of the parameters the singular locus may well be nonisolated as a subset of the
corresponding fiber. Since the fiber is two-dimensional (and this property will
be maintained when iterating the construction, in contrast to the approach
of Denkowska and Roussarie), the line field may be extended to the analytic
curve of singular points by cancelling nontrivial common factors in the right
hand side of the differential equations. After such cancellation the curve
carries only discrete singular points of the extension of the line field. They
are called essential singularities .

The second idea is to make singular reparametrizations of the family, or
what is called in Paper 2 unfoldings of the base. The simplest (and in a sense
the principal) case of such unfoldings is the spherical blow-up of (Rn , 0) at
the origin, as in (4).

Trifonov proves that after making an appropriate blow-up of the parameter
space, all essential singular points of the pullback of the original family may
be placed on a finite number of analytic sections of the foliation. However,
the latter looses its locally trivial topological nature: after performing all
required steps the fibers become not globally diffeomorphic, though still two-
dimensional and locally diffeomorphic.

The final form of the principal result of Paper 2 can be formulated as
follows.

Definitions. 1. An analytic family of two-dimensional surfaces is a triplet
M

π→ B , where M and B are analytic manifolds, dim M = dim B + 2 and
the map π has the constant rank equal to dim B .

2. Let M be a manifold covered by an atlas of charts {Uα} and in each
chart Uα a vector field vα is defined. We say that this family of vector fields
defines a line field with singularities on M , if on each nonempty intersection
Uα ∩ Uβ there exist a nonvanishing smooth function ϕαβ such that vα =
ϕαβvβ .

3. An analytic family of line fields with singularities is a line field with
singularities on M , tangent to all fibers π−1(ε) , ε ∈ B . The family is
proper , if the restriction of π on the singular locus of the family is proper.

Definition. A simple blowing-up of a two-dimensional surface M is a
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map σ : M̃ → M which is biholomorphic except for the preimage Σ ⊂ M̃ of
just one point p ∈ M ; the exceptional set Σ is biholomorphic to the projec-
tive line CP 1 and the germ σ : (M̃ , Σ) → (M , p) is left-right equivalent to
the standard blow-up described above.

The last condition means that in a small neighborhood of Σ two local
charts can be introduced, (x , u) and (y , v) , with the transition functions
between them y = xu , v = 1/u , such that the map σ has in these charts
the form

(x , u) �→ (x , ux) , (y , v) �→ (yv , y).

A resolution of the surface M is an analytic map θ : M̃ → M which is
the composition of a finite number of simple blow-ups.

Trifonov theorem. For a proper family α of line fields on an analytic
family of two-dimensional surfaces, there exists another family of surfaces
M̃

π̃→ B̃ and a pair of analytic maps H : M̃ → M , ρ : B̃ → B such that :

(1) π ◦ H = ρ ◦ π̃ ;
(2) The map H restricted on any two-dimensional fiber π̃−1(ε̃) , ε̃ ∈ B̃ ,

is a resolution (a finite composition of simple blowing-ups;)
(3) All essential singularities of the pullback family H∗α (defined in the

natural way) are elementary.

Remarks. 1. The assertion of the theorem holds for both real and complex
analytic categories.

2. The new base B̃ of the new family may be not connected.

4.3. Singular perturbations. Trifonov theorem claims that after blow-
ing up in a family of analytic line fields, a new family can be constructed in
such a way that all essential singularities of this new family are elementary.
However, this result says nothing about singularities that are not essential.
They correspond to the dynamical phenomenon called singular perturbation
in the theory of differential equations: one needs to study families of, say,
vector fields on the plane, which for certain values of parameters exhibit a
whole curve of nonisolated singularities. A comprehensive discussion on this
subject can be found in Paper 2. The appearance of singular perturbations
after parametric desingularization constitutes now the main gap between the
theorem on finite cyclicity of elementary polycycles together with the para-
metric desingularization theorem on one side and the general Hilbert–Arnold
problem on the other .
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4.4. Complexity of desingularization. When proving Trifonov the-
orem on parametric desingularization, one needs effective means to estimate
the number of blow-ups necessary to resolve completely an isolated singularity.

Besides, there is a general question: given a germ of vector field at a singu-
lar point, how many terms of its Taylor expansion determine completely the
topology of the phase portrait of the field? The constructive procedure which
gives an answer to that question, is based on the desingularization technique.
The topology of an elementary singular point is determined (in the degenerate
case) by the principal term of the restriction of the vector field on the center
manifold (curve). Knowing the sequence of steps resolving a nonelementary
singularity into elementary ones, one may “glue up” the local phase portraits
into the global phase portrait of the original field, provided that the trajec-
tories are not spiralling around the singularity. The latter condition may be
guaranteed by assuming that there exists at least one characteristic orbit , a
trajectory tending to the singularity with a certain limit slope. The procedure
of blowing up involves only lower degree Taylor terms, so to estimate the order
of the Taylor polynomial which would determine completely the topology of
the phase portrait, one needs to control the number of blow-ups.

These matters constitute the subject of Paper 3 from the present volume.
To formulate the main result, recall the principal definition.

Definition. Let v(x , y) = v1(x , y) ∂/∂x + v2(x , y) ∂/∂y be the germ
of a smooth vector field at the origin. The multiplicity of the germ v is the
dimension of the local algebra,

μ0(v) = dimR Qv , Qv = R[[x , y]]/ 〈v̂1 , v̂2〉 ,

where R[[x , y]] is the ring of all formal power series over the reals in two
variables (x , y) , v̂i are Taylor series of the coordinate functions vi , i =
1 , 2 , and 〈v̂1 , v̂2〉 is the ideal generated by the two series.

Definition. The jet of a vector field at the singular point is called topolog-
ically sufficient , if any two vector fields with that same jet, are topologically
equivalent in a certain small neighborhood of the singular point.

Kleban theorem. The order of a topologically sufficient jet for a vector
field with a singular point of multiplicity μ < ∞ having a characteristic orbit,
does not exceed 2μ + 2 .

The existence or absence of the characteristic orbit is a fact that can be
also established by analyzing the (2μ + 2)-jet of the vector field.

This theorem gives a quantitative version of the general result by Dumortier
[D1]. The proof is based on controlling the number of blow-ups sufficient to
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resolve a degenerate isolated singularity of multiplicity μ into elementary
singularities. Such an approach was suggested in [VdE] by Van den Essen.

Lemma (see Paper 2). 1. If the linear part of a vector field v at the
singular point is zero, then the sum of multiplicities of all singular points
appearing after one blow-up, is strictly less than the multiplicity μ of the
original singularity;

2. If the linear part is nonzero (and the singular point is still nonele-
mentary), then after no more than [μ

2 ] + 2 blow-ups it can be resolved into
elementary singularities.

Another result of similar nature, estimating the number of quasihomoge-
neous blow-ups in terms of the multiplicity of the germ of a vector field, was
announced recently by M. Pelletier [P].

4.5. Concluding remarks. Concluding this short survey, we would like
to return to the general formulation of the Hilbert–Arnold problem. In order
to achieve further progress in that direction, after proving the theorem on
finite cyclicity of elementary polycycles in generic families and the theorem
on parametric desingularization, one needs to study bifurcation of limit cycles
in singular perturbations. A particular case of a singular perturbation is the
family of vector fields

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = h(x , y) f0(x , y) +
n∑

k=1

εk fk(x , y , ε) ,

ẏ = h(x , y) g0(x , y) +
n∑

k=1

εk gk(x , y , ε) ,

(x , y) ∈ C
2 ,

ε = (ε1 , . . . , εn) ∈ C
n ,

such that the vector field f0 ∂/∂x+g0 ∂/∂y has only elementary singularities
(for example, has no singularities at all). In a more general context the
definition of a singular perturbation is given in Paper 2.

The equation of Van der Pol is a specific example of singularly perturbed
vector field, and in that example limit cycles are known to be born.

To specify the problem, consider a simple cusp, the cuspidal singular point
of maximal nondegeneracy: its linear part is nilpotent y ∂/∂x and nonlinear
terms are generic. It is known that after three blowing-up steps such point
is resolved into elementary ones. Thus applying the technique of parametric
desingularization, one may try to prove an analog of the result obtained in
Paper 1. Denote by EC(n) the maximal cyclicity of a polycycle carrying
only elementary singularities and simple cusps and occurring in generic n-
parameter families.
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Conjecture. The number EC(n) is finite for any n < +∞ and the
function n �→ EC(n) admits a primitive recursive majorant.

Proving this conjecture would be a first step towards obtaining the complete
solution of the Hilbert–Arnold problem.
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