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Abstract. These notes constitute a substantially extended version of a talk given

in the Fields Institute (Toronto) during the semester “Singularities and Geometry”,
that culminated by Arnoldfest in celebration of V. I. Arnold’s 60th anniversary.

We give a survey of different results showing how an upper bound for the number of

isolated zeros for functions satisfying ordinary differential equations, may be obtained
without solving these equations. The main source of applications is the problem on

zeros of complete Abelian integrals, one of the favorite subjects discussed on Arnold’s

seminar in Moscow for over quarter a century.

Data æquatione quotcunque fluentes quantitæ invol-
vente fluxiones invenire et vice versa.

Isaac Newton

It is useful to solve differential equations.

Translation by Vladimir Arnold

§1. Introduction

1.1. Equations and solutions. One of the illusions that are pleasant to nourish
is the claim that simple equations cannot have complicated solutions. Though
completely refuted by the recent progress in the dynamical systems, this principle
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still holds in a more restricted context. For example, a planar real algebraic curve
of some known degree d cannot have too many real ovals on the real plane and
cannot intersect straight lines by too many (more than d) isolated points. This
example can be easily generalized to algebraic varieties of higher dimensions. Thus
at least in the context of elementary real or complex algebraic geometry simple
descriptions cannot lead to perverse objects.

The requirement of algebraicity is too restrictive, as was relatively recently dis-
covered by A. Khovanskii [Kh]. One can in fact allow all elementary functions
(some provisions made for sine and cosine) and their compositions to participate in
describing the real loci: still the result could not be too complicate. For example,
the number of connected components of such a locus can sometimes be explicitly
majorized in terms of computational complexity of the equations describing the
locus.

The situation apparently changes completely when differential equations enter
the scene, though not from the very beginning. First order Pfaffian differential
equations can be incorporated within the fewnomials theory and even constitute
the core of this approach: all elementary functions are allowed precisely because
they are determined by simple Pfaffian equations. The section §1.4 below contains
an ultra-brief synopsis of the Fewnomials theory [Kh].

But this optimism cannot last for long. The (second part of the) Hilbert Six-
teenth Problem, that asks about the maximal number of limit cycles (periodic
solutions) for a planar polynomial vector field of degree n in terms of n, is still a
great challenge. Even in the weakest form (the existential finiteness) for the sim-
plest class of vector fields (quadratic) the question remains open despite continuing
efforts. Thus the question about the number of zeros (or fixed points, what is the
same) of a function (the Poincaré return map) defined by an ordinary differential
equation, is highly nontrivial.

Yet somewhere halfway to this Ulthima Thule one encounters problems that are
substantially more treatable. One such problems, on the order of contact between
integral trajectories of polynomial vector fields and algebraic hypersurfaces, was
recently solved by A. Gabrielov [G1]. The result and some connections are described
in §1.5 below.

1.2. Abelian integrals. Another problem is more closely related to the Hilbert
16th problem: it is sometimes referred to as weakened, infinitesimal or tangential
Hilbert problem. Consider a planar Hamiltonian vector field (that has no limit
cycles, as all closed phase curves are nonisolated) and a one-parameter polynomial
perturbation of this field. In the Pfaffian form such perturbation can be written as
dH + εω = 0, where the Hamiltonian H = H(x, y) is a polynomial in two variables
and ω = P (x, y) dx + Q(x, y) dy a differential 1-form with polynomial coefficients
P,Q. The first variation of the Poincaré return map (with respect to the parameter
ε) is given then by the complete Abelian integral

I(t) =
∮

δt⊂{H(x,y)=t}

P (x, y) dx + Q(x, y) dy (1.1)

over a continuous family of ovals δt belonging to the level curves {H(x, y) = t}.
The general problem is to place an upper bound for the number of isolated zeros

of Abelian integrals of the form (1.1) in terms of only the degrees deg H and deg ω =
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max(deg P,deg Q). It admits several particular cases: these of low degrees (usually
3 or 4, in particular the elliptic integrals corresponding to H(x, y) = y2 + x3− 3x),
the case of hyperelliptic functions (when H(x, y) = y2 + p(x), p being a polynomial
in one variable), etc. The first results appeared in 1976 for the elliptic case, and it
took about 10 years to achieve complete clarity in this particular case. The ultimate
result, a sharp bound for the number of zeros, was achieved by G. Petrov around
1990 [Pe].

There are surprisingly few general results, despite the continuous flow of publi-
cations on this subject. Besides a long list of low-degree particular cases (already
very difficult to study), there is a general existential finiteness theorem proved by
A. Varchenko and A. Khovanskii in 1984, and a series of asymptotic estimates valid
for a fixed H as d = deg ω increases to infinity, that began by a double exponential
in d upper bound and ended with a bound of the form O(d). Unfortunately, the best
(linear) bound due to Petrov and Khovanskii (1996, unpublished) is purely asymp-
totical: the constants that occur in the majorant, are only existentially finite. (The
previous results due to Novikov, Ilyashenko and the author are somewhat more
explicit, but the bound is certainly not uniform over all Hamiltonians H).

Thus the problem of obtaining explicit and constructive upper bounds in the
problem on zeros of Abelian integrals remains as challenging as twenty years ago.
The problem may be generalized for perturbations of integrable rather than sim-
ply Hamiltonian systems, but this question is apparently much more complicated
compared even to the unsolved problem on (usual) Abelian integrals.

1.3. Solutions and equations. Apart from several particular results, the study
of Abelian integrals is based on investigation of a linear ordinary differential equa-
tion with rational coefficients, called Picard–Fuchs equation, that is satisfied by
these integrals.

In the elliptic case this equation can be derived explicitly, as in [Pe]. But in gen-
eral the possibility of writing such equation is explained by the nature of analytic
continuation of the function I(t) into the complex domain. After such continu-
ation one obtains a multivalued function with ramification points at the critical
values of the Hamiltonian. The monodromy group describing transformations of
branches after circumventing the ramification points, is completely determined by
the topology of foliation of the complex plane C2 by the (complex) level curves
of H. It turns out that the linear space spanned by all branches of I, is at most
µ-dimensional, where µ is the number of critical values of H, properly counted with
multiplicities, and the monodromy transformations are given by Picard–Lefschetz
formulas (generically). As all derivatives of I(t) with respect to t have the same
monodromy, the space of such functions over the field of rational functions can be at
most µ-dimensional, so some linear combinations of these derivatives with rational
coefficients must vanish: this is the Picard–Fuchs equation.

Unfortunately, this construction is very implicit. Apart from the order of this
equation and the degree of its coefficients, almost nothing can be said. In particular,
this equation would probably depend in a rather singular way on the parameters
(H and ω).

The hyperelliptic case is exceptional in this sense. Consider n forms ωk = xky dx,
k = 0, 1, . . . , n− 1 and their integrals Ik(t) over the level curves of the hyperelliptic
Hamiltonian H(x, y) = y2+pn(x), where pn(x) = xn+ · · · is a polynomial of degree
n. One may show that restrictions of these forms generate the first cohomology of
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every fiber {H = t} and, moreover, they generate the whole space of hyperelliptic
integrals as a C[t]-module. Each of these integrals Ik solves a certain Picard–Fuchs
equation by itself, but together they satisfy a system of linear first order equations
of the form

(t + A)İ(t) = BI(t), A, B ∈ Matn×n(C) (1.2)

with constant matrices A,B depending on pn in a rather regular way. This result
can be found in [Gi], where the symplectic structure of the system (1.2) was dis-
covered from topological observations, and in [R], where the explicit description of
the matrices was obtained.

In any case, it is clear now that differential equations provide valuable informa-
tion for the problem on zeros of Abelian integrals. Notice that this approach is
in some sense contrary to the general ideology of calculus: starting from “known”
(explicitly expressed by quadratures) solution, one tries to reconstruct the corre-
sponding differential equation and then eventually prove something that would be
automatically valid for all solutions of this equation. Despite its apparent paradox-
ality, this approach works in certain cases.

1.4. First versus higher order. An elementary function of one or several ar-
guments is an expression built by using arithmetic operations from constants, in-
dependent variables, exponents, trigonometric functions and their inverses. The
combinatorial complexity of an elementary function is the number of building op-
erations, and it does not depend on the choice of constants. Every elementary
function has its natural (perhaps, void) domain of definition (the values of argu-
ments for which all intermediate results in the construction process make sense).
One could expect that the number of isolated zeros of an elementary function in its
natural domain admits an explicit bound in terms of the combinatorial complexity
of this function. A good example is the Descartes rule for the number of (positive)
roots of a univariate polynomial in terms of the number of monomials entering with
nonzero coefficients. Indeed, the combinatorial complexity of xn = exp(n lnx) is
uniformly bounded over all natural n, and what remains is to build the sum of k
monomials using k − 1 additions and k multiplications by constants.

The picture, however, becomes not so simple if one allows for the trigonometric
functions. Even the simplest of them, sinx, has the infinite number of zeros in its
natural domain. Yet, as one can show, if we define the natural domain of sine and
cosine to be the interval [−π, π] rather than R, the general principle is restored.

The reasons for this exception and the proof of the general statement are ex-
plained by the fewnomials theory [Kh]. The basic fact is that the graph of any
elementary function can be obtained as an integral surface of a Pfaffian differen-
tial equation with rational or algebraic coefficients: indeed, if y = exp ax, then
dy − ay dx = 0, and the similar Pfaffian equations can be written for other basic
elementary functions. The building step corresponds in writing a system of Pfaffian
equations after properly introducing new variables. These systems possess certain
topological properties excluding spiral-type behavior, and the main technical step
consists in eliminating Pfaffian equations replacing them by rational expressions
built from the coefficients of the Pfaffian forms [Kh].

The exceptional nature of sine and cosine roots in the fact that they satisfy not
the first but rather the second order differential equation d2y/dx2 + y = 0 and
as such cannot be included into the theory. However, on the restricted domain
(−π, π) the function sinx satisfies the Pfaffian equation dy −

√
1− y2 dx = 0 with
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a correctly defined branch of the root. This representation already allows to use
the “restricted sine” for building purposes.

The power of the fewnomials theory extends far beyond the class of elementary
functions: one can allow any function whose graph is an integral surface for an
algebraic Pfaffian 1-form to occur in the building process. The detailed exposition
can be found in [Kh], but the general principle remains the same: the number of
zeros is determined by combinatorial complexity of the determining equation, and
not by the absolute values of constants occurring in the formulas.

Yet there is a drastic difference between equations of the first and higher orders.
The simplest example d2y/dx2 + ωy = 0 shows that if a function is defined by a
higher order differential equation (even linear with constant coefficients), then it
may have arbitrarily many zeros on a given (finite) interval, if the magnitude of
coefficients is not restricted. The following section §2 of this survey contains a brief
exposition of an approach that allows to establish an explicit bound for the number
of zeros of any solution of a linear ordinary differential equation (with variable
coefficients) in terms of the magnitude of the latter, both in the real and complex
analytic settings. This bound depends in general on the size of the domain, real or
complex, on which the equation is considered.

Within this approach, one has to distinguish (as usual) between nonsingular and
singular cases. The function y(x) = 1

2 (xi + x−i) = Re exp(i lnx) = cos ln x satisfies
the linear equation x2y′′ + xy′ + y = 0 that has a regular (Fuchsian) singularity
at x = 0, yet possesses an infinite number of zeros on the semiinterval, say, (0, 1].
One can show that this phenomenon would be impossible for a Fuchsian singularity
with the real spectrum (see §4 for the details).

1.5. Linear and nonlinear. All the said refers to linear equations. Yet one often
encounters systems of equations, and these systems may well be nonlinear, say,
polynomial. This case is substantially more difficult.

In [G1] A. Gabrielov achieved a striking result, an upper bound for the order of
contact between an integral trajectory of a polynomial vector field in Rn and an
algebraic hypersurface. The bound, originally double exponential in the dimension
n of the space and polynomial in the degree d of the field and the hypersurface,
was recently improved by himself to become simple exponential.

The last section §5 contains a brief summary of the technique that allows to
reduce the problem on zeros of functions defined by systems of polynomial (or
rational) differential equations to that satisfying certain (very) high order linear
equations. From the geometric point of view this reduction provides an upper bound
for the number of isolated intersections, as established recently by D. Novikov and
the author. The detailed exposition is given elsewhere [NY1, NY2].

Note that unlike the maximal order of contact that turns out to be of a “fewno-
mial” nature (the answer depends on the degrees of the right hand sides), the
number of intersections between an integral curve of a polynomial vector field and
an algebraic hypersurface cannot be majorized in terms of the dimension and de-
gree only, but depends on the coefficients of the polynomial data. The answer is
polynomial in the magnitude of the coefficients and the size of the curve, but the
power is given by a tower of four exponents with the combination of dimension and
degrees on the top floor.

1.6. Functions versus curves. Return for the moment to the case of one linear
nth order equation. Its general solution is given by a linear combination of n inde-
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pendent solutions y1(x), . . . , yn(x). The corresponding theorem from §2 implies an
upper bound for the number of isolated intersections between the (parameterized)
curve x 7→ (y1, . . . , yn), x ∈ I = (x0, x1) ⊂ R, and an arbitrary linear hyperplane in
Rn. Conversely, one may start with a curve and ask about the maximal number of
isolated intersections between it and an arbitrary linear or affine hyperplane. Then
one can reduce this question to that about an appropriate linear equation. Yet the
freedom to choose the parametrization and, what is more important, a fundamen-
tal system of solutions, leads to an invariant geometric formulation of the result:
the meandering index of a curve (the maximal number of isolated intersections
with affine hyperplanes) can be majorized by a weighted sum of integral Frenet
curvatures of the curve and the number of generalized inflection points on it, see
§3.

This result can be easily incorporated into the general scheme, if we associate
with a curve the Frenet differential equations describing dynamics of its osculating
frame. Then the main result of §3 has the following sense: for Frenet equations
with bounded “coefficients” (Frenet curvatures) the geometric (shape) complexity
of solutions admits an explicit upper bound.

1.7. Alternative Rolle theories. One fragment of construction is invariably
present in demonstrations of various theorems about zeros. The classical Rolle
theorem asserts that between any two subsequent roots of a differentiable function
at least one root of its derivative occurs. This immediately implies the inequality
NI(f) 6 NI(f ′) + 1 between the number of isolated zeros NI(f) of a function f
and its derivative f ′ on a real interval I ⊂ R. This inequality may be improved to
NI(f) 6 NI(f ′) for I-periodic functions, and besides the roots may be considered
with multiplicities.

It is well known that no such inequality exists for complex analytic functions
(compare f(x) = exp iωx − 1 and its derivative on any subset of C containing a
piece of the real axis for large real values of ω). Yet one can replace the number
of zeros by certain relevant functionals so that the inequality will be restored in
the form close to the original. One such choice is the total (absolute) variation of
argument of an analytic function along the boundary of a complex domain. The
corresponding inequality is described in §3 together with corollaries.

In addition to changing the functional, one may also change the operator, re-
placing the derivative in the Rolle inequality by several appropriate differential,
difference or monodromy operator. Such modifications lead to meaningful results
allowing for further applications.

1.8. The structure of the paper. This paper was based on the lecture notes
containing a survey of several recent results about zeros of functions defined by
differential equations. However, some of them are given below in a substantially
improved form (e.g., Theorem 4.1, cf. [RY] or Theorem 3.7, cf. [NY4]) or with a sim-
plified proof (Lemma 2.2, cf. [Ki]). In such cases we tried to give as complete proofs
as was possible without reproducing big parts of preceding articles. Otherwise, the
style is sufficiently informal to allow for an easy digestion.

* * *

I would like to conclude this introductory section with a tribute to Vladimir
Igorevich Arnold. Most of the subjects mentioned above and below, arose many
times in discussions on Arnold seminar in Moscow during the last twenty or more
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years that I remember. It was the stimulating atmosphere of these discussions and
an outstanding personality of the leader that made me and perhaps many of us
devoted to this branch of Mathematics for life.

§2. Zeros of functions defined by nonsingular linear ordinary
differential equations in the real and complex domain

We start with the simplest case of a linear equation

y(n) + c1(t) y(n−1) + · · ·+ cn(t) y = 0,

t ∈ I = [t0, t1] ⊆ R, ci(t) ∈ R,
(2.1)

of order n with variable bounded coefficients. The choice of the leading coefficient
equal 1, reflects the fact that the equation is nonsingular on the interval I. Obvi-
ously, for any subinterval of I there always exists a nonzero solution of this equation,
that has at least n − 1 zeros on this subinterval, counted with multiplicities. The
equation (2.1) is called disconjugate (sometimes also nonoscillating or Chebyshev)
on I, if any nontrivial (not identically zero) solution has at most n− 1 roots on I.

2.1. Linear equations with real bounded coefficients on the real interval:
the paradigm. Assume that the coefficients of the equation (2.1) are explicitly
bounded on the interval I,

∀t ∈ I |ci(t)| 6 Ci < ∞, i = 1, 2, . . . , n. (2.2)

Prototheorem 2.0. If
∑n

k=1 Ck`k/k! < 1, then the equation (2.1) is disconjugate
on any subinterval of length ` inside I.

Proof. Assume that on the contrary, there exists a solution y(x) having at least n
isolated roots, counted with multiplicities.

1. By the (classical) Rolle inequality the derivative y′(x) must have at least n−1
root, so at least n−2 roots for y′′, . . . , until the last nth derivative y(n) that should
possess at least one root on the considered subinterval. Denote by xk any one of
the roots of the kth derivative y(k)(x).

2. Using the Newton–Leibnitz formula, one can restore the function from its
derivative: for any k between 1 and n and any point a,

y(k−1)(x) = y(k−1)(a) +
∫ x

a

y(k)(t) dt.

The choice of the base point a in each case can be arbitrary, so we put it at xk−1,
one of the roots of y(k−1). Then the first term disappears, and majorizing the
integral, we conclude with the recurrent inequalities ‖y(k−1)‖ 6 ` · ‖y(k)‖ for all
k = 1, . . . , n, between the sup-norms of the derivatives, resulting in the estimates
‖y(n−k)‖ 6 `k · ‖y(n)‖.

In fact, the inequality is stronger: writing the expression for y(n−k) as the mul-
tiple integral

y(n−k)(tn−k) =
∫ tn−k

xn−k

dtn−k+1 · · ·
∫ tn−1

xn−1

dtn y(n)(tn)
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we can majorize it by ‖y(n)‖ times the volume of the k-symplex,∫ `

0

dτk

∫ τk

0

dτk−1

∫ τk−1

0

dτk−2 · · ·
∫ τ2

0

dτ1 = `k/k!,

which finally yields an additional factor of 1/k!:

‖y(n−k)‖ 6
`k

k!
‖y(n)‖. (2.3)

3. Plugging these estimates into the original equation we notice that, unless
‖y(n)‖ = 0, the leading term is overtaking (in the sense of the sup-norm) the sum
of all other terms and hence the equality cannot hold everywhere—a contradiction.
The case y(n) ≡ 0 is equally impossible, since a polynomial of degree n− 1 cannot
have n roots, as this was assumed. �

It is convenient to minimize the number of parameters, assuming that all coeffi-
cients are bounded by the same constant which is greater or equal to 1.

Corollary 2.1. Let C = max(C1, . . . , Cn, 1) be the maximal absolute value allowed
for the coefficients of the equation (2.1) on any interval of length `.

Then any nontrivial solution may have at most

(n− 1) + 1
ln 2 n`C (2.4)

isolated roots on this interval.

Proof. Obviously, our choice of C implies that Ck 6 Ck, and therefore for any
interval of length h the inequality

∑n
1 Ckhk/k! 6 expCh − 1 < 1 guarantees that

the equation on this interval is disconjugate: resolved with respect to h, this gives
h < h0(C) = ln 2/C. Subdividing the given interval into b`/h0c + 1 6 1

ln 2`C + 1
subintervals of disconjugacy, we establish the required upper bound for the number
of roots. �

Remark 1. There exists an alternative way [IY] of obtaining a linear in the magnitude of the
coefficients upper bound for the number of isolated zeros for solutions of a linear equation. This

alternative approach requires the coefficients of the equation to be analytically extendable onto
some complex open neighborhood of the real interval I, and the dimensions of this complex
neighborhood explicitly enter into the bound. The idea is to exploit the relation between growth
and distribution of zeros of an analytic function. Yet despite the obvious complexity of this
approach, it can sometimes produce better bounds for the number of zeros, especially when the

order of the equation is highly superior to the total magnitude of the coefficients (something like
“fewnomial” linear equations). The reason is rather obvious, as the approach based on subdivision
of long intervals into domains of disconjugacy ignores any connection between these domains.

Remark 2. The condition of disconjugacy, instead of the form exp Ch− 1 < 1 that results in the

bound (2.4), may well be written in the form h < ln(1 + C−1), also valid for C < 1. This gives a
better bound (n−1)+n`/ ln(1+C−1) for the number of zeros, but the expression (2.4) is certainly
shorter. As we will be mostly interested in applications of the Prototheorem and Corollary 2.1
to the cases when the coefficients are bounded by very large numbers, these differences become

negligible.

Remark 3. The inequality (2.3) can be alternatively obtained as a corollary to known results on
polynomial interpolation. Indeed, the uniform accuracy of a n-point interpolation of a Cn-smooth

function by a polynomial of degree n− 1 can be expressed via the sup-norm of the nth derivative
of this function. If f has n zeros, then its interpolating polynomial is zero, thus the required
estimate can be obtained. This argument was communicated to us by P. Milman and Y. Yomdin.
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2.2. Disconjugacy of ordinary linear equations in the complex domain
after W. Kim. The above construction does not work for complex zeros of holo-
morphic functions, mainly because the Rolle theorem is not valid in this context
and therefore one cannot guarantee that the derivatives have roots. However, one
can bypass this difficulty: an upper bound for the sup-norm of an analytic func-
tion f in a convex compact subdomain D ⊂ C can be estimated in terms of the
norm of its nth derivative in this subdomain, provided that there are sufficiently
many zeros of f in D. This approach was taken by W. Kim [Ki], but his proof of
Lemma 2.2 refers to advanced results from approximation theory in the complex
domain (cf. with Remark 3 above). We give a direct elementary proof, found jointly
with D. Novikov.

Lemma 2.2 [Ki]. Let D ⊂ C is a convex bounded domain with ` = diam D, and f
a function analytic and bounded in D. If f has n isolated roots in D, then

‖y(n−k)‖ 6 ‖y(n)‖ · `k/k!, k = 1, . . . , n,

where ‖ · ‖ is the sup-norm with respect to D.

We start with a formal identity between differential operators with rational co-
efficients. Let a1, . . . , an ∈ C be any n points and ∂ = d

dz the differential operator.

Proposition 2.3.

∂n =
(
(z − an)∂ + n

)
· · ·

(
(z − a1)∂ + 1

) 1
(z − a1) · · · (z − an)

.

Proof of the Proposition. Both parts of the identity are nth order differential op-
erators with coinciding leading terms. Thus it is sufficient to show that their null
spaces coincide. Taken into account that any ratio pn−1(z)/

∏
j(z − aj) with a

polynomial of degree 6 n− 1 in the numerator can be expanded as a linear combi-
nation of simple fractions (z−aj)−1, it is sufficient to show that each such fraction
belongs to the null space of the composition of the linear differential operators
Lj = (z − aj)∂ + j in the specified order. It obviously follows from the identities

((z − aj)∂ + j)(z − ak)−j =
{

0, if j = k,

ckj(z − ak)−(j+1) otherwise,

so that every fraction (z − ak)−1 is taken by the operators Lj in succession, up to
a scalar factor, to (z − ak)−2, then (z − ak)−3 etc., until it is killed by Lk. �

“Inverting” formally the singular differential operator Lk = (x − ak)∂ + k,
i.e. solving the corresponding linear ordinary differential equation, we immediately
derive the following corollary.

Corollary 2.4. Let Ik be the integral operator, defined as

(Ikf)(z) =
1

(z − ak)k

∫ z

ak

(t− ak)k−1f(t) dt.

Then for f analytic in D the image Ikf is also analytic, and if f has zeros at each
point ak, then

f =
n∏

j=1

(z − aj)× (I1I2 · · · In)(f (n)). (2.5)
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Proof of the Corollary. From the construction of Ik it follows that Lk ◦ Ik = id.
Applying both parts of the above formal identity to the right hand side of the
formula (2.5), we see that they coincide and hence (2.5) is valid up to a polynomial
of degree 6 n − 1 as an additive term. But the assumption on zeros immediately
implies that this polynomial is zero. �

Proof of the Lemma. Assume now that the domain D is convex and all roots ak

are inside D. Then each integration from the definition of Ik can be performed
along a straight line segment from ak to z, and then we have the inequality for the
sup-norms

‖Ikf‖ 6 1
k · ‖f‖, k = 1, . . . , n.

Indeed, |Ikf(z)| 6 |(z − ak)|−k
∫ z

ak
|(t − ak)|k−1‖f‖ |dt| = ‖f‖ · |(z − ak)|−k · |(z −

ak)|k/k. This together with (2.5) implies the bound

‖y‖ 6 ‖y(n)‖ · `n/n!, ` = diam D.

Differentiating (2.5) and applying the same arguments, one can establish the similar
inequalities for the derivatives:

‖y(n−k)‖ 6 ‖y(n)‖ · `k/k!, k = 1, . . . , n. �

The inequalities just established can be plugged into the proof of the Protothe-
orem in the same way as in the real case. The result is the following theorem.

Theorem 2.5 (W. J. Kim [Ki]). Assume that the coefficients of the linear nth
order differential equation

w(n) + c1(z) w(n−1) + · · ·+ cn(z) w = 0,

z ∈ D ⊆ C, |ci(z)| 6 Ci.

are analytic in a convex domain D and the diameter of D is related to the bounds
Cj by the inequality

n∑
k=1

Ck`k/k! < 1,

then the equation is disconjugate in D, i.e. any solution of this equation may have
at most n− 1 isolated zeros in this domain. �

In the same way as with the Prototheorem 2.0, one may derive from this complex
disconjugacy condition an explicit upper bound for the number of zeros of any
solution in any domain where the coefficients of the equation are explicitly bounded:
one has to subdivide this domain into smaller domains satisfying the disconjugacy
condition. If the diameter of the domain is bounded by ln 2/C, where C > 1 is the
upper bound for the coefficients of the equation in this domain, then the equation
is disconjugate there.

However, unlike the real case, the number of such domains will grow approxi-
mately as C2, i.e. the square of the magnitude of the coefficients, which is contrary
to the expected growth rate. The asymptotically accurate bound can be obtained
using a properly generalized argument principle.
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2.3. Argument principle. In this section we consider a linear ordinary differen-
tial equation with real time but complex valued coefficients (and solutions),

w(n) + c1(t) w(n−1) + · · ·+ cn(t) w = 0,

t ∈ I = [t0, t1] ⊆ R, ci(t) ∈ C,
(2.6)

(the dependent variable is denoted differently to stress that it takes complex rather
than real values). For simplicity only we assume that Re ci and Im ci are real
analytic on I.

Generalizing the notion of disconjugacy of real equations, we introduce the fol-
lowing definition.

Definition. A complex-valued equation (2.6) is disconjugate on I, if the variation
of argument of any solution w(t) without zeros in I is less than π(n + 1).

Assume that the coefficients of the equation are bounded by some known con-
stants, exactly as in (2.2).

Theorem 2.6. If the interval is sufficiently short with respect to the magnitude of
coefficients, so that

n∑
k=1

Ck`k/k! < 1
2 , ` = t1 − t0, (2.7)

then the equation (2.6) is disconjugate on I.

The proof of this theorem is postponed until the next section. Now we turn to
corollaries.

Completely analogous to the real case, one can derive from the above disconju-
gacy condition (2.7) an explicit upper bound for the variation of argument of any
solution along any line segment in the complex plane, provided that the moduli of
coefficients of the equation are explicitly bounded along this segment. Denoting as
before C = max(C1, . . . , Cn, 1), we see that the condition Ch 6 ln 3

2 is sufficient for
an equation to be complex disconjugate on an interval of length h. Together with
invariance of all input data by rotations t 7→ αt, |α| = 1, this immediately implies
the following corollary.

Corollary 2.7. If the coefficients ci(t) of the equation (2.6) are analytic on a finite
line segment I ⊂ C of length ` and |ci(t)| 6 C for some C > 1, then the variation
of argument of any nontrivial solution of this equation is explicitly bounded:

VarArg w(t)|I 6 π(n + 1)(1 + 1
ln 3

2
`C). �

This last claim allows to place effective upper bounds for the number of complex
roots of any solution of a linear ordinary differential equation. If the equation has
holomorphic coefficients in a polygonal complex domain D and the upper bounds
for the absolute value of these coefficients in D are explicitly known, then one can
apply Corollary 2.7 to each side of the boundary of D and use the classical argument
principle.
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Example. Let D be a rectangle of perimeter ` and the coefficients of the equation
are bounded by C > 1 in this rectangle. Then any nontrivial solution of this
equation may have at most

2(n + 1) + 1
ln(9/4) (n + 1)`C

isolated zeros in the rectangle. This gives an upper bound that is linear in the
diameter of D and the magnitude of the coefficients of the equation. One should
be careful, though, when replacing the rectangle by polygonal domains with more
sides: the first term in the above sum should be properly increased.

2.4. Petrov argument and proof of Theorem 2.6. The proof of the above
theorem is based on the following argument due to German Petrov [Pe], remarkable
both for its simplicity and power.

Let γ ⊂ C be a sufficiently regular (say, polygonal or piecewise real analytic)
curve on the complex plane and f : γ → C a complex-valued function on γ; for
simplicity we assume that f has no zeros on γ. Then a continuous branch of
argument of f can be chosen and the variation of argument |VarArg fγ | well defined
independently of the orientation of γ.

Petrov Argument. Let N−(f) be the number of zeros of the imaginary part Im f
on γ. Then

|VarArg fγ | 6 π(1 + N−(f)).

Proof. For a function whose imaginary part remains, say, positive, the variation
of argument cannot exceed π. Thus between any two points at which the val-
ues of argument differ by π, there should be at least one point on γ, where Im f
vanishes. �

Remarks. Obviously, the inequality remains true if N− is replaced by the number
N+(f) of zeros of Re f on γ. Besides, one can easily show that this principle remains
valid for functions with zeros on γ, provided that they are analytic on γ which was
already assumed sufficiently regular.

Notice the resemblance of this inequality with the Rolle theorem: for a closed
curve γ the left hand side of the inequality majorizes the number of zeros of f
inside the domain bounded by the curve, whereas the right hand side is a certain
operator applied to f (an analog of the derivation for the classical Rolle theorem).
This resemblance is not complete, since Im f is not an analytic function even if f
were. However, if γ =

⋃
i γi is the boundary of a polygonal domain D, then Im f

can be obtained as a restriction of an analytic function fi on each side γi of γ, that
under certain circumstances can be analytically extended onto the whole of D. This
allows to majorize the number of zeros of a function analytic in a polygonal domain
and admitting analytic continuation into sufficiently large domains, in terms of the
number of zeros of some auxiliary functions that may eventually be simpler than
f . This scheme will be fully exploited later: now we use the Petrov Argument to
prove Theorem 2.6.

Proof of the Theorem 2.6. Assume that the equation is not disconjugate on the
interval I, and the variation of argument of a solution w(t) = x(t)+ iy(t) is greater
or equal to π(n + 1). Then the Petrov Argument implies that both the real part
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x(t) and the imaginary part y(t) have at most n real zeros on I. This immediately
implies the inequalities (2.3) for the imaginary part y(t) and the same for x(t).

Plugging these estimates into the equation and assuming without loss of gen-
erality that ‖x(n)‖ > ‖y(n)‖, we obtain a majorant for the sum of all non-leading
terms:∣∣∣∣ n∑

1

ck(t)w(n−k)(t)
∣∣∣∣ 6

n∑
1

Ck`k

k!
(‖x(n)‖+ ‖y(n)‖) 6 2‖x(n)‖ ·

∑n

1
Ck`k/k!.

On the other hand, the leading term w(n)(t) at some point t ∈ I achieves the
absolute value at least as large as ‖x(n)‖. This contradicts to the inequality (2.7) if
‖x(n)‖ 6≡ 0. But in the latter case w(t) must be a polynomial of degree 6 n−1. �

We will once again use the Petrov argument while studying zeros in a neighbor-
hood of a Fuchsian singular point in §4.

2.5. Apparent singularities. Until now all considerations concerned only the nonsingular

linear differential equations: after normalizing the leading coefficient to 1 the other coefficients

were assumed bounded in the domain where the zeros of solutions were counted. But very often
in applications one has to consider equations (with analytic coefficients) possessing one or more
singular points. Since we consider only homogeneous equations whose coefficients can be simul-

taneously multiplied by any nonzero meromorphic function, without loss of generality one can
always assume that the equation is in the form

c0(t)w(n) + c1(t)w(n−1) + · · ·+ cn(t)w = 0, (2.8)

with entire functions c0(t), . . . , cn(t), c0 6≡ 0. In fact, we will restrict ourselves to the case when
the coefficients ck(t) are polynomials in one complex variable. By normalization one may always
achieve the situation when the leading coefficient c0 is a unitary polynomial,

c0(t) = tν +

ν−1∑
j=0

c0jtj , c0j ∈ C. (2.9)

The zero locus Σ = {c0(t) = 0} is in general a singular locus for solutions of the equation (poles,

ramification points or even essential singularities). But some solutions may well extend analytically
through this polar set. A simplest example is that of the Euler equation t(tw′)′ − 3tw′ + 2w = 0,
which has two independent solutions t and t2. Both are analytic at t = 0, and the singularity
of the equation is due to the degeneracy of the Wronskian of t and t2 at this point. Such points

are usually called apparent singularities. An intermediate possibility is to have some solutions

analytic at the singular point, while some others not. The construction outlined below applies
to analytic solutions of linear equations eventually having singularities in the specified domain

D ⊂ C, that we assume for simplicity polygonal.

The argument principle in the form of Theorem 2.6 cannot be directly applied to the boundary
of D, since some of the roots of c0 may be on or near this boundary. However, it is known

that for any positive h > 0 one can construct a system of circular disks in C, having the sum of

diameters h and such that outside their union the unitary polynomial c0 admits a lower bound:
|c0(t)| > (h/4e)ν (the Cartan inequality, see [IY]). Now one can replace each side of the boundary

of D by its parallel translate (in the inwards direction) by no more than h and on the boundary

of this reduced polygonal domain one can explicitly majorize the ratios ci/c0, which is sufficient
to apply Theorem 2.6. Thus we see that if the domain D is allowed to be slightly decreased (or if

the bounds for the coefficients ci are known in a larger domain D̃ containing an h-neighborhood

of D), then the apparent singularities do not create additional difficulties.

The real problems occur when solutions are truly singular: this subject is discussed in §4.



510 Sergei Yakovenko

§3. Geometry of spatial curves

3.1. Factorization of differential operators. All previous results on zeros
related to differential equations of the form Ly = 0, where L =

∑n
k=0 ck(t)∂n−k,

c0 ≡ 1, is a differential operator in the “expanded” form. Yet, in full analogy
with the algebraic case, the “factored” operators are much more easy to analyze.
Of course, to “factor” a differential operator, one needs to know its “roots”. The
corresponding decomposition formula is probably due to Frobenius, but certainly
appears in Pólya’s paper [Po]. Let

L = ∂n + c1(t)∂n−1 + · · ·+ cn−1(t)∂ + cn(t)

be a differential operator, ∂ = d
dt , and f1(t), . . . , fn(t) its fundamental system of

solutions on the interval I, written in any order.
We construct a sequence of Wronskians W0(t), . . . , Wn(t), starting from W0 ≡ 1,

W1 = f1, W2 = f1f
′
2 − f ′1f2 etc, Wk being the Wronski determinant of the first k

functions.

Lemma 3.1 [Po], see also [NY3].

L =
Wn

Wn−1
· ∂ ·

W 2
n−1

WnWn−2
· ∂ ·

W 2
n−2

Wn−1Wn−3
· ∂ · · · ∂ · W 2

1

W2W0
· ∂ · W0

W1
(3.1)

A short elementary proof of this result can be found in [NY3]. It is this form
of a differential operator, in which the disconjugacy conditions become absolutely
transparent.

Theorem 3.2 [Po]. If all Wronskians are nonvanishing on the interval I, then the
equation Ly = 0 is disconjugate on it.

Proof. Let f be a solution. Then, integrating, we obtain W 2
n−1

WnWn−2
· ∂ · W 2

n−2
Wn−1Wn−3

·

∂ · · · ∂ · W 2
1

W2W0
·∂ · W0

W1
f is a constant that without loss of generality may be assumed

nonzero (if not, then one or several more integrations would be required).
From the assumptions on Wi it follows that each multiplication by the cross-ratio

of the Wronskians does not change the number of zeros, while each differentiation
may reduce it at most by one (by the usual Rolle theorem). As the right hand side
is nonvanishing, the number of zeros of f can be at most n− 1. �

In fact, in [Po] it is shown that the assumptions on the Wronskians are almost
necessary in the following sense: if the equation is disconjugate, then one can con-
struct a fundamental system of solutions that would produce Wronskians without
zeros inside I.

If some of the Wronskians Wi have zeros on I, then the disconjugacy may not
hold. Yet, knowing νi > 0, the number of zeros of each Wi, one may produce an
upper bound for the number of zeros of any solution on I. The most straightforward
way would be to subdivide the interval I by N = ν1 + · · · + νn points into N + 1
intervals, each of them by construction being an interval of disconjugacy. As each
of the division points itself may be a root of multiplicity at most n − 1 + δ, with
the sum of all δ’s being νn, we obtain the following upper bound.
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Proposition 3.3. The number of roots of any nonzero solution can be at most
(2N+1)(n−1), where N =

∑n
1 νk is the total number of roots of all Wronskians. �

A more detailed analysis carried out in [NY4] allows to write an upper bound for
the number of zeros in the form of a weighted combination of νk with the weights
ranging from 1 to n− 1 (and not all equal to 2n− 2, as in the above formula). Yet
even this improved bound is too excessive. Under the additional assumption of real
analyticity one can prove the following much finer bound.

Theorem 3.4. Suppose that the coefficients (or solutions) of the equation are real
analytic and, as before, νk is the number of isolated zeros of the corresponding
Wronskian Wk, counted with multiplicities.

Then the number of zeros of any nonzero solution does not exceed

(n− 1) + 4(ν1 + · · ·+ νn−2) + 3νn−1 + νn.

In other words, the bound can be made as sharp as (n − 1) + 4N , using the
notation above. The proof of this result announced previously in [NaY] is outlined
in the subsequent sections.

Remark. Appearance of differential equations in this context is essential but tran-
sitory: the results can be formulated as bounds for the number of zeros in linear
envelopes. Let f1, . . . , fn be a tuple of real analytic functions, how many isolated
zeros may exhibit their arbitrary linear combination λ1f1 + · · ·+λnfn? The answer
is given in terms of the number of isolated zeros of the Wronskians built from fj .

Notice that the equation satisfied by all fj may well be singular on I, as we do
not assume that the last Wronskian Wn is nonvanishing (the assumption required
is Wn 6≡ 0, but this can be always satisfied after eliminating linear dependencies
between the initial functions). But all these singularities are obviously apparent
ones: this is a typical example of how apparent singularities may occur.

3.2. Voorhoeve index, Rolle–Voorhoeve inequality and demonstration
of Theorem 3.4. To prove Theorem 3.4, we will replace the number of zeros by
another, suitably chosen, index that has similar behavior under multiplications and
derivations. This index was introduced by M. Voorhoeve [V] for a special case of
real analytic functions (the case we actually need here), and later generalized in
[KY] for spatial curves. The general construction is more easy to explain.

Let γ : [0, 1] → Rn, t 7→ x(t), be a closed smooth parameterized curve in space,
avoiding the origin (i.e. x(t) 6= 0 for all t ∈ [0, 1] and x(0) = x(1)). Denote
by S(γ) the (Euclidean) length of the central projection of γ on the unit sphere
t 7→ x(t)/‖x(t)‖. As γ is nonsingular, the velocity vector ‖ẋ(t)‖ never vanishes, and
hence the velocity curve γ̇ : t 7→ ẋ(t) is also closed and avoids the origin. Let S(γ̇)
be the length of its central projection on the same sphere.

Theorem 3.5 (Rolle theorem for closed spatial curves).

S(γ) 6 S(γ̇). (3.2)

There are known several proofs for this fact: two of them are given in [KY], some
other were communicated to us by Yu. G. Reshetnyak, see also [Re]. Probably the
most instructive one, explaining the connections with the standard Rolle theorem,
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is based on the Buffon needle principle from integral geometry: the spherical length
of a curve is proportional to the number of intersections between this curve and a
random hyperplane passing through the origin. As this holds equally for the curve
γ̇, we have to compare the number of isolated intersections of γ and γ̇ with all
hyperplanes. But this is already the standard Rolle inequality, as between any two
consecutive points of intersection of γ with an arbitrary hyperplane, there should
be a point at which the velocity vector is parallel to that hyperplane. Thus the
inequality (3.2) is the claim that the number of zeros of a periodic function on the
period is no greater than the number of zeros of its derivative, in an averaged form.

Remark. The inequality (3.2) has a counterpart valid for non-closed curves [KY].
The right hand side should be replaced then by S(γ̇)+Φ1−Φ0, where Φi is the angle
between x(t) and ẋ(t) for t = 0 and t = 1 respectively. Note that the difference
Φ1 − Φ0 never exceeds π.

As the case R2 ' C is not excluded, the inequality (3.2) can be applied to
planar curves, in particular, to curves having the form f(∂D), where ∂D is the
boundary of a planar domain D and f a function meromorphic in D without zeros
or poles on ∂D. The result can be expressed in terms of absolute variation of
argument of analytic functions. Since f has no zeros on the boundary ∂D, the
branch of ϕ(t) = Arg f(t) can be selected for a suitably chosen parametrization of
the boundary by, say, a segment [0, 1]. We define the Voorhoeve index

VD(f) =
∫ 1

0

|ϕ̇(t)| dt.

Notice that VD(f) is a majorant for the topological index of f on the boundary. The
inequality (3.2) for planar curves implies the following generalization of the Rolle
theorem for any function f = f(z) meromorphic in D and its derivative f ′(z).

Theorem 3.6 [KY] (Rolle–Voorhoeve inequality).

VD(f) 6 VD(f ′) + κ(∂D), (3.3)

where κ(∂D) is the integral curvature of the boundary (equal to 2π for convex
domains).

Together with (3.3) we have the triangle inequality that can be easily verified
for any two meromorphic functions,

VD(fg) 6 VD(f) + VD(g). (3.4)

If f is a real meromorphic function on some segment I ⊂ R, then the Voorhoeve
index VD(f) can be easily computed for an infinitesimally small neighborhood of
I: if Dε is a convex ε-neighborhood of I, then, assuming that f is neither zero nor
infinity at the endpoints of I, we have

VI(f) := lim VDε
(f) = 2π(NI(f) + PI(f)),

where NI(f) and PI(f) are the respective numbers of zeros and poles of f on I,
counted with their multiplicities.

Now the inequalities (3.3), (3.4) (in their limit form for Dε, as in [V]) can be
applied to all solutions of (3.1) in the same way as the standard Rolle theorem
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was applied. Each differentiation reduces the Voorhoeve index by 2π, each mul-
tiplication (except for the last one) by 2π(νk−1 + 2νk + νk+1), and adding these
together we obtain an upper bound for the Voorhoeve index of any solution f . As
V (f) > 2πN(f), this implies the upper bound for the number of zeros as claimed.

Remark 1. The Rolle–Voorhoeve inequality (3.3) in an example in the spirit of an “alternative”
Rolle theory, in which the key role is played by the argument of an analytic function. One might

expect existence of a “dual” theory based on properties of the modulus of analytic functions. Such

theory can be indeed developed, see, e.g. [NY5] and [RYo], and the key notion of this theory is
that of Bernstein classes. Yet the two theories are essentially isomorphic, as shows the last section

of [KY].

Remark 2. For a linear differential equation with constant (complex) coefficients the decom-

position (3.1) takes especially simple form, since all intermediate cross-ratios have the form
exp(λjt− λj+1t), where λ1, . . . , λn are eigenvalues of the corresponding differential operator (ar-
bitrarily ordered). Computation of the Voorhoeve index of an exponential function is an easy

exercise. Applying the “alternative Rolle inequalities” (3.3)–(3.4), one can produce an explicit
upper bound for the number of complex zeros of quasipolynomials

∑
λ∈Λ ckλ tk exp λt in a bounded

domain D b C in terms of the spectrum Λ ⊂ C and the diameter of D [KY].

3.3. Oscillation of spatial curves. A geometric reformulation of the ques-
tion about zeros of arbitrary linear combinations of several given functions, is
that about meandering of spatial curves. Any collection of real analytic functions
f1(t), . . . , fn(t) of one variable defines a spatial parameterized curve Γ: t 7→ f(t) =
(f1(t), . . . , fn(t)). The maximal number of isolated intersections between this curve
and an arbitrary affine hyperplane is the natural measure of meandering , or sinuos-
ity Ω(Γ) of the curve Γ. (The choice of affine rather than linear hyperplanes reflects
the natural desire to have this meandering characteristics be translation invariant).

The construction exposed in §3.2 gives an explicit bound for Ω(Γ) in terms of
the coordinate functions fk and their derivatives. However, this answer is not
geometric: among other things, it depends on the choice of the coordinates in the
ambient space Rn. It turns out that after a proper averaging of this answer over
all coordinate systems, the resulting expression has a clear geometric meaning of
the weighted sum of integral Frenet curvatures.

To explain the answer, recall that if the curve is not hyperplanar (what can be
always assumed without loss of generality), then the successive vector derivatives
ḟ(t), f̈(t), . . . , f (n)(t) are linear independent at almost any point of Γ. Together
they constitute the osculating frame of the curve, that can be orthogonalized in
such a way that the span of the first k vectors e1(t), . . . , ek(t) of this orthonormal
Frenet frame coincides with the span of the first k derivatives of f . Besides, we
may always assume the parameter be natural (the arclength along the curve). Then
the evolution of the Frenet frame can be described by a nonautonomous system of
linear equations, known as Frenet formulas:

ėi(t) =
n∑

j=1

Aij(t)ej(t), i = 1, . . . , n.

As the frame remains all the time orthonormal, the matrix A(t) = ‖Aij(t)‖ should
be antisymmetric. Besides, each vector ėi(t) should belong to the space spanned
by e1(t), . . . , ei+1(t). This leaves only one possibility Ai,i+1 = −Ai+1,i = κi,
i = 1, . . . , n − 1, all other entries being zeros. The values κi = κi(t) are usu-
ally refereed to as (generalized, for n > 3) Frenet curvatures: for three-dimensional
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curves κ1 is the usual curvature and κ2 the torsion. Using the freedom of the
orthonormalization, one may always assume that all these curvatures, except for
the last one κn−1, are positive almost everywhere, while the last one, κn−1(t) will
generically change sign at isolated points of Γ. Such points are natural multidi-
mensional analogues of the inflection points for flat curves: as there is no common
name, we use the term “hyperinflection points” for them. Obviously, the point is a
hyperinflection point if and only if the osculating frame degenerates. This condition
can be rewritten in the form

W (1, f1, . . . , fn)(t) = 0,

where W (·) is the Wronskian of n + 1 function f0 = 1, f1, . . . , fn.
Now the main result concerning oscillation of spatial curves can be formulated.

Let Kj(Γ) be the integral Frenet curvatures,

Kj =
∫ `

0

|κj(t)| dt, j = 1, . . . , n− 1,

(recall that t is the natural parameter), and let ν(Γ) be the number of hyperinflec-
tion points of Γ.

Theorem 3.7 [NaY].

Ω(Γ) 6 (n− 1) + ν(Γ) + 4π−1
n−1∑
j=1

Kj(Γ).

The proof is based on the following generalization of the Fáry theorem [F].
Consider a curve Γ ⊂ Rn and let Π be an orthogonal projection of Rn onto some
k-dimensional subspace. Then Π(Γ) will be a k-dimensional curve, and all elements
of the above construction could be repeated relative to the k-plane containing Γ.
In particular, the hyperinflection points can be identified with zeros of the corre-
sponding determinant: as one can easily see, if an orthogonal coordinate system in
Rn is chosen Π is the projection on the first k axes, then (preserving the notation
above) the hyperinflection points are zeros of the Wronskian W (1, f1, . . . , fk)(t).

The collection of all k-planes in Rn (the Grassmanian) carries the natural mea-
sure invariant by the action of the orthogonal group. One may average different
characteristics of Π(Γ) with respect to this measure. The following result general-
izes theorems by J. Milnor [Mi] (for n = 3, k = 2) and I. Fáry [F] (for n = 3, k = 1,
see also the remark below).

Lemma 3.8 [NaY], see also [NY4]. The average number of hyperinflections of k-
dimensional projections of a real analytic curve Γ ⊂ Rn is π−1Kk(Γ).

Using this principle, one can easily derive Theorem 3.7 from Theorem 3.4.
The idea is to find the “best” coordinate system, or rather the flag of subspaces.
Lemma 3.8 implies that for a given curve Γ one can always find a coordinate sub-
space in such a way that the number of hyperinflections of the projection of Γ on
that subspace is majorized in terms of the integral curvature Kk(Γ). This choice
of subspaces can be made coherently, as in [NY4], and as a result we prove the
existence of the flag of subspaces,

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn−1 ⊂ Λn = Rn
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in such a way that the number of hyperinflections of the projection of Γ onto Λk

is majorized by the kth integral curvature for k < n. This gives the upper bounds
for the number of zeros of all Wronskians W (1, f1, . . . , fk). It remains only to refer
to Theorem 3.4.
Remark. As an easy corollary to Lemma 3.8, we conclude that averaging the kth integral curvature

over all uniformly distributed `-dimensional projections of a curve in Rn for any ` > k, we obtain
the kth integral curvature of the original curve. This precisely coincides with the assertion of Fáry

theorem.

3.4. Variations and ramifications. Theorem 3.7 proved above, is a full geomet-
ric counterpart to theorems of §2 for linear nth order equations. Indeed, the Frenet
equations can be considered as a (nonautonomous linear) system of equations on
the orthogonal group. The sum of integral curvatures of a curve that appears in the
majorant is simply an integral L1-norm of the matrix of coefficients of this system.
It remains only to notice that, despite its appearance, the upper bound for the
linear equations is also given in terms of the integral L1-, rather than L∞-norm of
the coefficients. Indeed, let C(t) > 1 be variable maximum of 1 and cj(t) for the
equation (2.1). Then the upper bound for the number of zeros on an interval I ⊂ R
is n − 1 times the number of rectangles of area < ln 2, covering the subgraph of
the function C(t) on I. The latter is obviously an approximation to the integral of
C(t), and the lost similarity is thus restored.

To complete the analogy, it remains only to notice that hyperinflection points
correspond to (apparent) singularities of a linear equation and as such, are not
allowed for the regular case (2.1). Thus the term νn−1 has no analogues in the
bounds of §2.

In fact, one can show that if the integral curvatures of Γ are all sufficiently small
and there are no hyperinflections, then the curve is nonoscillating in the obvious
sense: no affine hyperplane can intersect it by more than n isolated points. The
bounds are explicit and can be derived, see [NY4], from the topological result of
B. Shapiro [Sh]: if a curve is not nonoscillating, then its osculating flag (spanned by
the osculating frame) becomes nontransversal to any specified flag at some point of
the curve. This latter claim can be also considered as a form of the Rolle theorem
for spatial curves. In turn, the nonoscillation conditions thus obtained can be used
to produce upper bounds for the meandering (as before, by subdividing the given
curve into nonoscillating pieces), but the resulting bound would be much worse
than that given by Theorem 3.7.

Theorem 3.7 can be generalized in several directions. First, it can be reformu-
lated for spherical or projective curves, where the curvatures are to be understood
as geodesic curvatures, and a new term (the geodesic length) appears in the majoriz-
ing expression [NY4]. Second, for curves in the Euclidean space one may introduce
rotation around subspaces of codimension > 1, as the spherical length of the or-
thogonal projection of the curve parallel to the subspace. Then one can show [NY4]
that rotation around any k-dimensional affine subspace is majorized by a weighted
sum of the first k + 1 integral curvatures. Thus Theorem 3.5 (the Rolle inequal-
ity for closed curves) becomes a particular case of this more general statement, as
S(γ̇) = K1(γ). Another particular case is due to J. Milnor [Mi] who majorized
the linking number of a closed curve in R3 with an arbitrary line (obviously, the
above introduced rotation majorizes the linking in the same way as the variation
of argument majorizes the topological index in §3.2). Finally, one may formulate
a complex analog of Theorem 3.7: given a compact piece of a holomorphic curve
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in Cn with the real boundary γ, one asks about the maximal number of isolated
intersections with complex affine hyperplanes. The upper bound may be given by a
sum of certain complex counterparts of Frenet integral curvatures of the boundary
γ, see [NaY].

§4. Singular points and singular perturbations

Everywhere in this section we consider linear differential equations with mero-
morphic (in particular, rational) coefficients and complex time, near a singular
point (supposed to be at t = 0). According to the general classification, one dis-
tinguishes between tame (Fuchsian, or regular) singularities and wild (irregular,
non-Fuchsian) ones. In the latter case not too much can be said: infinite number of
zeros of a nontrivial solution can accumulate to the singularity, and the best thing
one can hope is to study the accumulation rate. On the contrary, the Fuchsian case
can be sometimes dealt with.

4.1. Fuchsian equations, monodromy, spectrum. We consider now the case
of an equation possessing a “true” isolated singular point at the origin. Assuming
this singularity be of the Fuchsian type, we can (see [I]) write the equation in the
form

znw(n) + a1(z) zn−1w(n−1) + · · ·+ an−1(z) zw′ + an(z) w = 0. (4.1)

Yet the natural time for such equations is the logarithmic one z = ln t so that
z d

dz = d
dt . In this chart the equation takes the standard form (2.1) with coefficients

ci(t) analytic, bounded and 2πi-periodic in the left half-plane H = {Re t 6 0} ⊂ C.
The new coefficients ci(t) can be easily recomputed into the old ones aj(z) and vice
versa.

Solutions of the equation (4.1) are in general multivalued, so their zeros should
be counted on different branches separately. It will be technically convenient to
consider the domain covered by the infinite semistrip Π = {Re t 6 0, | Im t| 6 2π}.

The classical monodromy of the equation is the linear operator ∆ taking a branch
of a solution into the result of its analytic continuation along the small loop around
the singularity. In the logarithmic chart the monodromy corresponds to the shift
operator T , taking any f(t) analytic in H, into

Tf(z) = f(z + 2πi).

Restricted on the n-dimensional (complex) space of solutions of a given Fuchsian
equation, it can be identified with an n×n-matrix ∆. The spectrum of this matrix
can be computed from the coefficients of the equation as follows.

Denote by L = ∂n + c1(t)∂n−1 + · · ·+ cn−1(t)∂ + cn(t) the differential operator
corresponding to the equation written in the logarithmic chart. The coefficients
cj(t), being 2πi-periodic and bounded in H, have definite limits c∗j as Re t → −∞.
We consider the limit operator L∗ with constant coefficients,

L∗ = ∂n + c∗1∂
n−1 + · · ·+ c∗n−1∂ + c∗n,

and let Λ = {λ1, . . . , λn} ⊂ C be the spectrum of L∗: λ ∈ Λ ⇐⇒ L∗ expλt = 0
(each eigenvalue is counted with its multiplicity). We refer to Λ as the spectrum of
the Fuchsian singular point as well.
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Frobenius theorem [I]. Any solution of the Fuchsian equation can be represented
in the form

w =
∑
λ∈Λ

nλ−1∑
k=0

ckλ(t) tk expλt,

where nλ > 1 is the multiplicity of each point λ ∈ Λ, and ckλ(t) are bounded 2πi-
periodic analytic in H coefficients.

Corollary. The spectrum of the monodromy operator consists of the exponentials
{exp 2πiλ, λ ∈ Λ}, counted with their multiplicities.

Note that the above representation in the initial chart z turns into a convergent
Dulac series w(z) =

∑
λ∈Λ

∑nλ−1
k=0 bkλ(z) zλ lnk z.

4.2. Fuchsian singularities with the real spectrum: upper bound for
zeros. According to the general principle, one should expect that knowing an upper
bound for the coefficients of the Fuchsian equation in the logarithmic chart would be
sufficient to produce a uniform upper bound for the number of zeros of solutions, at
least in the semistrip Π. Without additional assumptions this expectation is wrong,
as shows the simplest case of the Euler equations (the equations having constant
coefficients in the logarithmic chart): the equation y′′ + y = 0 has solutions with
an infinite number of zeros in the semistrip.

It turns out, however, that if the spectrum of the singularity belongs completely
to the real axis, then one can indeed establish an explicit upper bound for the
number of zeros. (Note that in the above counterexample the spectrum consists
of two points ±i). For Euler equations this was well known, and one can find
relevant estimates in [KY]. The general case of equations with variable coefficients
was treated in [RY], where the following result was proved.

Assume that the coefficients of the equation Ly = 0 (in the logarithmic chart,
as usual) are bounded by a constant C > 1. Then from the previously established
result it follows that the variation of argument of any nonzero solution along any
interval of length 4π (the width of the semistrip) can be at most

B = B(L) = π(n + 1)(1 + βC), β = 4π/ln 3
2 .

Theorem 4.1 [RY]. If the spectrum of the Fuchsian singular point is completely
real, then the number of zeros of any nontrivial solution in the semistrip Π is finite
and does not exceed:

(1) n(2B + 1), if the specified solution is real on the real axis R,
(2) (n + 1)(2B + 1), if the coefficients of the equation are themselves real on R.

To prove this result, we replace Π by a very large rectangle Πε = Π ∩ {Re t >
−1/ε} and try to bound the number of roots in Πε uniformly over all small ε >
0. The direct application of the argument principle as given by Corollary 2.7 is
impossible, since the length of the horizontal sides of Πε is very large. The proof is
based on a version of the Petrov Argument.

Let T be the shift operator and µ a complex number. Consider the difference
operators, introduced in [RY] under the name of Petrov operators:

Pµ = µ−1T − µT−1.



518 Sergei Yakovenko

Clearly, each such operator preserves equations with T -invariant coefficients and
hence acts on the space of their solutions.

Denote by N(f) the number of isolated zeros of an analytic function f in the
rectangle Πε.

Lemma 4.2 (Rolle Lemma for the difference operators). If f is real on R and
|µ| = 1, then Pµf is also real on R, and

N(f) 6 2B + 1 + N(Pµf). (4.2)

Proof of the Lemma. We apply the argument principle to f . The variation of
argument along each vertical side of Πε is bounded by B. It remains to bound
the variation of argument of f or, what is the same, of µ−1f , as µ 6= 0, along the
horizontal sides. By the Petrov Argument, one has to majorize the number of zeros
of Im µ−1f along each horizontal side. Being real for real t, the function f takes
complex conjugate values at symmetric points t ± 2πi, that can be expressed as
the identity Tf = T−1f valid on the real axis. This together with the assumption
on µ guaranteeing that µ = µ−1, means that Im µ−1f(t + 2πi) for real values of
t coincides with the function Pµf(t) that is obviously another analytic solution of
the same linear equation.

Thus the number of zeros of imaginary part of f on each horizontal side of the
rectangle is equal to the number of real zeros of Pµf which does not exceed N(Pµf),
as there can be other zeros in Πε. Collecting the inequalities, we conclude with the
required estimate provided that Pµf 6≡ 0.

This last case is obvious: Pµf ≡ 0 means that f(t) is 4πi-periodic after mul-
tiplication by an appropriate exponent exp λt with real λ. Thus the variations of
argument along the two horizontal sides cancel each other. On the other hand, we
have in this case N(Pµf) = 0, as there are no isolated zeros. It remains only to
pass to limit ε → 0+. �

Remark. The inequality (4.2) relates the number of zeros of an analytic function
and its first difference Pµf in the same sense as the Rolle inequality does.

4.3. Proof of the Theorem 4.1. Each Petrov operator Pµ is an automorphism of
the linear space of solutions of the given equation. Moreover, if µ is an eigenvalue of
the monodromy operator ∆ of multiplicity ν and S is the null subspace of (∆−µE)ν

(the corresponding root subspace for ∆), then P ν
µ also vanishes on S and leaves all

other root subspaces invariant, since

(µ−1∆− µ∆−1)ν = (∆−1 + µ−1E)ν(∆− µE)ν .

Thus the composition P ν1
µ1
◦ · · · ◦P νk

µk
extended over all points of the spectrum (with

multiplicities νk as indicated, so that
∑

k νk = n) vanishes on all solutions of the
differential equation. The inductive application of the Rolle inequality (4.2) proves
the Theorem in the first case (when the solution is real): the constant B remains
one and the same for all steps.

In the case when only the equation is real (on R) we observe that the real
and imaginary parts of any complex solution on any horizontal line R + 2πik,
are themselves solutions. Thus applying one more time the Rolle Lemma at the
beginning, we reduce the second case of the Theorem to the first one. �
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4.4. Variations. The above theorem is the simplest version and can be modified
if necessary. One such modification is important for further applications.

Suppose that we are given a multivalued function f(z), which is a solution of
some nth order linear equation Lf = 0 having a Fuchsian singularity at the origin
z = 0, but the equation itself is not known. This situation is typical in certain cases,
e.g. the Picard–Fuchs equation for Abelian integrals is non-constructive. What is
known is the sectorial asymptotics of growth of f , i.e. the leftmost point of the
(real) spectrum λ, so that

∀δ > 0 |f(z)| = O(|z|λ+δ) as z → 0

remaining in any sector. Without loss of generality we may assume that z = 0 is
the only singularity of f in the unit disk {|z| 6 1}.

Instead, we suppose that another equation Df = 0 for the same function f is
known,

y(N)(z) + r1(z)y(N−1)(z) + · · ·+ rN (z)y(z) = 0 (4.3)

of order N > n, which has rational coefficients rk(z) bounded on the unit circle
{|z| = 1}:

|rk(z)| 6 C̃ ∀k = 1, . . . , N, C > 1.

No information on the number and type of singular points of the operator D is
available, in particular, we do not assume that z = 0 is a Fuchsian singularity.
Yet in combination with the above qualitative data and sectorial asymptotics this
information is sufficient to produce an explicit upper bound for the number of
isolated roots in sectors.

The result is again easier formulated in the logarithmic chart. The equation (4.3)
in the logarithmic chart t = ln z transforms into an equation with meromorphic (not
necessarily rational) coefficients bounded by some constant C on the imaginary axis.
The value of C can be easily recomputed from C̃.

Theorem 4.3. If the spectrum of L at z = 0 is real and f itself is real on the real
axis, then the number of isolated roots of f does not exceed (B +4π|λ|+1)n, where
B is given by the same formula as before, and λ is the exponent of sectorial growth.

The proof is much shorter than the formulation. In the demonstration of The-
orem 4.1 the variation of argument of f along the right vertical side of Πε is es-
timated as before by B by virtue of the equation. On the contrary, as we do not
know the bound for coefficients on the left vertical side {Re t = − 1

ε}, the variation
of argument of f along this side is majorized by 4π|λ|+ δ for all sufficiently small
ε > 0, δ > 0, since f(t) = tν expλt · (1 + o(1)) as Re t → −∞. �

4.5. Some open problems. At this moment we stop discussing the questions
related to linear differential equations of a high order: the next section is devoted
to systems of first order (eventually nonlinear) polynomial differential equations.
Thus it would be appropriate to conclude this section by several open problems.
Besides their natural appearance in this context, each of them is motivated by the
general problem on zeros of Abelian integrals, the main source of inspiration.

Theorem 4.1 can be applied to a Fuchsian equation in the form (2.8) having the
leading coefficient c0 normalized to a unitary polynomial as in (2.9), in a global way.
The resulting claim can be described as follows: if the magnitude of all coefficients
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cij ∈ R of all polynomials ci(t) =
∑

j cijt
j is explicitly bounded by some number

C > 1, all singular points t0 = +∞, t1, . . . , tν are Fuchsian with real spectrum and
not too close to each other (so that |ti− tj | > δ, |t−1

i | > δ for some δ > 0), then one
can produce an explicit upper bound for the number of zeros of any branch of any
solution. This bound would obviously depend, besides the order of equation and
the degrees of polynomials cj(t), also on C and δ. As δ → 0+, the bound explodes
to +∞.

Thus one is naturally led to studying parametric families of Fuchsian equations,
exhibiting confluence of singular points, in an attempt to establish upper bounds
for the number of zeros of solutions, that would be uniform over the parameter(s).
This subject is complicated, as the result of confluence of two Fuchsian singulari-
ties is in general a non-Fuchsian one. Probably, no results can be achieved in such
general settings, as the first examples show. Yet there is some evidence that for
equations with certain monodromy groups, in particular, with monodromy inde-
pendent of parameters, explicit bounds can be achieved despite all complications.
The indispensable tool of study is the Petrov argument, and the first steps of the
analysis reproduce the constructions exposed in [Pe].

Another question becomes quite natural as one replaces individual equations by
analytic families. The normalization making the leading coefficient c0 = c0(t, ε)
a unitary polynomial c0 = tν +

∑ν−1
j=0 c0j(ε)tj , is always possible provided that

originally c0(·, 0) 6≡ 0 for the limit value of the parameter. If this last case occurs,
then we are in fact dealing with singular perturbation: the order of the equation
drops down for ε = 0. One could start looking at the simplest example when
c0(t, ε) = ε ∈ (R, 0).

Once again, the full theory of singularly perturbed equations would be probably
too difficult to build. Quite obviously (already at the level of families of equations
with constant coefficients) one can have examples of singularly perturbed equations
which do not allow any bound on the number of zeros in terms of C (even without
singular points). Yet there are certain indications that such solutions (exhibiting
too many zeros for small ε) would explode in an attempt to continue them for ε = 0.

More precisely, suppose that we are given a family of ordinary differential operators Lε =∑n
j=0 cj(t, ε)∂

n−j on a real interval I b R analytically depending on the real parameter ε ∈ (R, 0),

and this family is normalized by the requirement that L0 is a differential operator of some order

k < n with a unitary leading coefficient ck(t, 0) = tν + · · · . Assume that all coefficients are
explicitly bounded, |cj(t, ε)| 6 C in I × (R, 0).

We believe that, eventually under reasonable additional assumptions, for any family y(t, ε) of
solutions of the equation Ly = 0 analytically depending on ε at ε = 0, one can produce an explicit

upper bound for the number of isolated zeros of y(·, ε) on I, depending on C, I and n and valid

uniformly over all values of ε.

For the present, this conjecture is proved for families of equations with constant coefficients.

Note that this result is not covered by results from [KY] described in Remark 2, §3.2, since the

spectrum Λε of the corresponding operator explodes as ε → 0.

§5. Meandering of trajectories of polynomial vector fields

Everywhere in §2–§4 only the linear theory was discussed: all equations were
linear (eventually, singular). Below we briefly explain how the nonlinear case may
be treated. The exposition is based on [NY1,NY2].

5.1. Meandering of trajectories of polynomial vector fields in Rn. From
the geometrical point of view instead of higher order scalar equations (linear or not)
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one should rather consider systems of first order equations, interpreted as vector
fields. Then the problem on majorizing the number of zeros is to be replaced by
that of majorizing the meandering index as introduced in §3. It would be natural
to expect that the integral trajectories of the vector field given by the system of
equations

ẋj = vj(t, x1, . . . , xn), j = 1, . . . , n, (5.1)

would have the meandering index bounded in terms of the magnitude of the right
hand side parts |vj(·)|. As the equations (5.1) are in general nonlinear (so that in
particular the trajectories may blow up in finite time), one has to exercise some
care in formulating the conjecture. The easiest way would be to choose a box

BR = {|xj | 6 R, |t| 6 R} ⊂ Rn+1 (5.2)

and try to prove that any piece of any integral trajectory of the system (5.1) entirely
lying inside the box BR, has the meandering index bounded in terms of R (the size
of the box) and R′ = max{|vj(t, x)| : (t, x) ∈ BR, j = 1, . . . , n}.

Unfortunately, no results are known for the problem posed in such generality.
Moreover, there are reasons to believe that the bound cannot be given in the above
terms, that is, one can construct real analytic functions vj with R′ = 1 in such a
way that the meandering of orbits of the corresponding system will be arbitrarily
large. (What one can prove is that for any given v and R the meandering of all
orbits inside the box BR will be uniformly bounded).

Remark. The reason why the results of §3 cannot be directly applied, is very simple: even provided

that one can explicitly integrate the system (5.1) and find an n-parametric family of integral curves
(which would be already too ambitious to assume), we cannot majorize the integral curvatures

uniformly over all curves from the family. Indeed, to compute the kth curvature function κk(t)

along a solution, we need to take the ratio of two minors formed by derivatives of solutions, and
though they are bounded from above, no lower bound (for the denominator) may exist in principle.

To get more convinced, consider a family of curves in R3 (a fibration) containing a straight line

as one of the fibers. Though the curvature of nearby curves must be small (by continuity), there
is no reason why the torsion should be bounded.

Thus from the very beginning we restrict ourselves to the polynomial case, as-
suming that the functions vj are polynomials of degree d in n + 1 variables,

vj ∈ R[t, x1, . . . , xn] deg vj = d,

vj(t, x) =
∑

k+|α|6d

vjkα tkxα, (5.3)

and we assume that the height , the maximal absolute value of the coefficients of all
these polynomials, is known. For convenience we assume that it is bounded by the
same constant R as the size of the box:

|vjkα| 6 R. (5.4)

The question remains the same: give an upper bound for meandering of all trajec-
tories of (5.1) in the box (5.2), knowing the dimension n of the problem, the degree
d of the polynomial vector field and assuming that its height is at most R. In fact,
one may even go one step further and ask about the maximal possible number of
intersections between phase curves of a given vector field and an arbitrary algebraic
hypersurfaces of degree 6 d.
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5.2. Polynomial growth. In this section we formulate the first result concerning
the above problem.

Prototheorem 5.0. For any dimension n and degree d there exists a finite number
N = N(n, d) with the following property.

The number of isolated intersections between an integral trajectory of a polyno-
mial vector field (5.1) of height R and an arbitrary algebraic hypersurface of degree
d in the box of size R can be at most (2+R)N , uniformly over all such vector fields
and all their trajectories in the box.

Of course, one could disentangle in this formulation the size of the box and the
height of the polynomials, in the same way as the degrees of the hypersurface and
the field should not necessarily be equal. The formulation is aimed at reducing
the number of parameters, and the bottom message of it is as follows: dependence
of the meandering on all magnitudes (the parameters expressed as real numbers)
is polynomial , and the exponent depends only on the algebraic complexity of the
input data.

The proof of this (simple) theorem is outlined below.

5.3. Universal equation. First we reduce the problem to that for one system
and one hypersurface. This is a mere change of language. In the expanded notation
(5.3) we treat the coefficients vjkα as new variables governed by the trivial equations

v̇jkα = 0, 1 6 j 6 n, k + |α| 6 d.

The same procedure is applied to the algebraic surface: writing its equation in the
form {p(t, x) = 0} and expanding p(t, x) =

∑
k+|α|6d pkα tkxα, we simply add pkα

to the list of independent variables in the same way. Notice that without loss of
generality we may assume that the height of p is bounded by the same constant R.

Thus all polynomial equations of the same degree become incorporated into one
universal polynomial equation, and in the same way the algebraic surface also be-
comes universal. Note that the original restrictions on the magnitude of coefficients
are transformed into restrictions on the phase variables, so that we may consider
the box BR of the same size in the new phase space (of much larger dimension).

5.4. Ascending chains of ideals. Returning to the previous notation, we con-
sider the vector field ẋ = v(t, x) and an algebraic hypersurface {p(t, x) = 0} in the
space of some dimension m with the box BR of size R at the center of that space.

Let D be the Lie derivation of the ring of polynomials R[t, x], taking any polyno-
mial into its derivative along the system ẋ = v(t, x). Starting from the polynomial
p = p0 defining the hypersurface, iterations of D generate the infinite sequence of
polynomials,

pk+1 = Dpk, k = 0, 1, 2, . . . (5.5)

As the ring of polynomials is Noetherian, the chain of ideals generated by the first
several polynomials pk, must eventually stabilize. This means that at a certain
moment ` one may find a representation

p`+1 =
∑̀
k=0

hkpk, hk ∈ R[t, x] (5.6)

with some polynomial multipliers hk.
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5.5. Demonstration of the Prototheorem. Being polynomials, the multipliers
hk admit an upper bound on any centered box, polynomial in the size R of the box:
there exists C < ∞ such that the maximum of all hk on the box BR does not
exceed (2 + R)C .

Consider an arbitrary integral curve γ of the vector field v, parameterized as
t 7→ x(t), and restrict the identity (5.6) on that curve. By construction (5.5), pk

restricted on γ, i.e. the function pk(t, x(t)), is the kth derivative of the function
f(t) = p0(t, x(t)), whose zeros exactly correspond to intersections of γ with the
algebraic surface p0 = 0. Denote the restrictions of hk on γ by ak(t) = hk(t, x(t)).
Then the nonlinear identity (5.6) is transformed into the “linear nth order differ-
ential equation”

y(`+1) =
∑̀
k=0

ak(t)y(k),

whose solution is f . As soon as we consider the curve lying in the box BR, the
coefficients ak are bounded by (2 + R)C , the length of the interval is at most 2R,
and hence any of the results of §2 produces an upper bound for the number of zeros
of f = p0|γ , that would be polynomial in R, bounded by (2 + R)N for some N . As
the equation v is “universal” (depends only on n and d), so are: the chain (5.5),
the number `, the collection {hk}`

k=0, and finally the bounds C and N . This proves
our prototheorem. �

Remark. Of course, the miracle of “linearization” is easily explained: for another choice of γ the

coefficients ak will be totally different. What is important that they still admit the same upper

bounds for the same boxes.

5.6. Discussion. The above construction proves also the following purely existen-
tial claim: for a real analytic vector field the meandering of trajectories contained
in any finite box, is uniformly bounded over all such trajectories. This follows from
the Noetherianity of the ring of analytic functions on polydisks. Of course, this
fact can be alternatively derived from the Gabrielov finiteness principle [G2].

What is much more important is that one can proceed further, trying to find or
estimate explicitly the constant N as the function of n, d. For this, it is necessary
to determine all elements of the decomposition (5.6), starting from the number `
at which the stabilization of the chain of polynomial ideals

(p0) ⊂ (p0, p1) ⊂ · · · ⊂ (p0, . . . , pk) ⊂ · · ·

occurs. But in fact knowing only ` would be already sufficient, as we will explain
in a moment.

Knowing ` one knows an upper bound for the degrees of all polynomials pk

participating in the decomposition (5.6). As follows from the classical theorem
of G. Hermann, one can estimate the degrees of the multipliers hk. Then the
multipliers themselves can be found using the method of indeterminate coefficients,
i.e. rewriting the identity (5.6) as a system of linear (algebraic) nonhomogeneous
equations, knowing apriori that the solution exists.

This is a crucial step: in general, nothing can prevent the heights of the polyno-
mials hk found in this way, from being very large: without analyzing the structure
of the matrix of coefficients of the linear algebraic system, one cannot estimate how
ill-posed it might be. As this height enters explicitly into the final answer, this
should be avoided.
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But our case is different, due to the previous universalization. Indeed, declaring
all coefficients of the vector field and the equation of the hypersurface new inde-
pendent variables, we arrive to the new, universal field and hypersurface, whose
coefficients take only value 0 and 1, in other words, our problem is over the ring of
polynomials with integral coefficients Z[t, x] rather than R[t, x]. This, in particular,
means that all pk also have integral coefficients, well bounded from above by an
explicit expression involving k, n, d. Of course, the polynomials hk may have non-
integral coefficients, but in any case they will be rational with numerators explicitly
bounded (say, by the Cramer rule). As the denominator cannot be smaller than
1, this implies an upper bound for the height of all multipliers hk. This allows to
complete the proof effortlessly.

Unfortunately, the problem of determining the last remaining ingredient, the
length of the ascending chain of ideals, is by far more difficult. From results of
A. Seidenberg [Se] it follows that there exists an algorithm computing ` starting
from the number of variables n and the known degrees of generators pk, but the
complexity of this algorithm was recently discovered to be “infinite”. In particular,
as was shown by G. Moreno [Mo], without additional assumptions the length of the
chain can be as large as the Ackermann generalized exponential of n, the function
growing more rapidly than anything that can be explicitly written.

It is the additional property of pk being iterated derivatives, that makes the
chain of ideals stabilize much faster than in the general case. However, this subject
goes too far beyond the scope of this survey. The answer looks as a tower of four
exponents: the value N(n, d) can be majorized by a primitive recursive function
growing asymptotically at most as the tower of four exponents,

N(n, d) 6 exp exp exp exp(3n ln d + O(1)).

The detailed exposition can be found in [NY2].
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