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We suggest an explicit procedure to establish upper bounds for the number of
real zeros of analytic functions satisfying linear ordinary differential equations with
meromorphic coefficients. If the equation

a0(t) y(&)+a1(t) y(&&1)+ } } } +a&(t) y=0

has no singular points in a small neighborhood U of a real segment K, all the coef-
ficients aj (t) have absolute value �A on U and a0(t)#1, then any solution of this
equation may have no more than ;(A+&) zeros on K, where ;=;(U, K ) is a
geometric constant depending only on K and U. If the principal coefficient a0(t) is
nonconstant, but its modulus is at least a>0 somewhere on K, then the number of
real zeros on K of any solution analytic in U, does not exceed (A�a+&) + with some
+=+(U, K ). � 1996 Academic Press, Inc.

0. Introduction: Motivations and Results

0.1. Fewnomials Theory and Its Implications. If f (t) is an elementary
function built from the functions const, id, log, exp, arctan, arcsin, using
algebraic operations and superpositions, then on the natural domain of
definition this function admits an effective upper estimate for the number
of (real) isolated zeros. This fundamental result belongs to A. Khovanski@$ ,
and the estimate can be given in terms of the combinatorial complexity of
the explicit expression for f. In particular, this result explains why an upper
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estimate for the number of isolated zeros of a polynomial may be given not
in terms of its degree, but rather through the number of monomials occurring
with nonzero coefficients (Descartes rule). This observation is the reason
why the theory is called the fewnomials theory [K].

Under some additional restrictions the trigonometric functions (sine and
cosine) may be also allowed to occur in the expression for f. In this case
one should take not the natural domain of f, but rather make it narrower
so that the arguments of sin( } ) and cos( } ) would vary over some bounded
intervals; the length of those intervals measured in the wavelengths of sine
and cosine plays the role of additional combinatorial complexity of the pair
( f, I ), where I is the domain on which the zeros of f are counted.

In fact, the natural class of functions in the context of the fewnomials
theory is the class of Pfaffian functions. Without going deeply into the subject
(for the full exposition of this theory see the book [K], where also the
multivariate case is considered), we introduce the class of simple Pfaffian
functions as follows.

Definition. A real analytic function f defined on an interval I�R is
called simple Pfaffian function, if it satisfies on I some first order algebraic
differential equation y$(t)=R(t, y(t)), where R is a real analytic branch of
an algebraic function. The maximal interval I with such properties is called
the natural domain of the simple Pfaffian function f and denoted by dom f.

The condition on R means that there exists a polynomial in three
real variables, P(t, y, w) # R[t, y, w], such that P(t, y, R(t, y))#0, and
the analytic branch of R(t, y) may be continued over the curve
[(t, f (t)): t # I ].

Examples. All elementary functions from the first list are simple
Pfaffian functions in the above sense. Indeed, if we put

dom exp(t)=R, dom log(t)=R+ ,

dom arctan(t)=R, dom arcsin(t)=(&1, 1),

then on those natural domains one has

(exp at)$=a exp at, (log t)$=1�t,

(arctan t)$=
1

1+t2 , (arcsin t)$=
1

- 1&t2
,

(prime stands for the derivative in t). On the other hand, the functions
sin at and cos at form a natural system of solutions of the second order
equation y"+a2 y=0 and as such are not simple Pfaffian functions on R.
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However, they may be considered as Pfaffian after a proper restriction of
their domain: the function sin t restricted on the interval (&?, ?) is simple
Pfaffian, since it satisfies the algebraic equation of the first order:

y$=- 1&y2, t # (&?, ?).

We summarize this part as follows. There exists an effective procedure
for estimating the number of real zeros of functions satisfying first order
differential equations, and this procedure applies also to expressions built
from such functions using algebraic operations and superpositions. At
present, one cannot extend this theory for functions satisfying equations of
higher orders. The goal of the present Note is to fill this gap for functions
satisfying linear ordinary differential equations of any order with mero-
morphic coefficients.

0.2. Abelian Integrals. Besides the above exposed intrinsic reasons,
there is another challenging problem which can be reduced to investigation
of real zeros of solutions of analytic linear differential equations. Consider
a polynomial H(x, y) in two real variables, and denote by $(t) a real oval
(closed connected component) of the nonsingular level curve H(x, y)=t. As
t varies between two critical values of H, the oval $(t) varies continuously
and in a certain sense analytically. Thus for any polynomial 1-form
|=P(x, y) dx+Q(x, y) dy the value

I(t)=�
$(t)

|

is well-defined, and the function t [ I(t) is real analytic on any interval
entirely consisting of regular values of H. This function is called the com-
plete Abelian integral, and the question about the number of isolated roots
of Abelian integrals is of extreme importance for bifurcation theory. The
problem is to find an upper estimate in terms of degrees of the polynomials
P, Q, H. Up to now, except for some specific cases of H of degree 3 or 4,
when the integrals can be expressed through elliptic functions, only the
general existence result is known, due to A. Varchenko and A. Khovanski@$
[V], [K]: for any polynomials P, Q, H of degrees not exceeding d, the
number of isolated zeros of the corresponding Abelian integrals is bounded by
a certain constant N(d )<�. The proof gives no information about the
nature of the function d [ N(d ). On the other hand, the Abelian integral
I(t) is known to satisfy a linear differential equation with rational coef-
ficients, see [AVG].

Moreover, as this is shown in [Y] using some ideas from [Il], for a
generic Hamiltonian one can construct a linear differential equation of
order &=(deg H&1)2 with rational coefficients, depending only on the
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Hamiltonian, such that for any choice of the form | the Abelian integral
I(t) can be expressed as

I(t)= :
&

j, k=1

rjk(t) u (k&1)
j , rjk # C(t),

where u1(t), ..., u&(t) constitute a fundamental system of solutions for that
equation, and rjk(t) are rational functions of degrees �(deg |�deg H )+
O(1), where we put deg |=max(deg P, deg Q). Clearly, to estimate the
number of real zeros of I(t), it is sufficient to consider only polynomial
envelopes, combinations of the same form with polynomial coefficients
rjk # C[t]. One may easily construct a linear differential equation of order
�n2(d+1), where d is the upper bound for the degrees of the polynomial
coefficients, in such a way that all functions t:u (k&1)

j (t) will satisfy this
equation for all j, k=1, ..., n, :=0, 1, ..., d. It turns out that if the
monodromy group of the tuple of functions u1 , ..., un is irreducible, then the
coefficients of this equation can be estimated in the form suitable for applica-
tion of Theorem 2 below. This implies that for almost all Hamiltonians the
Abelian integral I(t) may have no more than exp exp O(deg |) real zeros on
any fixed compact segment free of critical values of H, as deg | � �.
However, this subject will be considered separately.

0.3. Formulation of Results. Let KZR be a compact real segment and
U/C an open neighborhood of K. Without loss of generality we may
assume that U is simply connected and has a sufficiently smooth compact
boundary 1=U� "U, K & 1=<.

Consider a function f ( } ): U � C analytic in U, continuous in U� and real
on K : f (K )ZR. Assume that this function satisfies in U the linear ordinary
differential equation

a0(t) y(&)+a1(t) y(&&1)+ } } } +a&&1(t) y$+a&(t) y=0 (0.1)

with coefficients analytic in U and continuous in U� . Denote

A= max
k=0, ..., &

max
t # U�

|ak(t)|. (0.2)

The first theorem covers the nonsingular case, when the equation (0.1)
has no singular points in U� , that is, the leading coefficient a0(t) has no
zeros in U� . In this case without loss of generality one can assume that
a0(t)#1, since after division of the equation (0.1) by a0 all coefficients
would remain analytic. The definition of A implies then that A�1.

Theorem 1. If the leading coefficient a0 is identically equal to 1, then the
number NK ( f ) of isolated roots of f on K, counted with their multiplicities,
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does not exceed ;(A+&), where ;=;(U, K )<� is some constant depending
only on the geometry of the pair (U, K ) and & is the order of the equation (0.1).

The second result covers the case of equations with singular points in U.
In this case the analyticity requirement for f is an independent and crucial
condition. We do not assume that a0(t) has no zeros in U� , but the natural
assumption a0(t)�0 guarantees that

a=max
t # K

|a0(t)|>0. (0.3)

Theorem 2. There exists another constant +=+(U, K ) also depending
only on the geometry of the pair (U, K ), such that the number of isolated
zeros of f in K does not exceed (A�a+&)+.

The constants ; and + admit explicit upper estimates in terms of the
distance from K to the boundary 1=�U and the length of the segment K
(see below).

0.4. Remarks. We want to stress the difference in the nature of
estimates obtained in this paper from those peculiar to the fewnomials
theory. The latter yields the estimates in terms of integer data, say, the
number of algebraic operations and superpositions necessary to construct the
expression for f from elementary functions (we exclude the trigonometric
functions for simplicity). This means that the size of real parameters, say,
the maximal absolute value of coefficients of the polynomial combinations,
does not affect the estimates. In a completely different way, for functions
satisfying linear differential equations, the upper estimate for the number of
zeros is given in terms of the magnitude of coefficients of the equations, see
Section 2.3 below.

0.5. Regular Singularities at the Endpoints. Theorems 1 and 2 completely
cover the case of functions analytic at all points of the compact segment K.
Now assume that one of the endpoints of K=[t0 , t1], say, t0 , is a singular
point for a solution f (t). If t0 is a pole, then multiplying f by an
appropriate factor (t&t0)s we may restore the analyticity. On the other
hand, the substitution y(t)=(t&t0)&s z(t) transforms the equation (0.1)
into an equation which after multiplication by (t&t0)s+& would also have
analytic coefficients so that Theorem 2 could be applied; all upper and
lower bounds for the coefficients of this new equation can be easily
estimated. Thus we see that the case of a pole at the endpoint gives rise to
no difficulties.

The case of an essential singularity will not be discussed here. So assume
that t0 is a ramification point. In this case one cannot apply Theorems 1
and 2 directly. However, under the following two additional assumptions,
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one may estimate the number of isolated zeros of f on K"[t0] (without loss
of generality all other points of K may be assumed nonsingular for f ).

Recall that a point t0 # C is called a regular singularity for the equation
(0.1), if

aj (t)=(t&t0)&&j a~ j (t), a~ j ( } ) are analytic at t0 and a~ 0(t0){0.

The indicial equation associated with the regular singularity is the equation

c0*(*&1) } } } (*&&+1)+c1*(*&1) } } } (*&&+2)+ } } } +c&&1*+c&=0,

where cj=a~ j (t0), see [In].
It can be shown [H] that in a small neighborhood of a regular singular

point (without loss of generality we assume that t0=0) any solution f of
the equation (0.1) can be represented in the form f (t)=�k, * hk, *(t) t* lnk t,
where the finite sum is extended over a finite set of * which coincide mod Z
with the roots of the indicial equation, and the term t* lnk t appears only
if the multiplicity of the corresponding root is greater than k. The functions
hk, * are analytic at the point t0=0.

Moreover, each function hk, * can be shown to satisfy a linear equation
similar to (0.1) of the order at most &2, see [H]; this equation may be
explicitly constructed if the original equation (0.1) for f is explicitly given.

If all exponents * in this formula are real, the Khovanski@$ elimination
procedure [K] (see also [IY] for a brief summary of this theory in the
form suitable for our applications), allows to reduce the problem on the
number of real zeros of the function f representable in the above form and
real on some interval (0, r)/R+ , to estimating the number of real isolated
zeros of some auxiliary functions. These auxiliary functions can be explicitly
constructed using operations of addition, multiplication and differentiation,
from the functions hk, * and the exponents *.

Evidently, the auxiliary functions are analytic in the domain of analyticity
of hk, * . On the other hand it is known [In], [P], that functions satisfying
linear differential equations with meromorphic coefficients, constitute a
differential ring: sums, products and derivatives of such functions again
satisfy some linear differential equations; these equations can be explicitly
written provided that the equation for the original functions are given, and
this procedure is fairly constructive.

But this means that we can apply Theorem 2 and find an upper estimate
for the number of zeros of each auxiliary function. Thus at least theoretically
one may found an upper estimate for the number of zeros of any function
satisfying the equation (0.1) on an interval between two real regular
singularities of the latter.

Unfortunately, when performing all this constructions, we are unable to
control the magnitude of the coefficients of linear equations arising in the
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process. Thus it is for the moment impossible to give an explicit estimate
in terms of the coefficients of the original equation (0.1) only, though the
above arguments prove that there exists an effective algorithm for obtaining
such estimate, say, if the coefficients of the original equation were real poly-
nomials with integer coefficients.

1. Three Lemmas on Analytic Functions

We need three results in the spirit of the classical theory of distribution
of zeros of analytic functions [L]. The results are given in the form suitable
for applications, and complete proofs are supplied.

1.1. Zeros of Analytic Functions. Let UZC be a simply connected
domain which possesses the Green function (usually we will assume even
greater regularity, say, smoothness of the boundary 1=�U of this
domain), and KZU a compact subset of U, not necessary connected.

Denote by za(t): U � C any conformal mapping taking U into the
(open) unit disk D and the point a # U into its center, za(a)=0. The
modulus |za(t)| is uniquely defined by those requirements, and its
logarithm after division by 2? yields the Green function G(t, a) of the
domain U for the Dirichlet boundary value problem. For any a # U the
image za(K ) will be a compact subset of the unit disk, its (Euclidean)
distance from the boundary of the latter being strictly positive. We intro-
duce the following geometric characteristic of the pair (U, K ).

Definition. The relative diameter of the compact K with respect to U
is the value

\(U, K )= max
a, t # K

|za(t)|<1. (1.1)

Together with the relative diameter we introduce two derived quantities
#=#(U, K ) and _=_(U, K ) as follows:

#(U, K )=&
1

ln \
, _(U, K )=

1+\
1&\

, \=\(U, K ). (1.2)

Both # and _ are positive finite conformal invariants of the pair (U, K ).

Remark (O. Schramm). The quantities \, # and _ are related by simple
formulas to the hyperbolic diameter of the set za(K )ZD: the latter is the
diameter of the image K� =za(K ) with respect to the hyperbolic metric in the
disk D. Recall that the hyperbolic metric |dz| 2

h is invariant by fractional-linear
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transformations preserving the disk D, and |dz|h=|dz|�(1&|z| 2). Hence we
have

diamh K~ =
1
2

ln
1+\
1&\

=
1
2

ln _(U, K ),

and \, # can be also expressed through diamh K~ in the similar way.
Let f be a function analytic in U and continuous in U� . Denote by M( f ),

m( f ) the maxima of | f | on U� and K respectively,

M( f )=max
t # U�

| f (t)|, m( f )=max
t # K

| f (t)|.

By the maximum modulus principle m( f )�M( f ), and the equality holds
if and only if the function f is a constant. The ratio M( f )�m( f )�1 charac-
terizes the growth of the function f in the gap between U and K. Clearly, this
quantity remains unchanged if we multiply the function f by a nonzero
constant.

Denote by NK ( f ) the number of isolated zeros of f on K, counted with
their multiplicities. The first result is a generalization of the Jensen formula
for the number of zeros of an analytic function in a disk.

Lemma 1. The number NK ( f ) of isolated zeros of the function f analytic
on U and continuous on U� on the compact set KZU admits the following
estimate,

NK ( f )�# ln
M
m

, M=M( f ), m=m( f ), #=#(U, K ). (1.3)

Proof. Let a # K be the point at which the maximum of | f (t)| on K is
achieved, and take a conformal mapping za : U � C of U onto the unit disk;
since the assertion of the lemma is conformally invariant, it is sufficient to
estimate the number of zeros of the function f (z) in the disk |z|�\<1
provided that

max
|z|�1

| f (z)|�M, | f (0)|=m.

But for such a function by the Jensen formula [J]1 for any r between \ and 1

ln m=
1

2? |
2?

0
ln | f (r exp i�)| d�& :

|zj |<r

ln
r

|zj |
,
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where the summation is extended over all zeros zj of f (z) in the disk of
radius r assuming that the boundary circle of the radius r does not carry
zeros of f.

The integral does not exceed ln M by the maximum principle, hence the
above formula implies the inequality

:
|zj |<r

ln
r

|zj |
�ln

M
m

, (1.4)

and restricting the summation in (1.4) only for zeros zj in the disk of radius
\<r, we have for the number of zeros N\ in this disk the inequality

N\ \ln r+ln
1
\+�ln

M
m

for almost any r # (\, 1).

Since r can be taken arbitrarily close to 1, we conclude that

N\�
1

ln (1�\)
ln

M
m

. K

Remarks. The formula (1.3) allows to estimate the number of isolated
zeros of any analytic function in terms of its growth in the gap U"K.

A. J. van den Poorten [vdP] proved the inequality (1.3) in a slightly
stronger form for the pair of two concentric disks, noting that the
result belongs to the realm of mathematical folklore and referring to
M. Waldschmidt and R. Tijdeman; we compute the corresponding estimate
in Example 1 below. Y. Yomdin established a formula equivalent to (1.3)
for a special kind of domains (a real segment and its =-neghborhood), and
estimated the constant # for small =>0 (see Example 2 below).

1.2. Properties of the Constant #: Examples. The constant #=#(U, K )
is a conformal invariant of the pair (U, K ). Moreover, it depends
monotonously on K and U:

U$$U, K$�K O #(U$, K$)�#(U, K ). (1.5)

Those properties allow for explicit estimation of the constant # in some
simple though important cases.

Recall that the cross ratio D(a, b, c, d )=(a&c)(b&d )(a&b)&1 (c&d )&1

of any four points a, b, c, d # C is invariant by any fractional-linear trans-
formation z [ (q1z+q2)�(q3z+q4), qi # C.
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Example 1. Let U=[ |t|<1] be the unit disk and K==[ |t|�1&=] a
smaller concentric disk. Then

#(U, K=)=
2
=2 (1+O(=)) as = � 0+. (1.6)

Indeed, it is clear that the maximum in the definition of \ is achieved when
the points a and t are diametrally opposite in K, say, &1+= and 1&=.
Taking the four points (&1, &1+=, 1&=, 1) into (&1, 0, x, 1) by a
fractional-linear transformation, we immediately find from the equation
D(&1, &1+=, 1&=, 1)=D(&1, 0, x, 1) that \=x=1&=2�(2&2=+=2)=
1& 1

2=2+O(=3).

Example 2 (Y. Yomdin). Let now K be a real segment and U its small
=-neighborhood. More precisely, we consider the segment K=[0, ln 2] and
a thin rectangle around it, U==[Re t # (&1

2=?, ln 2+ 1
2 =?), |Im t |< 1

2=?].
In order to compute the constant #(U= , K ) we make a conformal transfor-
mation t [ z=exp =&1t. The interior of U= will be mapped into the
U-shaped domain which in the polar coordinates r, . on C is a rectangle,
r # (exp(&?�2), 21�= exp(?�2)), . # (&?�2, ?�2). This domain contains the
disk with the interval (c&1, 21�=c), c=exp(?�2), as the diameter, and on the
other hand is contained in the right half-plane Re z>0. This immediately
yields the two-sided estimate for the constant \==\(K, U=) by virtue of the
above monotonicity; one needs to solve two following equations with
respect to \\ ,

D(c&1, 1, 21�=, 21�=c)=D(&1, 0, \&, 1),

D(0, 1, 21�=, +�)=D(&1, 0, \+, 1),

and then \+�\=�\&. The straitforward computation shows that the
corresponding constant #= has the following asymptotical behavior,

#(U= , K )tconst1 } exp(const2 |K |�=), as = � 0,

the constants consti being universal and |K | the length of the segment.

Remark (O. Schramm). The latter asymptotic representation could be
obtained by using more general arguments. From the Ko� be one-quarter
theorem it follows that for the domain UZC the usual Euclidean metric
|dt | 2 and the hyperbolic metric |dt | 2

h inherited from the unit disk, are
related by the asymptotical equivalence |dt |htconst } |dt |�dist(t, �U ),
where dist( } , } ) is the Euclidean distance. From this observation it easily
follows that in Example 2 the hyperbolic diameter of K is tconst } |K |�=,
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and the corresponding estimate for # may be obtained using the relation
between #(U, K ) and diamh K� .

1.3. Lower Estimates for Analytic Nonvanishing Functions. In this sub-
section we establish an estimate of the nature similar to (1.3) for a lower
bound of analytic functions without zeros in a domain. Let U and KZU
be as before, f a function analytic in U, M=M( f ) and m=m( f ) the same
as above and _=_(U, K ) the constant introduced in (1.2).

Lemma 2. If f has no zeros in U� , then

\t # K | f (t)|�M \m
M+

_

, M=M( f ), m=m( f ), _=_(U, K ). (1.7)

Proof. Using the same arguments of conformal invariance of the asser-
tion of the lemma, it is sufficient to establish the estimate (1.7) in the disk
of radius \<1 for the function f (z) without zeros with

| f (0)|=m, max
|z|�1

| f (z)|�M.

The logarithm ln | f (z)| is a harmonic function, so the difference u(z)=
ln M&ln | f (z)| is also harmonic and positive in the unit disk. Applying the
Harnack inequality to u( } ),

u(z)�u(0)
1+|z|
1&|z|

,

we immediately conclude with the estimate ln | f (z)|�ln M&((1+\)�
(1&\))(ln M&ln m) which is equivalent to (1.7). K

1.4. Cartan Inequality and Lower Estimates for Analytic Functions Away
from Their Zeros. Lemmas 1 and 2 together with the Cartan inequality
below, imply that an analytic function can be estimated from below outside
a certain small neighborhood of its zeros. Recall that a polynomial in one
variable is unitary, if its principal coefficient is 1: p(t)=tn+ } } } .

Cartan Inequality [L]. For any unitary polynomial p of degree n and
any h>0 one may delete from the plane C=[t] no more than n open disks,
the sum of their diameters being less than h, in such a way that on the com-
plement the polynomial would admit the lower estimate | p(t)|�(h�4e)n,
where e=exp (1) is the Euler number.

Let the pair of sets KZU, the function f : U � C, and the bounds M=
M( f )=maxU� | f |, m=m( f )=maxK | f | be as before.
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Lemma 3. There exist two finite positive constants ", { depending only on
the geometry of the pair (U, K ) with the following property. For any positive
h<1 one may construct a finite number of disks Dj/C with the sum of
diameters less than h such that on the complement K"�j Dj the function f
admits the lower estimate

\t # K>.
j

Dj | f (t)|�m \m
M+

"&{ ln h

. (1.8)

Proof. Take an intermediate open set V such that KZV, V� ZU. By
Lemma 1, the number n of zeros of f in V� , counted with multiplicities, does
not exceed # ln(M�m), where #=#(U, V� ), since maxV� | f |�maxK | f |=m.
Denote these zeros by t1 , ..., tn (repetitions allowed) and consider the
unitary polynomial p with roots at tj and the ratio f� =f �p which is an
analytic function without zeros in V� ,

p(t)= `
n

j=1

(t&tj), f� (t)=f (t)�p(t){0 for t # V� .

From the evident inequalities

max
V�

| p(t)|�(diam V� )n, min
�U

| p(t)|�(dist(V� , �U ))n,

max
t # V�

| f� (t)|�max
t # �U

| f� (t)|

it follows that

M� =max
t # V�

| f� (t)|�M } *n
1 , *&1

1 =dist(V� , �U ),

m~ =max
t # K

| f� (t)|�m } *&n
2 , *2=diam V� .

By Lemma 2, the function f� admits a lower estimate on KZV,

\t # K | f� (t)|�m~ \m~

M� +
_

�m \m
M+

_+%

, _=_(V, K ), %�# ln(*_
1 *_&1

2 ).

Now to estimate f from below, we take n disks around the roots of p as in
the Cartan inequality: then outside the disks we have

| p(t)|�\ h
4e+

n

�\ h
4e+

# ln(M�m)

�\m
M+

$

,

$=$(h; U, K )�#(U, V� ) } (ln 4&ln h),
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where h is the sum of diameters of the disks. Putting the two lower
estimates for f� and p together, we obtain the required inequality (1.8) with
"=_+%+# ln 4, {=#. K

Remark. If we take K being a (closed) unit disk, and U an open disk
of radius e=exp 1, then in this particular case the estimate (1.8) coincides
with the lower estimate from [L], where explicit expressions for " and {
are given. We focus here mainly on the dependence of all the estimates
(1.3), (1.7), (1.8) on the function f, considering the pair (U, K ) as fixed.

2. Equations with Bounded Analytic Coefficients

and the Proof of Theorem 1

2.1. Proof of Theorem 1. We consider the real segment K, its neighbor-
hood U with a piecewise smooth boundary 1 and a linear equation (0.1)
of order & with the leading coefficient a0(t)#1; the other coefficients are
analytic in U and continuous in U� . Below we denote by |L| the length of
a piecewise smooth curve L on the t-plane.

The equation (0.1) is equivalent to the system of first order linear
differential equations

y* (t)=A(t) y(t), y=( y, y$, ..., y(&&1)) # C&, (2.1)

with the analytic (&_&)-matrix-function A(t) in the so called companion
form: A(t)=waij (t)x&

i, j=1 , ai, i+1=1 for i=1, 2, ..., &&1, a&, j=&a&&j+1 ,
all other elements are zeros.

If we introduce the norm on C& as &y&=| y1|+ } } } +| y& |, then the
associated matrix norm of A(t) will be bounded for t # U: &A(t)&<A+1,
A being defined by (0.2). The equation (2.1) implies then that the result of
analytic continuation of any solution y( } ) along any path 1 $ on the
t-plane, connecting two points t0 and t1 , satisfies the inequality

&y(t1)&�&y(t0)& } exp( |1 $|(A+1)).

Let l0 be the distance from K to 1=�U, and l1 the length of 1. Take a
path 1

*
=1 $+1 which connects K with the boundary �U=1 and then

makes the closed loop along 1. Denote by t0 # K the starting point of
this path. Then for the analytic vector-function f(t)=( f (t), ..., f (&&1)(t))
constructed from the solution f of the original equation (0.1), we have

max
t # �U

&f(t)&�&f(t0)& } exp |1
*

| (A+1),

since any point on the boundary will be reached along the path.
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On the other hand, there exists a number k between 0 and &&1 such
that

| f (k)(t0)|�
1
&

&f(t0)&.

Since for this value of k we have at the same time the trivial inequalities

mk=max
t # K

| f (k)(t)|�| f (k)(t0)|, Mk=max
t # 1

| f (k)(t)|�max
t # 1

&f(t)&,

they together imply that

Mk

mk
�& exp |1

*
| (A+1).

By the Lemma 1, this implies that the number NK ( f (k)) of real zeros of the
kth derivative f (k) on K does not exceed #(U, K )( |1

*
| (A+1)+ln &).

It remains only to remark that by virtue of the classical Rolle lemma, the
real function f (t) itself may have no more than NK ( f (k))+k real zeros.
Since k�&&1, we conclude that the number of zeros of f does not exceed
# |1

*
| (A+1)+# ln &+&�# |1

*
| (A+1)+(#+1) &�;(A+&). Thus the

estimate asserted by Theorem 1 is established if we put

;=(#+1)( |1
*

|+1), |1
*

|=|1 |+dist(K, 1 ). (2.2)

The constants |1
*

|, # depend only on the pair (U, K ), hence ;=;(U, K )
also is a geometric constant, though not a conformal invariant anymore: it
depends also on the Euclidean distance from K to 1. K

2.2. Generalization. The above proof of Theorem 1 does not use the
fact that the coefficients aj , j=1, ..., & of the equation (0.1) are bounded
everywhere in U. The arguments exposed above prove in fact a more
general statement which will be used in the proof of Theorem 2.

Definition. We say that a closed subset L/U encircles a subdomain
U$/U, if for any function . analytic in U, maxt # U$ |.(t)|�maxt # L |.(t)|.

Let K be a real segment and U its neighborhood with a smooth bound-
ary 1. Assume that f (t) is a function analytic in U, continuous in U� , real
on K and satisfying the equation (0.1) with the constant leading coefficient
a0(t)#1 in the same way as in Theorem 1. But instead of the analyticity
of the coefficients aj (t), j=1, ..., & everywhere in U, we assume only that
there exist a subdomain U$zK and a piecewise smooth path 1

*
starting

on K and encircling the domain U$ such that

\t # 1
*

|aj (t)|�A. (2.3)
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Theorem 1$. Under the above hypotheses the number of isolated zeros
of the function f on K does not exceed ;$(A+&), where ;$=;(U$, K ) is a
constant depending only on the geometry of the pair (U$, K ) and the length
of the path 1

*
: ;(U$, K )=(#(U$, K )+1)( |1

*
|+1).

Indeed, integrating the norm inequality along the path 1
*

, we obtain an
upper estimate for f (k)(t) for all t # 1

*
in the same form as before. But since

1
*

encircles U$, the same upper bound is valid for U$. Applying Lemma 1
to the function f (k) and the pair (U$, K ), we estimate in the same way as
before the number of zeros of the kth derivative. The rest of the proof goes
without any changes.

2.3. Remark. The upper estimate for the number of zeros may be
slightly improved if the equation (0.1) has no term y(&&1), since in this case
the reduction from the equation (0.1) to the system (2.1) may be modified
to yield a smaller norm of the coefficients matrix &A( } )&.

Example. Consider the second order equation y"+a2(t) y=0 with
the analytic coefficient a2(t) bounded in some neighborhood U of a real
segment KZR. If maxt # U� |a2(t)|�A, then Theorem 1 gives an upper
estimate for the number of zeros of any solution f of this equation in the
form NK ( f )�O(A) as A � +�, while the Sturmian theorems (based on
completely different arguments) yield much better estimate NK ( f )�
O(- A). However, if instead of the transformation y [ y=( y, y$) reducing
the equation to the system of first order equations, we make the transfor-
mation y [ y*=( y, - 1�A y$), then the resulting system would have the
coefficients matrix A*( } ) with the norm &A*(t)&�- A, and the resulting
estimate for the number of zeros would be asymptotically Sturmian-like.

Clearly, this remark refers to equations of any order, since by an
appropriate transformation one may always eliminate the term with the
(n&1)st derivative from the equation. However, this reduction affects
other coefficients of the equation.

3. Equations with General Meromorphic Coefficients

and the Proof of Theorem 2

In this section we consider differential equations of the form (0.1) with
general analytic coefficients aj , assuming only that the leading coefficient
does not vanish identically, so that & is the true order of the equation. Instead
of proving Theorem 2, we prove here a slightly more general assertion.

Theorem 2$. Assume that K is a real segment, UzK is its neighborhood
with a smooth boundary, and K

*
ZU is another compact subset of U.
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Consider a function f analytic in U, bounded on U� , real on K and satisfying
in U the linear equation (0.1) with analytic coefficients. Let

a=max
t # K

*

|a0(t)|>0, A= max
j=0, ..., &

max
t # U�

|aj (t)|�a.

Then there exists +=+(U, K, K
*

)<� such that

NK ( f )�(&+A�a) +.

Theorem 2 as it was formulated in the introductory section, follows from
Theorem 2$ if we put K

*
=K.

3.1. Contours Avoiding Singularities. The proof of Theorem 2$ is based
on the following simple geometrical argument. Let KZU be as usual a pair
of sets, but assume now that K is a segment.

Lemma 4. If U has a smooth boundary 1, and K is a segment containing
more than one point, |K |>0, then there exist a positive constant
$=$(U, K )>0 and a subdomain U$/U containing K strictly inside, KZU$,
such that for any finite number of disks Dj with the sum of their diameters
less than $, there exists a path 1

*
starting on K, encircling U$ and not inter-

secting any of those disks. The length |1
*

| of this path does not exceed
|1 |+dist(K, 1 )+1.

Proof of Lemma 4. The idea of constructing the path with the required
properties should be clear from Fig. 1. We construct a continual family of

Fig. 1. Construction of paths avoiding small disks and encircling the domain U$.
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``parallel'' contours, together forming a band that follows along 1 ; if the
sum of diameters of the disks is less than the ``width'' of this band, then at
least one of the contours will not intersect the disks. In the same way in
another band connecting K and 1 one may find a path avoiding the disks.
Then we are able to start on K, then reach the contour and make a full
turn around. The domain U$ bounded by the innermost contour, is encircled
by the path.

More formally, assume that the boundary 1 is given by an equation
F(z)=0, where F : C � R is a smooth function having 0 as a regular value.
Then there exists an interval I=(&=, =)/R which consists of regular
values, and for any c # I the level curve F=c is a smooth curve, all of them
encircling some domain U$ with the required properties. Since F is
Lipschitz, the F-image of any disk of diameter r>0 is contained in some
interval of length �Cr, C being the Lipschitz constant. Thus we see that
if $<=�C, then the images of any number of disks with the sum of
diameters less than $ cannot cover the whole interval I, hence there will be
a contour 11 close to 1 and encircling U$. The value = may be chosen so
small that the length of this contour will be less than |1 |+1�2.

Next, one can choose a smooth path 1 $ with |1 $|=dist(K, 1 )+1�4
connecting an interior point of K with 1 and transversal to both K and 1.
Then one can find another smooth function F� such that 1 $=F� &1(0) & U� and
for all sufficiently small c the level curves F� &1(c) would connect K with 1.

If $ is sufficiently small, then in the same way as before one can find
another path 12 close to 1 $, with |12|�dist(K, 1 )+1�2, which would still
connect K and 1 and would avoid the disks. The union 1

*
=11+12 of

this path and the contour constructed on the first step, can be interpreted
as a path that satisfies all requirements. K

3.2. Proof of Theorem 2. The proof consists of two steps. First, using
Lemma 3, we find a sufficiently thick subset on which the principal coef-
ficient admits a lower estimate, and then using Lemma 4, we reduce the
situation to the case when Theorem 1$ can be applied.

Step 1. Take any set WzK _ K
*

, W� ZU with the smooth boundary
and apply Lemma 4 to the pair (W, K ). This application yields a positive
$ (the ``thickness'' of the boundary band) and an open subset U$zK in
such a way that after deleting any number of disks with the sum of
diameters less than $ there still can be found a path 1

*
/W starting on K,

encircling U$ and avoiding the disks.

Step 2. Apply Lemma 3 to the function a0(t) and the pair of sets
(U, W� ), taking h equal to $: since

a=max
t # K

*

|a0(t)|�max
t # W�

|a0(t)|, A=max
j

max
t # U�

|aj (t)|�max
t # U�

|a0(t)|,
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we conclude that there exists $="&{ ln $ such that everywhere on W
except for a finite union of disks with the sum of diameters less than $, the
leading coefficient a0 admits the lower estimate |a0(t)|�a(a�A)$.

Divide now the equation (0.1) by a0 : the leading coefficient becomes
equal to 1, and outside the union of disks the coefficients a~ j=aj�a0 would
be bounded by (A�a)$+1. Consider the piecewise smooth path 1

*
encircling

U$ which starts on K and avoids all the disks (see Step 1). Along this path
the coefficients a~ j admit the above upper estimate, hence application of
Theorem 1$ yields an upper estimate for the number of zeros in the form

NK ( f )�;(U$, K ) } ((A�a)$+1+&),

where $ is a geometric constant depending only on the relative position of
the sets U, W, U$, K

*
and K ; since the choice of W and U$ was made

according to the relative position of U, K
*

and K, one may say that
$=$(U, K, K

*
), ;=;(U, K, K

*
).

This estimate is already of an effective nature. However, if we want to
represent the result in the form C +, where + depends only on the geometry
of the sets U, K, K

*
, and C is determined by the size of the coefficients

of the equation (0.2) and its order, then by letting +=$+2+log2 ; we
can majorize the former expression. Indeed, the inequalities &�1 and
A�a�1 imply that (&+A�a) +�;(1+(A�a)$+1). The proof of Theorem 2 is
complete. K

3.3. Concluding Remark. Formally in Theorem 1 we may not assume
that the coefficients of the equation (0.1) are analytic: it is essential that the
solution f is analytic in U. In Theorems 2 and 2$ we need analyticity of the
leading coefficient a0(t) and the solution f. However, we do not know
whether this generalization makes sense for applications.
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