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§1. General.

The problems I am currently interested in mainly concern the Hilbert Sixteenth problem (on
the number of limit cycles of planar vector fields). This subject, in turn, is a subdomain of the
vast realm of dynamical systems, strongly connected with real and complex analysis, geometry,
differential equations.

The formulation of this problem is very simple, yet the progress achieved towards a complete
solution of it is quite moderate. However, in recent years we are witnessing a flurry of activity
concerning bifurcations of limit cycles involving new geometric and analytic tools. These
bifurcations (changes in the topology of phase portraits as the parameters of the field change)
can be studied in two different contexts: (semi)local and global. In the first approach, one has
to investigate polycycles, or separatrix polygons in the phase plane, consisting of at least one
singular point and one or more arcs connecting the singular points in the specified order. The
second approach deals with generation of limit cycles from non-isolated periodic trajectories
of integrable (in particular, Hamiltonian) vector fields.

In this report I tried to put a stress on two of my results that I venture to consider as
rendering substantial progress in each direction, namely:

(1) the general finiteness theorem for the number of limit cycles that can be created from
a separatrix polygon with an arbitrary number of hyperbolic or semi-hyperbolic singular
points (see §3C), and

(2) the explicit exponential upper bound for the number of limit cycles that can be cre-
ated from periodic orbits of a generic Hamiltonian vector field by a small polynomial
perturbation of any degree (see §3E).

The first result seems to be the only known general assertion about bifurcation of limit cycles
from polycycles that covers the case of an arbitrarily high codimension and an arbitrary number
of vertices and arcs on the polycycle. The second theorem solves a problem that stood open
for about twenty years, despite continuous efforts.

Both results in fact are obtained as the last steps in the long chain of works focused on
developing appropriate tools and/or solving intermediate problems. In order to present a (nec-
essarily truncated) view of the whole picture, I have discussed briefly in several subsequent
paragraphs the stage where the action will take place (§2) giving basic definitions and explain-
ing modern approaches to the problem. Then the main body of the report (§3) follows, with
a synopsis of my personal contributions. The final part (§4) is devoted to an unfinished work
and possible ways of attacking some other yet unsolved problems, also closely related to The
Hilbert Sixteenth.

Besides the above two results I would like also to put a stress on the quite recent result,
(3) upper bounds for rotation of spatial (Euclidean or projective) curves around linear

subspaces in terms of integral curvatures, a purely geometric result that is closely
related to the second topic above (see §3F).
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This report is concerned only with my recent activity (beginning essentially in 1992, though
one paper is from 1991). By no means should it be considered as a comprehensive survey of
the area: the references to other people’s works are very occasional. On the contrary, I tried
to outline my personal contribution as clearly as possible. The numbered citations refer to the
list of my publications at the end of the report; other papers are referenced by letters in square
brackets (also listed at the end).

As for my previous works on nonlinear dynamic optimization, the results of that period
were summarized in [1] and will not be discussed here.

§2. The Hilbert 16th problem and related problems from analytic theory of
differential equations.

2.1. Limit cycles. We consider dynamical systems defined by planar vector fields. After
the choice of a coordinate system the vector field becomes a pair of first order autonomous
differential equations

ẋ = f(x, y), ẏ = g(x, y), x, y ∈ R, (1)

in two variables, and due to the simple topology of the 2-plane, the only possible recurrent
motions are either singular points (stationary solutions) or closed invariant curves (periodic
orbits, cycles).

If the vector field is polynomial, i.e. the right hand sides f, g of the differential equations
are real polynomials, then singular points can be obtained by solving a system of algebraic
equations, hence their number is given by the Bezout theorem. All the way around, closed
invariant curves for polynomial vector fields are usually non-algebraic, and their determination
is highly nontrivial. In his 16th Problem (1900) Hilbert asks to determine the number and
position of isolated periodic orbits of a polynomial planar vector field in terms of the degrees of
the polynomials f, g. By definition, a limit cycle for a vector field is an isolated closed periodic
orbit of that field.

2.2. First return map and its analytic properties. The first steps towards solution of
the Hilbert problem were taken by Poincaré, who proved that limit cycles of an analytic vector
field cannot accumulate to another limit cycle. The main idea of the proof was to consider a
line segment I transversal to the vector field and investigate the first return map ∆: I → I.
By definition, the limit cycles correspond to isolated fixed points of the first return map. On
the other hand, the latter is analytic at a point a ∈ I, if the trajectory passing through a
does not tend to a singular point, hence the uniqueness theorem for analytic functions can be
applied.

If, on the contrary, the trajectory passing through a tends to a singular point, then the first
return map ∆ (eventually defined for other points of the segment I) looses its analyticity. Thus
the Hilbert problem is reduced to studying analytic properties of functions defined by differen-
tial equations. Though these differential equations are in general nonlinear, it is important to
consider also the linear equations with analytic variable coefficients; see §3E.

2.3. Bifurcations of vector fields. Almost all existing approaches to investigation of limit
cycles of vector fields are based on the deformation techniques: the vector fields are considered
in families depending on parameters so that for some values of the parameters the limit cycles
can be easily located, and then limit cycles are monitored in their dependence on the parame-
ters. This approach leads to the bifurcation theory for vector fields. There are two essentially
different sets of assumptions for this theory: one may consider either generic cases of gradually
increasing codimensions, or alternatively the polynomial families can be studied using global
tools of algebraic geometry.
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2.4. Normal forms and versal deformations of singular points. It makes sense to split
the problem of studying bifurcations of vector fields in two parts. Since singular points are, in
general, more easy to analyze, one may:

• try to describe bifurcations of vector fields near singular points, and then
• glue together the results obtained on the previous step.

The results of the local investigation can be formulated in terms of local models, or normal
forms of (parameter dependent) vector fields near singular points. A normal form is usually
a simple (parameter dependent) vector field that admits complete investigation by elementary
methods (e.g., complete integration), and on the other hand, any other vector field can be
transformed into this simple local model by an appropriate change of variables.

In fact, even after the first step is implemented, gluing the local normal forms can be a
tremendously difficult problem, cf. [Mo].

2.5. Perturbations of integrable systems and complete Abelian integrals. The ap-
proach described above is based on passing from local to global description in the phase plane.
An alternative strategy (also originally due to Poincaré and later developed into the so-called
Petrovskĭı–Landis program) is to study the global phenomena occurring in nearly integrable
systems.

Assume that the differential equations (1) have a particular form: there exists a function
H = H(x, y) (the Hamiltonian, or full energy) such that

f(x, y) =
∂H

∂y
(x, y), g(x, y) = −∂H

∂x
(x, y). (2)

Then the equations (1)–(2) still may possess periodic solutions, but these solutions will not be
isolated (consider an example of H = x2+y2 corresponding to the mathematical pendulum: all
solutions are periodic non-isolated), hence by definition there are no limit cycles. However, if
we introduce a small parameter ε ∈ R and consider a nonconservative polynomial perturbation
of (1)–(2) of the form

ẋ =
∂H

∂y
(x, y) + ε q(x, y), ẏ = −∂H

∂x
(x, y)− ε p(x, y), (3)

then all but a finite number of periodic solutions will be destroyed for ε 6= 0 due to the
dissipation of energy H. Those that survive must satisfy the condition of energy balance. The
linearization (in ε) of the balance condition yields the identity

IH,p,q(h) :=
∮

γ

p(x, y) dx + q(x, y) dy = 0, γ ⊆ {H(x, y) = h}, (4)

where γ is a non-perturbed solution of the conservative system which generates a limit cycle
after the perturbation (3).

Note that the condition (4) is of a more algebraic nature: the left hand side is the integral of
a polynomial 1-form over an algebraic level curve γ. However, as a function of h, this integral
(called the complete Abelian integral) is a transcendental function, so that the problem of
describing its zeros is also far from being trivial.

§3. Survey of the principal results achieved in my papers.

In this section I give a (necessarily brief) synopsis of my results obtained in connection with
various problems related to The Hilbert Sixteenth. The parts typeset in small print contain
more technical information, or sometimes describe digressions into adjacent areas of studies.
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3A. Normal forms (see §2.4)

In the theory of normal forms there are two main factors/parameters:

• the smoothness of transformations of the classification group (homeomorphisms, dif-
feomorphisms, analytic conjugacies, formal power series), and

• the degeneracy index (codimension) of the vector field (or a map) whose deformation
is considered: generic vector fields have codimension 0, singularities of codimension 1
occur in generic one-parameter families for isolated values of the parameter etc.

In the papers [2,3] (jointly with Yu. Ilyashenko) we established Ck-smooth normal forms
(for any finite k ∈ N) for families of vector fields in Rn near a singular point and families of
local diffeomorphisms (Rn, 0) → (Rn, 0) in codimensions 0 (the generic case) and 1 (typical
one-parametric families). In [2] we give a complete list of cases when Ck-smooth polynomial
integrable normal forms exist and show how the integrability can be used to investigate bifur-
cations of the planar separatrix loop: our theorem in [2, §3] simplifies the proof of an earlier
result by R. Roussarie [R2] and shows that the upper estimates for the number of limit cycles
are in fact sharp.

The paper [3] deals with the other cases of codimension 1 when there arise functional moduli ,
i.e. obstructions preventing even C1-smooth transformation to any polynomial normal form.
In this case we show that the smooth normalization is still possible in sectorial domains of
a special form, containing the origin in their closure and semi-invariant by the flow (resp.,
iterations). We analyze then the uniqueness of the sectorial normalizing transformations and
show that the obstruction is of a nature similar to the Stokes multipliers for linear systems,
namely, that there can be defined a canonical atlas of normalizing charts and the transition
functions of that atlas represent obstructions to integrability. The main positive result is
the theorem on sectorial embedding in Ck-category (k 6 ∞), which generalizes an earlier
result by J.-C. Yoccoz [Yo1] (that guaranteed only low smoothness of the embedding). This
sectorial embedding theorem implies necessity of the Malta–Palis sufficient conditions [MP]
for non-appearance of simultaneous saddle connections in deformation of a semistable limit
cycle. Other applications of this result can be found in the paper by L. J. Diaz, M. Viana and
J. Rocha [DRV].

A generic vector field (generic diffeomorphism) has hyperbolic nonresonant linearization matrix at a singular
(resp., fixed) point. In codimension 1 these two conditions can be violated as follows:

(1) One (and only one) resonance between the eigenvalues of the linearization matrix occurs while the
hyperbolicity persists;

(2) The singular (fixed) point looses its hyperbolicity without appearance of resonances other than implied

by the following conditions:

(2.1) One eigenvalue of a singular point moves to the imaginary axis (necessarily at the origin);

(2.2) A pair of complex conjugate eigenvalues moves to the imaginary axis;

(2.3) One multiplicator of the fixed point of a diffeomorphism moves to the unit circle (necessarily at

the points ±1);

(2.4) A pair of complex conjugate multiplicators moves to the unit circle.

Note that without parameters a generic singularity of a vector field (diffeomorphism) can be linearized by
a C∞-smooth transformation (S. Sternberg–K. T. Chen, see [H]), and in general the transformation cannot

be chosen analytic (complete investigation of necessary and sufficient conditions of analytic linearizability was

achieved recently by J.-C. Yoccoz [Yo2]).

In the presence of parameters the situation changes.

Theorem [2]. An arbitrary finite-parameter deformation of a generic vector field (diffeomorphism) can be

Ck-smoothly linearized by a transformation smoothly depending on the parameters for any finite k but in
general not for k = ∞.

An arbitrary finite-parameter deformation of codimension 1 singularities in the cases (1) and (2.1) can be

Ck-smoothly transformed to a polynomial integrable form. The smoothness order k ∈ N cannot in general be
made infinite.
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The “nonlinear Stokes phenomenon” is shown in [3] to occur in the cases (2.2) and (2.3). We formulate the

result only for the case (2.2) with the multiplicator +1. In this case it is sufficient to consider 1-parameter
deformations of scalar maps of the form x 7→ f(x, ε) = x + x2 − ε + · · · . For ε > 0 the map possesses two fixed

points a±(ε), and in general in any neighborhood of the origin on the (x, ε)-plane, containing both a+ and a−,

the map cannot be transformed into a polynomial even by a C1-smooth transformation.

Theorem [3]. For ε < 0 the map x 7→ f(x, ε) is C∞-conjugate to the time 1 flow of the standard integrable

vector field ẋ = −µ(ε) + x2 + c(ε)x3. The conjugating map H = H(x, ε) extends C∞-smoothly across positive
(negative) semi-axis of the axis ε = 0 to the domain {x > −ε, 0 < ε < ε0} (resp., {x < ε, 0 < ε < ε0}). The

co-chain map H+ ◦ (H−)−1 defined for ε > 0, −ε < x < ε is flat in ε and uniquely defined by f modulo flow

maps of the standard vector field. Any flat function commuting with the time 1 map of the standard vector
field, can be realized in this way.

3B. Flow versus orbital classification of vector fields

When looking for standard models for vector fields, one may either allow for time rescaling or not. The

first classification, called orbital classification, is coarser than the second one, but still the model field carries
all information about the phase portrait of the vector field. However, sometimes one needs to preserve the

parameterization of trajectories by time. We refer to the second classification model vector fields as the flow

normal forms.

The two theories are very similar, though the orbital classification naturally has less invariants. Flow normal
forms of vector fields at singular points are well known (F. Takens [T]–G. Belitskĭı [Be]). As for the flow normal

forms near limit cycles, somewhat unexpectedly only the orbital classification was known: two vector fields

are orbitally equivalent near a limit cycle if and only if their Poincaré maps are conjugated. In particular, a
theorem by F. Takens [T] says that a planar vector field near a limit cycle of finite multiplicity is orbitally

equivalent to the vector field ṙ = R(r) = ±rk+1 + a r2k+1, θ̇ = 1 on the cylinder R× S1.

In [4] I analyzed the flow classification problem for such vector fields in the simplest nonhyperbolic case

k = 1 and showed that besides the natural additional parameter T , the period of the cycle, there is only one

additional invariant, and the flow normal form can be written as ṙ = (T−1 + bθ)R(r), θ̇ = (T−1 + bθ) in

C∞-differentiability class. The invariant b is given a geometric description in terms of the difference of periods
of two cycles born from the semistable cycle by a small perturbation. For k > 1 there is not one but k additional

invariants [4].

The case of a limit cycle with multiplicator −1 (such a vector field cannot be planar, but can be realized

on the Möbius band) was analyzed by my graduate student D. Novikov in 1994 (M.Sc. thesis, the Weizmann
institute, unpublished), who also explained the geometric nature of the Belitskĭı invariants in the case of a

planar vector field with the eigenvalues ±iω.

3C. Bifurcations of limit cycles and the Hilbert–Arnold problem (see §2.3)

This section surveys the result I am especially fond of, solution of the Hilbert–Arnold problem
(see below) for vector fields having only elementary singularities. The next several subsections
are based on the expository article [5].

3C1. Bifurcation of polycycles. As was already remarked, limit cycles of planar vector
fields depending on parameters, can bifurcate from singular points, other limit cycles or more
complicated objects, the so-called limit periodic sets [FP], of which the most important are
polycycles. Roughly speaking, a polycycle is a limit cycle of infinite period, having singular
points on it. More precisely, a polycycle is an ordered collection of singular points and hetero-
clinic connections (entire phase trajectories with compact closure) joining them in the specified
order [5].

The problem of determining the maximal number of limit cycles that can be created from
a polycycle by a small variation of parameters, is known as the problem of estimating the
cyclicity (an analog of multiplicity) of the polycycle [R1]. In fact, several most simple cases
of cyclicity estimates were analyzed even before the problem was posed in full genericity [R2],
[AI].

Note that in this problem the vector fields need not necessarily be polynomial: one may
consider arbitrary smooth families of vector fields on the sphere S2.
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3C2. The Hilbert–Arnold problem. Analyzing known results on bifurcation of simplest
polycycles and comparing them to results on the Poincaré map for polynomial vector fields,
V. Arnold observed [AI] that in order to exhibit a polycycle of a high cyclicity, the vector field
must be rather degenerate (satisfying many independent equality-type restrictions). This led
him to the natural conjecture that generic finite-parameter families cannot exhibit polycycles
of very large cyclicity if the number of parameters is small. A more formal assertion follows.

The Arnold Conjecture. 1 (global). A generic finite-parameter family {vε}ε∈B of smooth
vector fields with a compact parameter space B ⊂ Rn on the two-dimensional sphere S2 admits
a uniform upper bound for the number of limit cycles for all values of the parameter.

2 (local). A generic n-parameter family of vector fields on the sphere may have polycycles
of cyclicity at most C = C(n) < ∞.

The local conjecture implies the global one [R1].

3C3. First steps. Generic one-parameter families were studied in the late thirties by A. An-
dronov and H. Hopf, the main result being the equality C(1) = 1. The case of 2 parameters
has a longer history, and the equality C(2) = 2 was finally achieved only in 1993. This is
a concise summary of results by E. Leontovich, F. Takens, R. Bogdanov, A. Mourtada and
T. Grozovskĭı.

The case n = 3 constitutes already an open problem, where some unexpected phenomena
were observed [KS] that disproved a more general original version of the Arnold conjecture.
However, after a proper modification, the conjecture C(3) = 4 seems to be realistic. As before,
this conjecture is proved by studying separate cases (the list of polycycles occurring in generic
3-parameter families, consists of several tens of items). The most difficult cases had been
attacked by F. Dumortier, R. Roussarie and J. Sotomayor [DRS]. The main obstruction on
the way to the complete solution is the occurrence of highly degenerate singular points on the
polycycle.

However, even if all points on the polycycle are not too degenerate (see below), the study
of different configurations of vertices and arcs gives rise to very substantial difficulties. R.
Roussarie in [R2] completely analyzed the simplest case of the separatrix loop (“one singularity
and one arc”), and a simplification of his proof can be found in [2]. Then came the turn of
loops with degenerate singularities, lenses (diangles), triangles, eight-shaped figures etc., when
heroic concerted efforts of the Dijon team (R. Roussarie, A. Mourtada, A. Jebrane, M. El-
Morsalani, see [KS] for numerous references) led to a series of impressive results on cyclicity
estimates. They started with obtaining explicit bounds, but as the difficulties mounted, the
results became less sharp and less explicit. One of the results crowning this assault is a theorem
by A. Mourtada [M] giving an algorithm (“un algorithme de finitude”) for estimating cyclicity
of a polygon with hyperbolic saddles, provided that there are no nontrivial multiplicative
relations between the hyperbolicity ratios of those saddles. Unfortunately, this theorem does
not cover even all generic one-parameter families, though it provides a deep insight into the
analytic structure of the Poincaré map of such a polycycle.

3C4. Elementary polycycles. A different strategy was chosen in my joint work with
Yu. Ilyashenko. Instead of explicitly writing the asymptotic expansion for the Poincaré map,
we reduced the question about its fixed points to a quite general system of equations, part
of them being polynomial (and the degrees of the polynomials were under full control), while
the other equations involved smooth functions with the only assumption of n-genericity (only
functions that may occur in generic n-parameter families are allowed to enter the equations).

Further investigation of the resulting system required some new general methods (see §3D
below). A brief exposition of the main ideas of the proof was published in [6], and the full
demonstrations appeared in a necessarily rather voluminous paper [7]. However, the main
result can be formulated in one line after the following definition is introduced.
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Recall that a singular point of a planar vector field is elementary , if at least one eigenvalue
of its linearization is nonzero. A polycycle is called elementary , if it contains only elementary
singularities. The notion of elementarity formalizes the property of being not too degenerate:
nonelementary singularities may occur in codimension at least 2. There are many reasons
why elementary singularities play an essential role, the principal reason being that any non-
elementary singular point by a finite number of blow-ups can be resolved into a number of
elementary ones (Bendixsson–Seidenberg). Define the number E(n) as the upper bound for
cyclicities of all elementary polycycles that may occur in generic n-parameter families (“E(n)
is C(n) for elementary polycycles”).

Principal Theorem [6,7]. For any n ∈ N the number E(n) is finite. Furthermore, the
correspondence n 7→ E(n) is majorized by a primitive recursive function.

The algorithmic nature of this primitive recursive function is completely described in the
proof. Quite recently (in October 1995) V. Kaloshin (Moscow State Unniversity) extracted
an explicit double exponential estimate of the form E(n) 6 exp expO(n) from our proof
(unpublished). The problem involves deep considerations from the constructive commutative
algebra and effective algebraic geometry over the field of reals R.

3C5. Bautin theorem revisited [16]. This work is concerned with bifurcations of limit cycles in polynomial

systems. In 1932 N. Bautin proved a result [B] which gradually became one of the most cited references in
papers on limit cycles and their bifurcations. The Bautin theorem claims that within the class of quadratic

vector fields a singular point can generate no more than 3 small limit cycles after a small variation of parameters.

Despite its popularity, the result remained to be somewhat mysterious, and the original proof of Bautin,

based on very cumbersome and enigmatic calculations, was reproduced almost literally in all existing re-

expositions. In an attempt [16] to unveil the mystery, I discovered that all formal manipulations and the
labor-consuming calculus can be avoided due to the presence of a hidden Z3-symmetry: simple geometrical

arguments prove the result of Bautin and eventually allow for further generalizations.

3D. Gabrielov-type theorem for generic smooth
functions and related results from singularity theory

This section briefly describes some auxiliary results that were developed while proving the main theorem on

finite cyclicity of elementary polycycles, but have an independent value.

It is well known that analytic maps possess many finiteness properties, in particular, the following general

principle (A. Gabrielov–B. Teissier) is valid: if F = (f1, . . . , fm) is a map real analytic on the unit cube
Qn = [0, 1]n, then the number connected components of preimages F−1(y)∩Qn of a variable point y ∈ Rm, is

uniformly bounded over all y. In particular, if m = n, then the number of regular (=nondegenerate) preimages
of y is bounded.

This principle is apparently false for smooth maps, as the simplest counterexamples show. However, it turns
out that the exceptions have an infinite degree of degeneracy, so the finiteness holds for all maps that occur in

generic finite-dimensional families.

Theorem [7, §5]. For a generic finite-parameter family of smooth maps F = F (x, ε) : Qn ×B → Rn with the

compact parameter space ε ∈ B ⊂ Rk the number of nondegenerate preimages of a point y ∈ Rn is uniformly
bounded over all y ∈ Rn, ε ∈ B.

The result is also valid for chain maps of the form F̃ = P ◦ F , where F is as before, and P is an arbitrary
polynomial map.

There is a local counterpart of this theorem. For the germ of a smooth map F : (Rn, 0) → Rn we define

the Gabrielov multiplicity as the upper bound for the number of nondegenerate preimages of a variable point

y ∈ Rn in a sufficiently small neighborhood of the origin:

g = lim sup
ε→0+

sup
y∈Rn

#F−1(y) ∩Bε ∩ {x : det F∗(x) 6= 0}, Bε = {‖x‖ < ε} ⊂ Rn.

To simplify the formulation below, we say that the germ F is k-generic, if it may occur in a generic k-parameter

family of maps (in the same way as in the above theorem), or equivalently, the degeneracy codimension of F is
at most k.
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Theorem [7, §6]. For a k-generic smooth germ F : (Rn, 0) → Rn the Gabrielov multiplicity can be at most

C = C(k, n), where C is a primitive recursive function of its integer arguments. The Gabrielov multiplicity of
the composition P ◦ F with the polynomial map P of degree d can be at most C′ = C′(k, n, d).

Here and before “smooth” means C`-differentiable, with ` sufficiently large.

3E. Zeros of complete Abelian integrals and related questions

3E1. Zeros of Abelian integrals. The problem of determining the number of zeros of
complete Abelian integrals is also one of the toughest challenges related to the Hilbert 16th
problem (see §2.5). Even particular cases of this problem, say, when H(x, y) is a cubic potential
and ω = p dx+q dy is a low-degree form, are very difficult to analyze if one questions the sharp
bounds: see the survey [Rs] for a partial list of references. In particular, in [8] I proved that
for H(x, y) = y2 + U3(x) and ω = p3(x)y dx, where U3, p3 are real polynomials of the third
degree, the Abelian integral can have at most 3 isolated zeros.

As for the general case, there were only a few results: lower bounds, linear in the degree d
of the form, due to Ilyashenko [I], an existential finiteness theorem by Varchenko–Khovanskĭı
[Va], [Kh] and (a relatively simple) upper bound for the multiplicity of each zero by Mardesic
[Ma], also linear in d. The particular case of Morse hyper-elliptic Hamiltonians H = y2 +U(x),
U ∈ R[x] a Morse polynomial in one variable, was completely investigated by G. Petrov in a
series of publications [P]. However, no explicit upper bound for the general case was known,
despite approximately twenty years of continuing efforts.

I returned to studying Abelian integrals in 1994. The general idea was to exploit connections
between the number of zeros and the growth of Abelian integrals in the complex domain. The
growth properties can be analyzed using the fact that Abelian integrals extended as multivalued
analytic functions for all regular values of the Hamiltonian H, satisfying Picard–Fuchs type
linear ordinary differential equations.

As a result, the first explicit upper bound for the number of zeros of complete Abelian
integrals was obtained in the joint work with Yu. Ilyashenko [11] using analytic tools developed
earlier in [9], [10] (see below).

Theorem [11]. If we fix almost any Morse polynomial H and consider all polynomial forms
of degree 6 d, then the number N of isolated zeros of the corresponding Abelian integrals on a
compact real segment I free from critical points of H, can be at most double exponential in d:

N = N(H, I, d) 6 exp exp(Kd) as d →∞, K = K(H, I) < ∞.

This bound certainly was unrealistic, and the subsequent progress in improving it was
achieved in the work done together with my Masters (now Ph.D.) student D. Novikov [12],
[13]. In these papers we improved the upper bound to become simple exponential in d and at
the same time proved that the constant K can be chosen valid uniformly for all segments I
(containing zeros arbitrarily close to the critical values of H). In the previous notations, the
final result can be formulated as the (asymptotic) inequality.

Principal Theorem [12], [13].

N(H, I, d) 6 exp(K∗d) as d →∞, K∗ = K∗(H) < ∞.

The result was later generalized for complex zeros of the Abelian integrals (with the same
simple exponential bound) [14].

These results (which I also consider as my highest achievement) were proved using a com-
bination of ideas stemming from various fields. Following is a brief description of separate
contributions.
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3E2. Zeros of real functions satisfying linear ordinary differential equations. The
general principle relating the growth rate of the modulus |f(z)| of an analytic function f with
the distribution of zeros of f , as |z| tends to infinity, is well known for entire functions and has
been developed into very fine results within the Nevanlinna theory [L]. We change the settings
and fix some domain U b C, but try to get uniform upper bounds for the number of zeros
for some classes of functions analytic in U , in particular, for the spaces of solutions of linear
ODE’s with analytic coefficients of the form

a0(z)y(n) + a1(z) y(n−1) + · · ·+ an−1(z) y′ + an(z) y = 0,

aj(z) analytic in U ⊂ C, |aj(z)| < C for z ∈ U.
(5)

In this case the growth of all solutions can be easily controlled in terms of the determining
equation, and an analog of the Jensen inequality yields an upper bound for the number of
zeros.

Theorem [10]. If the equation (5) has no singularities in U (then without loss of generality
one may assume a0 ≡ 1), then any solution f of (5) may have at most O(C + n) real isolated
zeros on any segment I b R ∩ U , provided that f is real on I.

If the equation has singular points, but all of them are apparent (so that all solutions
extend analytically across these points), then the linear upper bound can be replaced by a
polynomial one after appropriate normalization of the principal coefficient [10]. All asymptotics
are explicitly computable.

This result in principle gives an opportunity to place an upper bound on the number of real
isolated zeros of any function in any bounded domain, as soon as the determining equation is
explicitly written.

3E3. Polynomial and rational envelopes. As was remarked, an Abelian integral of a
polynomial 1-form ω = p dx + q dy over regular level curves of a Hamiltonian H satisfies a
certain Picard–Fuchs linear equation. However, the considerations of the previous subsection
cannot be directly applied to this equation, firstly because it is practically impossible to place
a bound on the coefficients of this equation, and secondly, since the equations for different
forms are different, so no common upper bound can be obtained.

Instead one may consider a universal linear differential equation depending only on the
Hamiltonian, in such a way that the space of all Abelian integrals can be represented as
the rational envelope of this universal equation, that is, linear combinations of solutions of
the latter and their derivatives with rational coefficients. In [9] I introduced this universal
equation and studied its properties, among which the most important is almost irreducibility
of the monodromy group. If the degree of the form ω is known, then the degrees of rational
coefficients of the rational envelope can be explicitly computed [9]. If we are interested in
the number of zeros, then the rational envelopes can be reduced to polynomial envelopes (the
definition is natural), and one can easily write down a linear equation of a high order, whose
solution space will be the polynomial envelope of the original (universal) equation: the order
of this new equation grows with the degrees of the polynomial coefficients that are allowed to
occur in the envelope.

3E4. Polynomial envelopes of linear differential equations with an irreducible
monodromy group. The final step in proving the double exponential estimate [11] was in
establishing a quantitative version of the known fact that solutions of an irreducible equation
and their derivatives are linear independent over the field of rational functions. We obtain
a qualitative measure of this independence which allows us to estimate the coefficients of the
linear equation corresponding to the polynomial d-envelope (i.e. with coefficients of degree 6 d).
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Further progress and improvement [12], [13] was based on an alternative representation of
the equation for the polynomial envelopes and a local analysis near singular points. The main
result of [12], [13] is the following theorem.

Theorem [12], [13]. If a linear equation with an irreducible monodromy group has no singular
points on the closure of a real interval I ⊂ R, then any function from the polynomial (or
rational) d-envelope of that equation, real on I, may have at most expKd real isolated zeros
on I, where K = K(I) < ∞.

If all characteristic exponents corresponding to a singular point z = z0 are real, then the
above estimate is valid also for intervals containing z0 in their closure.

3E5. Complex zeros. One of the key ingredients in the proof of the theorems from §3E2,
is the Rolle theorem which asserts that the number of real isolated zeros of a smooth function
can be at most that of its derivative plus 1. This result is invalid if we consider complex
analytic functions. However, in [14] we established a different quantity, called the Bernstein
index , which majorizes the number of zeros of an analytic function, but unlike the former,
takes comparable values for a function and its derivative: if f is a function analytic in some
open domain U , then the difference between the Bernstein indices of f and f ′ is bounded from
above by a number depending only on U . This index is introduced in terms of the growth of
the function in the gap between two nested domains. We developed an elementary theory of
the Bernstein index and applied the conclusions to the problem of counting complex zeros of
functions defined by linear differential equations (cf. §3E2) and Abelian integrals. As a result,
we were able to prove complex analogs of theorems from §3E2 and §3E4, in particular, the
same simple exponential upper bound for polynomial envelopes in the complex case.

Theorem [14], cf. with §3E2. Fix a compact subset D of the domain U of analyticity of
coefficients of the equation (5). Then any solution of the equation (5) may have at most
OD,U (C + n lnn) complex analytic zeros in D.

There were previously known some results on disconjugacy of linear differential equations
in the complex domain (see [Ki] and references therein), guaranteeng that any solution may
possess no more than n− 1 complex zero, provided that the coefficients are sufficiently small,
i.e. C < C0(U). However, these results give a worser asymptotical bound of the order O(n C2)
as C →∞ for the number of zeros.

Combining the above theorem with the technique described in §3E4, we obtained a complex
analog of the theorem from [12], [13].

Theorem [14], cf. with §3E4. For any compact subset D on a positive distance from the
singular locus of a linear equation with an irreducible monodromy group, a function from a
polynomial d-envelope may have at most expOD(d) complex isolated zeros in D.

Corollary. If f(z) is an analytic function satisfying an irreducible linear differential equation,
and D is a domain free from singular points of that equation, then the number of zeros of the
νth derivative f (ν)(z) in D cannot exceed expOD(ν) as ν →∞.

The most recent work in this series, jointly with A. Khovanskĭı [15], concerns another similar
index that we called provisionally the Voorhoeve index , after the publications [V1], [V2], where
a specific particular case of that index was introduced. The construction is closely related to
the argument principle. Namely, if f is a function analytic in the open simply connected
domain U , we put VU (f) being the total variation of Arg f along the boundary of U . Then
the analog of the Rolle inequality [15] asserts that VU (f) 6 VU (f) + κ(U), where the κ(U) is
the absolute integral curvature of the boundary.

This result has an immediate application to counting complex roots of quasipolynomials∑
eλkzpk(z), pk ∈ C[z].
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Theorem [15]. For any function f(z) from the linear space of all quasipolynomials with
deg pk 6 d, the number of roots in a convex domain U can exceed the dimension of that
space by no greater than diam U · L, where L is the length of the shortest polyline visiting all
points representing the exponents λk on the plane C.

This seems to be the best known estimate. Finally we establish two-sided inequalities
between the Voorhoeve and the Bernstein indices, showing that the corresponding generalized
Rolle theories are essentially isomorphic.

3E6. Zeros near Fuchsian singularities. The results described in §3E2 deal with zeros of
analytic functions defined by linear equations in the nonsingular or apparently singular case.
Together with my M. Sc. student M. Roitman, quite recently we obtained a similar upper
estimate for zeros of such functions arbitrarily close to the Fuchsian singular points, provided
that the spectrum of the singularity is completely real.

Without loss of generality one can assume that the singularity is at the origin z = 0 and
the equation already has the form

Ly = 0, L =
n∑

j=0

cj(z) En−j , E = z
d

dz
the Euler operator, (6)

where cj(z) are analytic in the unit disk and c0(z) ≡ 1, |cj(z)| 6 C < ∞ for |z| < 1 (any
Fuchsian equation can be reduced to the form (6) by regrouping terms).

Theorem [17]. 1. The number of zeros of any solution f = f(z) of the equation (6), real on
the semiinterval [0, 1/2), does not exceed knC+k′n, where kn, k′n are some explicitly computable
constants, provided that all roots of the indicial equation λn +

∑n
j=1 cj(0)λn−j = 0 are real.

2. The similar upper bound (but with different kn, k′n) holds for the number of complex zeros
of any (not necessarily real) solution of equation (6) in the sector 0 < |z| < 1/2, |Arg z| < π,
provided that the coefficients cj(z) are real on the real axis and all roots of the indicial equation
are real.

It is essential to remark that the Fuchsian singularities with the real spectrum are charac-
teristic for the theory of Abelian integrals (see §2.5 above): the theorem just formulated allows
for an explicit estimate of the number of limit cycles born by polynomial perturbation of a
Hamiltonian field, provided that the corresponding Picard–Fuchs equation can be explicitly
written (there exists an algorithm of doing this in any particular case).

3F. Oscillation of spatial curves

From the geometrical point of view the question about the number of zeros of an arbitrary
solution to a given linear differential equation, is the question about the maximal number of
intersections of a certain curve in Rn (or Cn, depending on the context) with an arbitrary
affine hyperplane. In the paper [18] we constructed an upper bound for the latter number in
terms of geometric characteristics of the curve, namely, by the weighted sum of the generalized
integral curvatures of the curve.

Recall that for a Riemannian manifold Mn and any sufficiently smooth generic curve Γ : [0, `] → Mn

parameterized by the arc length s, the Frenet curvatures κj = κj(s), j = 1, . . . , n − 1 can be defined in the

same way as for smooth curves in R3, where κ1 is the standard curvature and κ2 the torsion. The points
where the last curvature κn−1(·) vanishes, are called generalized inflections. Define the generalized integral
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curvatures Kj(Γ ) of the Γ for j = −1, 0, 1, . . . , n as follows:

K−1(Γ ) = 1
2
π × {the number of endpoints of Γ} =

{
0, if Γ is closed,

π, otherwise,

K0(Γ ) =

∫ `

0
c1/n(s) ds (the weighted length of Γ ),

Kj(Γ ) =

∫ `

0
|κj(s)| ds, j = 1, . . . , n− 1, (the “true” integral curvatures),

Kn(Γ ) = π ×#{s : κn−1(s) = 0} (the number of inflections),

(7)

where c = c(s) is the Gaussian curvature of the ambient manifold M at the corresponding point of the curve.

Theorem [18]. Let Mn be one of the three manifolds:

(1) the Euclidean space Rn with the standard flat metric and c ≡ 0,
(2) the sphere Sn

r ⊂ Rn+1 of radius r > 0 with the induced metric of constant positive
curvature c ≡ rn, or

(3) the real projective space Pn = Sn
1/{±1} with the induced (Fubini–Studi) metric of

constant positive curvature c ≡ 1,

and Γ a generic curve with generalized integral curvatures Kj(Γ ), j = −1, 0, 1, . . . , n, given by
(7). Then this curve may intersect any “hyperplane” (an affine hyperplane in Rn, an equator
of Sn

r or a projective hyperplane in Pn, depending on the type of M) by no more than

1
π ·

(
wn+1K−1(Γ ) + wnK0(Γ ) + · · ·+ w0Kn(Γ )

)
isolated points, where the weights wk are unversal (do not depend neither on the space M from
the list of three, nor even on its dimension):

(w0, w1, w2, w3, w4, . . . ) = (1, 1, 2, 2, 3, . . . ) i.e. wk = k − 1 for k > 4.

In the Euclidean case this result can be generalized. Define the rotation of the curve Γ
around the origin as the spherical length of the central projection of this curve on the unit
sphere centered at the origin. Then rotation of Γ around an affine subspace L of an arbitrary
dimension k < n− 1 in Rn can be defined as the rotation of the orthogonal projection of Γ on
the orthogonal comlement L⊥ along L around the point that is the projection of L.

Theorem [18]. Rotation of a generic smooth curve Γ ⊂ Rn around any k-dimensional affine
subspace does not exceed the weighted sum of the first k + 1 integral curvatures

wk+2K−1(Γ ) + wkK1(Γ ) + · · ·+ w0Kk+1(Γ )

(note that in the Euclidean space K0(Γ ) is always zero).

Note. The assertion of the above theorem for n = 3 and k = 1 was proved by J. Milnor in
[Mi]. The case k = 0 (and n arbitrary) was established in [15] and for n = 2 implies the
Rolle theorem for the Voorhoeve index (see §3E5). It is interesting to observe that this upper
estimate does not depend on the dimension n of the ambient Euclidean space, hence one could
expect a similar bound for curves in the Hilbert space.

§4. Research currently in progress

In this section I briefly outline the problems I am currently working on, together with some
unfinished or incomplete results.
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4.1. Critical points of the period function. Consider a Newtonian mechanical system
with one degree of freedom with a polynomial potential. If the system is asynchronous, then
the period of oscillations as a function of energy is a nonconstant function. The question
about the number of intervals of monotonicity in terms of the degree of the potential, is a
long-standing problem where only partial results were obtained. I hope to be able to achieve
progress in this direction using the theory developed in [14], [17]–[18], see also below.

4.2. Integrable non-Hamiltonian systems. The Abelian integrals arise whenever a poly-
nomial perturbation of a Hamiltonian system is considered. However, if the system is only
integrable, then the integrating factor (or the first integral) is not necessarily polynomial.
However, in several important cases the first integrals are of the so-called Darboux type (a
product of linear factors in real noninteger powers). I hope that the technique established
in the algebraic settings can be adjusted to work in this simple transcendental case as well,
yielding thus new results on bifurcation of limit cycles in perturbed integrable systems.

4.3. Holomorphic curves and curves defined by systems of first order linear equa-
tions. It would be natural to apply the geometric theorems described in §3F to curves defined
by systems of first order linear equations with variable coefficients in Rn. In particular, if we
were able to answer the question about the number of intersections with hyperplanes for an
arbitrary solution of a rather special system of the form

(tE + A)ẋ(t) = Bx(t), x(t) ∈ Rn, A,B ∈ Matn×n(R), (8)

in terms of the matrices A,B, this would solve the problem described in §4.1: one can show
that the period function from §4.1 is the first coordinate of one of the solutions to (8) in which
the matrices A and B are built in a simple way from critical points/values of the potential.

However, if the linear system has nontrivial invariant subspaces, it is impossible to place
upper bounds on the Frenet curvatures κj(·) for the trajectories close to these subspaces. One
could hope that this difficulty could be circumvented by moving into the complex domain,
thus avoiding singularity. Apparently, this approach would require a counterpart of theorems
established in §3F for holomorphic curves. I already know one such result for holomorphic
curves in C2, yet the total picture is still obscure.
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